
Utilization Guide 
Version 2021.3



Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Copyright Notice 
This document is provided strictly as a guide. No guarantees can be provided or expected. This 
document contains the confidential information and/or proprietary property of Ivanti, Inc. and its 
affiliates (referred to collectively as “Ivanti”) and may not be disclosed or copied without prior written 
consent of Ivanti.

Ivanti retains the right to make changes to this document or related product specifications and 
descriptions, at any time, without notice. Ivanti makes no warranty for the use of this document and 
assumes no responsibility for any errors that can appear in the document nor does it make a 
commitment to update the information contained herein. For the most current product information, 
please visit www.Ivanti.com.

Copyright © 2021, Ivanti. All rights reserved.

Protected by patents, see https://www.ivanti.com/patents.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/patents
https://www.ivanti.com/company/legal


Contents

3
5
5

Copyright Notice
Utilization Guide - Ivanti Application Control for Linux

Capabilities
Utilization 7

Zero-Day Protection 7
Local Whitelisting 9
Allow/Deny Rules 9
Audit vs. Restrict 10
Root User Exclusion 10

Deployment - Additional  Notes 11
Saving without Deploying 11
Deployments on Groups 11
Managing Deployments 11

Administration 13
Web Console 13
Rules System 16

Maintenance 27
Logging & Debugging 27

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Utilization Guide - Ivanti Application 
Control for Linux
This guide documents how to configure and maintain the Ivanti Application Control for Linux system. It 
summarizes the configuration settings available via the web console, and the logic of how polices and 
rules are applied. The document also includes  information that may help you debug or troubleshoot 
across the component parts of your system.

The content is intended for system administrators.

Capabilities
This section highlights what the system can do - or what it is capable of achieving when configured.

Zero-Day Protection

Once installed and running on your Linux endpoints, except for base system functionality  allowed via  
Policy Defaults, the Ivanti Application Control for Linux engine automatically denies all execution 
operations of binaries, shared objects, scripts, or commands.

Local Whitelisting

After start up, the Application Control for Linux engine scans the local RPM database and automatically 
whitelists all the packages found based on their contents. It then exposes their trust chain and contents 
within the web console to enable easier inspection.

Allow/Deny Rules

The default working mode of the Application Control for Linux system is to deny execution operations 
unless they are permitted via Policy Defaults, locally whitelisted, or explicitly allowed.

Allowing and denying specific paths and/or binaries is done via creating policies inside the Application 
Control for Linux web console, establishing their rules, and finally selecting a list of registered devices or 
groups of devices to be protected, and deploying them.

Audit vs. Restrict

A policy in the Application Control for Linux system can be setup into either Audit or Restrict modes:

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

#_Policy_Rules
#_Device_Groups
https://www.ivanti.com/company/legal


Audit Mode:

• Instructs the Application Control for Linux engine to monitor all operations on the protected 
endpoint and to report back to the administrator what would have been the enforcement 
results based on the rule set of the policy deployed on it.

This mode enables administrators to audit the possible effects of a policy’s rule set and to 
monitor the actions of  users. Review of audit data provides valuable feedback when preparing 
to implement a new policy.         

Restrict Mode:

 l Instructs the Application Control for Linux engine to monitor all operations on the protected 
endpoint, enforce the rule set contained in the deployed policy (this includes policy defaults and 
local whitelisting), and to report back to the administrator all the operations monitored, and the 
enforcements applied.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Utilization
This section describes the characteristics that can be configured to influence system capabilities. 

Zero-Day Protection
The  Policy Defaults rule set is listed below. Its purpose is to ensure  base system functionality is allowed.
Note, this file comprises paths only; it does not contain binaries. The first path specified is Application 
Control for Linux

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


/opt/arrow/ac/

/usr/bin/

/usr/libexec/

/usr/lib/xorg/

/usr/lib/gdm3/

/etc/gdm3/

/usr/sbin/

/usr/lib/

/usr/lib/debug/

/usr/lib/debug/lib/

/usr/lib/debug/lib/libc6-prof/x86_64-linux-gnu/

/usr/lib/debug/lib/libc6-prof/

/usr/lib/debug/lib/x86_64-linux-gnu/

/usr/lib/i386-linux-gnu/

/usr/lib/x86_64-linux-gnu/

/sbin/

/etc/

/proc

/var

/etc/init/

/boot/grub2/

/boot/efi/EFI/redhat/

/boot/loader/

/etc/default/

/proc/

/boot/

/boot/efi/

/boot/efi/EFI/

/usr/lib64/

/usr/libexec/

/usr/libexec/sssd/

/usr/libexec/hypervkvpd/

/usr/lib/systemd/

/usr/lib/gdm3/

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Local Whitelisting
Due to RPM database API technical limitations (https://github.com/rpm-software-
management/rpm/issues/1124), the Application Control for Linux engine cannot account for changes 
occurred in the RPM database while it is running.
Note: If  packages are installed or updated on the Linux endpoint,  you are advised to restart the 
engine’s daemon. This action is required to keep the engine in sync with the refreshed version of the 
installed packages in the RPM database.

Allow/Deny Rules

Hashing for binaries

The check box Use Hashing helps inform the Application Control for Linux engine that the target binary 
should be allowed or denied via its signature rather than its location. This means that if the target binary 
is copied into another location, the enforcement on it cannot be circumvented.

There is no practical method for the system to predict if the specified target is a path or a binary - or 
whether it exists on all the Linux endpoints where the policy containing the rule might be deployed. The 
decision to allow or deny is made locally on each endpoint by each Application Control for Linux 
engine. The system will not prevent the administrator from selecting the Use Hashing option for a path 
- but if wrongly set, hashing option  is ignored.

Whilst it is possible to check the Use Hashing check box in the web console for any target – it is 
up to the administrator to set it correctly. Hashing can only be applied by the engine for 
existing binaries.

Enabling or disabling individual rules:

Rules can be enabled or disabled at an individual level. This allows administrators to test settings and 
configurations before finalizing  policies.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://github.com/rpm-software-management/rpm/issues/1124
https://github.com/rpm-software-management/rpm/issues/1124
https://www.ivanti.com/company/legal


Audit vs. Restrict

Viewing results of deployed policies:

The effects of a deployed policy, in either Audit or Restrict mode, can be observed in the Audit Log or 
Debug Info tabs available on each device in the Devices page. 

Note, operation identifiers are different for each mode:

• Audit mode - Allowed or Denied

• Restrict mode - Permitted or Blocked 

Use the Search, Filter, and Order functions available within each tab to inspect the results of interest.

Root User Exclusion
The root user is excluded from all the enforcements performed by the Application Control for Linux 
engine.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Deployment - Additional  Notes 
The section provides additional user guidance relating to policy deployment actions.

Saving without Deploying
A Linux endpoint can have only one policy deployed/active  at any given moment. The active policy 
includes, by default, the latest policy defaults and local whitelisting specified.

• While working on the structure of your policy you can perform intermediate Save operations to 
ensure that your work is not lost, and you can continue it later before deciding to deploy. 

• Any new policy  deployed successfully on an endpoint replaces the previous one as the active 
policy.

• Saved policies can be edited further until they are deployed (and become active), as opposed to 
deployed/active policies which can only be viewed or duplicated after deployment.

Deployments on Groups
Device Groups are a way of organizing the devices registered in your system into logical groups that 
make sense to your business. Grouping allows for easier handling and maintenance.

• A device cannot be present multiple times or included in different logical groups.

• Groups cannot be further nested or otherwise classified.

• When adding a Device Group as a deployment target into a policy, the system will add a list of 
all the devices in it, ensuring they are uniquely inserted into the policy.

• Within the web console, when creating or editing Device Groups, the system displays only the 
groups permitted for insertion (groups that contain any devices that you have previously added 
are not listed as available for selection). 

Managing Deployments
Following successful deployment, policies can only be viewed, duplicated, or removed.
Note that removing a deployed policy will not remove it or inactivate it from the endpoints where it was 
active – such a policy can only be replaced later via a new deployment.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

#_Device_Groups
#_Device_Groups
https://www.ivanti.com/company/legal


To create a new version of an existing, successfully deployed policy, you must use the Duplicate action 
to create a new draft, and then Edit the new draft.

• Duplicate will copy the policy’s main properties, the complete list of rules, and the complete list 
of added devices.

• Manully including a version number in the name of your policy is recommended.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Administration
Effectiveness of your Ivanti Application Control for Linux system requires the administration of policies, 
devices and rules tailored to meet the requirements of your organization. Administration is performed 
using the web console and this section of the documentation describes the concepts and functionality 
available.

Web Console

Home Tab

The Home tab is the entry point to the web console. It acts as a dashboard, displaying the most relevant 
data from your system. The Home tab includes links to further resources such as Help, Support, 
Community Articles and Ivanti-specific trainings.

Policies Tab

The Policies tab is where you create new policies and manage existing ones.

All Device Policies Section

The All Device Policies section lists all policies, displaying their deployment, contents, current status and 
execution mode.

• Select the ellipses icon menu to access relevant functions. The menu includes options to view 
deployed/active policies, duplicate existing ones, edit  draft policies, and remove   policies.

• Policies can be edited or removed only until they are deployed. Once successfully deployed, the 
policy becomes active.

• Deployed (active) policies can only be viewed or duplicated; they cannot be edited or removed.

New Policy Section

Select New Policy to access the section where you create policies, compose a rule sets, set up the list of 
devices where they the policy will be deployed and establish the mode (Audit or Restrict) in which the 
new policy will behave on the targeted Linux endpoints.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


On an individual rule you can specify the targets required. This includes full or relative paths or binaries, 
and if execution should be allowed  or denied.                         

If required, you can use environment variables and symbolic links. To view examples, refer to the "Rules 
System" on page 16 section.

For binaries, the Use Hashing option allows you to ensure the target is identified by signature rather 
than location. This means even if the target is copied into another location, the enforcement of the rule 
cannot be circumvented. Further information on the use of hashing is available here.

The list of rules allows you to filter rules and further inspect them. Functions allow you to edit previously 
existing rules, modify their type (Allowed or Denied), enable, or disable the use of hashing, enable, or 
disable a rule entirely, or remove it from the list. 

Add Devices Tab

The Add Devices tab enables you to specify where you want your policy to be deployed and activated. 
You can add individual devices or groups of devices. For further information refer to Deployments on 
Groups.

The list of Added Devices [check name] indicates if a device belongs to any group, and if a policy is 
currently active for that device. You can filter the list, and/or remove individual or multiple devices.

Notes 

• Until a policy is deployed it can be edited. You are advised to periodically save your changes 
(for further information refer to Save Without Deploying.

• In the Deploy Policy tab you can see a summary of your policy, and save or deploy the created 
rules to the devices specified.

Devices Tab

The Devices tab lists  devices that are registered to your server instance.

In the list of devices you can view whether the device belongs to a group, whether they have an active 
policy, and the deployment progress and/or status of that policy. 

The list can be filtered for ease of navigation and administration.

To view device-specific details select the required device name from those listed. Device details are 
displayed in four tabs:

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Device Summary 

The Device Summary summarizes relevant hardware and software information. The information is  
extracted from the Linux distribution on the device at the point of registration .

Debug Info Tab

Debug Info enables you to review detailed debug information. 
The data is supplied from the Application Control for Linux engine running on that device. The data can 
be filtered for ease of navigation and further inspection. It can be valuable in troubleshooting  the 
current state of your endpoint.

See also  Audit vs Restrict for further information.

Audit Log Tab

Audit logs detail Application Control-specific events as they are audited and reported from the device's 
Application Control for Linux engine. The audit log events are based upon the operations executed. The 
operations could be executed by the system, various systems services, individual applications, or by 
users.

Events are audited whether the deployed policy mode is Audit or Restrict. They apply to the currently 
active policy (including policy defaults and local whitelisting).

Audit log data can be filtered for ease of navigation and inspection and is valuable in auditing the 
current behavior  of your endpoint - whether allowed and denied. For further information, refer to er to 
Audit vs Restrict.

Device Contents Tab

Device Contents displays the applications and packages installed on the Linux endpoint. This includes a 
visual structure of all binaries present and their locations, and a list of  installed packages, their contents, 
and their security characteristics such as hash values and signature keys.

Device Groups

The Device Groups tab allows you to organize your registered devices into logical groups.

The groups are listed and the number of devices included currently is displayed. To remove a device 
group select the ellipses icon to open the context menu, then select Remove.

The list can be filtered for ease of navigation and administration.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Create a Group Section

The Create a Group section allows you to organize your devices into a new logical group.

Add Devices

Devices can only belong to one group at a time.

The add devices search returns only relevant registered devices, note that this will exclude any device 
that is currently a group member.

Note: If a device belonging to one group is added to a new group its original group membership is 
removed. 

Devices (list)

The list of devices allows you to filter, and then further inspect  added devices. The list displays current 
group membership for the devices and their currently active policies.

Group member devices can be selected individually or in multiples and removed using the Remove 
button.

Rules System
This section describes the concept of how Ivanti Application Control for Linux uses and applies rule sets. 
It summarizes how to create rules, the logic used to apply those rules, and includes a range of specific 
examples.

Concepts

The Policy Rule System in Application Control for Linux is based on three fundamental concepts and a 
few functional details.

 l The concepts we are using are called target identification, operator precedence and hierarchical 
specialization.

 l The functional details are denied by default for zero-day protection, policy defaults and local 
whitelisting, and root user exclusion.

Understanding the concepts will help you grasp how to correctly compose your rule system to 
obtain the expected results.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Target Identification:

 l Rules apply concretely only on execution operations as final targets (binaries, shared objects, 
scripts, or commands). 

 l We will often use the terms binary or executing binary to represent these throughout the 
rest of the documentation.

 l From a user’s perspective, a target is your first input into a rule, specifying where or exactly on 
what do you want the rule to apply.

 l You can specify a location (relative or full path) as a target, meaning that the rule will apply on all 
execution operations started under or by the current user in that location.

 l You can specify a binary (via a relative or full path to it) as a target, meaning that you set the rule 
to apply exactly on the execution operation identified, started under or by the current user.

 l Also, as a user, besides specifying a target as your first input into a rule, you can also set the 
hashing option (only for binary targets, see here for a few details on how this works), telling the 
system that it should compute a hashing value for the final target residing at the specified 
location, and use that further to globally identify the final target, instead of the original location.

 l In the end, the system can identify a final target in two ways, by location or by signature, making 
the identification and rule enforcement local or global.

Operator Precedence:

 l There are three operators considered in the application control environment: allow, deny, and 
hashing.

 l Allow and deny are mandatory Boolean operators, hashing is an optional, conditional operator.

 l Allow and deny set the enforcement type (permit or block), while hashing changes the 
enforcement’s coverage (from local to global).

 l Allow specifies that a certain final target (binary, shared objects, script, or command) should be 
allowed to execute under or by the current user, at its current location (specified or inherited) or 
by its signature (globally).

 l Deny specifies that a certain final target (binary, shared object, script, or command) should be 
denied execution under or by the current user, at its current location (specified or inherited) or 
by its signature (globally).

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


 l As said earlier, in the target identification section, Hashing specifies that a certain final target 
(binary, shared object, script, or command) should be identified by its signature instead of its 
location, and globally consider further the enforcement of its execution, under or by the current 
user.

 l Given the details above, the operator precedence is as follows:

 l Initially, the hashing is considered, first the allows, then the denies.

 l Second, the allow operator is considered, by final target location.

 l Third, the deny operator is considered, by final target location.

 l Note: although the hashing operator is optional, it is considered first otherwise its 
globality would not be satisfied.       

 l Note: since this is a deny by default system, allow are considered second, otherwise the 
whole system would remain blocked.       

 l Operator Precedence TL/DR:

 1. Allows with Hashing (a.k.a. allows by signature)

 2. Denies with Hashing (a.k.a. denies by signature)

 3. Allows without Hashing (a.k.a. allows by location)

 4. Denies without Hashing (a.k.a. denies by location)

Hierarchical Specialization:   

 l It represents the way a rule for a final target is decided in the rules system.

 l Note: initially, all final targets will be localized (found by location), so the system can know where 
and who they are, and then identified, either by location or, if hashing is enabled, by signature.

When deciding a rule for a final target, the system will perform these steps:

 l compute the hash of the executed binary and search the internal rules hashes table for 
allows or denies (that’s the first reason it always needs to know where it is, to ensure the 
creation of that table).

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


 l if the previous step doesn’t yield a rule, it will search for a non-hashing allow/deny rule for 
the exact location  of the executed binary.

 l This is called the most specialized rule for the final target.

 l if the previous step doesn’t yield a rule either, the system will start reducing the path to 
the executed binary backwards, by removing the right-most element (first the binary itself, 
then the previous directory, and so on, up to the root directory a.k.a. “/”) and try to find a 
rule in the rules list that applies to that reduced location. If this search yields, that resulting 
rule will be applied to the initial executing binary.

 l This is called the closest specialized rule for the final target.

 l while  performing the previous two steps the system will also consider the policy defaults 
and the local whitelisting tables in establishing the correct definitive rule for an executing 
binary.

 l in the end, if no rule can be found for the final target, its execution will be denied by 
default.

Knowing the functional details will allow you to get a better overview on the behavior of 
the application control system as a whole and its capabilities.

Please revisit the Capabilities and Utilization sections for a reminder on these topics.

Examples

Simple rules for a binary

Simple rules for a binary called “myApp”, located in “/home/Desktop/”:

Setup:

• Rule 1: Allow – “/home/user/Desktop/myApp”

• Rule 2: Deny – “/home/user/Desktop/myApp”

Result:

Allow execution of “/home/user/Desktop/myApp”

Logic:

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Allow by location takes precedence to deny by location (the level of specialization here is the 
same for both rules). 

 

Simple rules for a binary - unoptimized and optimized       

Same simple rules for a binary called “myApp”, located in “/home/Desktop/”, with an optimization 
suggestion:

Unoptimized example

Setup:

• Rule 1: Deny – “/home/user/Desktop/myApp”

• Rule 2: Allow – “/home/user/Desktop/myApp”

Result:

Allow execution of “/home/user/Desktop/myApp”

Logic:

Allow by location takes precedence to deny by location (the level of specialization here is the 
same for both rules).
Deny is analyzed, as it’s specified first, and the system must consider it, not knowing what will 
follow. 

 

Optimized example:         

Setup:

• Rule 1: Allow – “/home/user/Desktop/myApp”

• Rule 2: Deny – “/home/user/Desktop/myApp”

Result:

Allow execution of “/home/user/Desktop/myApp”

Logic:

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Allow by location takes precedence to deny by location (the level of specialization here is the 
same for both rules).
Deny is ignored, the result is immediate, because allows have precedence to denies.       

 

Rules for a binary using full path and hashing

Simple rules for a binary called “myApp”, located in “/home/Desktop/”, by location (full path) and by 
signature (hashing):

Setup:

• Rule 1: Allow – “/home/user/Desktop/myApp”

• Rule 2: Deny – “/home/user/Desktop/myApp” – Use hashing is checked

Result:

Deny execution of “/home/user/Desktop/myApp”

Logic:

Deny by hashing takes precedence to allow by location (the level of specialization here is the 
same for both rules, but the globality differs). 

Rules for a binary and parent location

Simple rules for a binary called “myApp”, and its parent location “/home/user/Desktop/”:

Setup:

• Rule 1: Deny – “/home/user/Desktop/”

• Rule 2: Allow – “/home/user/Desktop/myApp”

Result:

Allow execution of “/home/user/Desktop/myApp”

Logic:

Allow set by the most specialized rule on the executing binary takes precedence to the deny for 
its parent location.         

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


 

Rules for a binary - use of syntax

Simple rules for a location, “/home/user/Desktop/”, with a minor difference in syntax, but lexically 
identical:

Setup:

• Rule 1: Allow – “/home/user/Desktop”

• Rule 2: Deny – “/home/user/Desktop/”

Result:

Allow execution of anything in “/home/user/Desktop/”

Logic:

Allow by location takes precedence to deny by location (the level of specialization here will be 
the same for both rules).     
While searching for the most specialized rule by location, the system knows and accounts for 
the fact that the last “/” is not changing it, so both syntaxes are treated as the same location. 

 

Complex rules for a binary - example 1

More complex scenario, with rules for a binary called “myApp”, located in “/home/user/Desktop/”, its 
parent location, the “home” directory, and the system binary “ls”:

Setup:

• Rule 1: Allow – “/home/user/Desktop/”

• Rule 2: Deny – “/home/”

• Rule 3: Deny – “/home/user/Desktop/myApp”

• Rule 4: Deny – “/usr/bin/ls” – Use hashing is checked

Result:

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Deny execution of anything in “/home/”, except allowing execution of anything in 
“/home/user/Desktop/”, but again deny the execution of “/home/user/Desktop/myApp”, and 
finally deny the execution of “ls” globally, not only from “/usr/bin/” (e.g., even if “ls” would be 
copied in “/home/user/Desktop/”).

Logic:

Deny for “ls” is global, by hashing, deny set by the most specialized rule on the executing binary 
for “myApp” takes precedence to the allow for its parent location, then anything else in its 
parent location “/home/user/Desktop/” would be allowed, taking precedence by specialization 
to the deny rule for its parent folder “/home/”, and finally, the deny on “/home/” is enforced.         

 

Rules to block an app allowed by its parent location

Another complex scenario, with rules to block an app, “/usr/bin/ls”, implicitly allowed by the policy 
default rules by allowing its parent location “/usr/bin/”:

Default:

Rule x: Allow – “/usr/bin/”

Note, the default exists for both setups presented below:         

Setup 1:

• Rule 1: Allow – “/home/user/Desktop/”

• Rule 2: Deny – “/usr/bin/ls”

Result 1:

Allow execution of anything in “/usr/bin/”, also allow execution of anything in 
“/home/user/Desktop/” but deny the execution of “/usr/bin/ls”, locally, only if executed from 
“/usr/bin/” (e.g., if “ls” would be copied in “/home/user/Desktop/” it would be allowed to 
execute).

Logic 1:

Deny for “ls” is local but set by the most specialized rule on the executing binary, so it takes 
precedence to the allow in policy defaults for its parent location, “/usr/bin/”.         

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Allow for “/home/user/Desktop/” will allow execution of any binary in it, unless explicitly 
denied, so since the deny for “ls” is not global, by hashing, and since there is no local deny for a 
copy of “ls” in “/home/user/Desktop/”, if that copy would exist, it would be allowed to execute. 

Remember, the default is still there for this setup:   

Setup 2:

• Rule 1: Allow – “/home/user/Desktop/”

• Rule 2: Deny – “/usr/bin/ls” – Use hashing is checked

Result 2:

Allow execution of anything in “/usr/bin/”, also allow execution of anything in 
“/home/user/Desktop/” but deny the execution of “/usr/bin/ls”, globally, not only from 
“/usr/bin/” (e.g., even if “ls” would be copied in “/home/user/Desktop/”).

Logic 2:

Deny for “ls” is global, set by hashing, and by the most specialized rule on the executing binary, 
so it takes full precedence to the allow in policy defaults for its parent location, “/usr/bin/”, and 
to the allow for “/home/user/Desktop/”, so if a copy of it were to exist there, it would be denied 
execution.       

 

Environment variable examples

A few examples of expanding Environment Variables and how they are treated:

Case 1 – simple or composed:

Setup:

• $OTHER = “/home/Desktop/Folder/”

• $ENV = “/home/usr/$OTHER” 

Result:

→ “/home/usr/home/Desktop/Folder/”

Logic:

will expand, composing the sub-paths, and removing extra “/”.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


 

Case 2 – undefined variable:

Setup:

$UNDEFINED – is not defined on the system

Result:

→ N/A

Logic:

will not expand and the rule will be ignored for security reasons.

 

Case 3 – garbage variable

Setup:

$GARBAGE = “#847e08” – is defined, but unusable

Result:

→ N/A

Logic:

will not expand and the rule will be ignored for security reasons.

 

Case 4 – not found variable:

Setup:

$NOTFOUND = “/home/<none>/” – is defined, but path is not found

Result:

→ N/A

Logic:

will not expand and the rule will be ignored for security reasons.

 

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Case 5 – empty variable:

Setup:

• $EMPTY = “” or “/” – is defined, but has no impact

• $OTHER = “/home/Desktop/Folder/$EMPTY”

Result:

→ “/home/Desktop/Folder/”

Logic:

will expand, composing the sub-paths, and removing extra “/”.

 

Case 6 – semantic identity:

Setup:

• Rule 1: Deny – “/home/$VAR”, where $VAR = “/user/Desktop/”

• Rule 2: Allow - “/home/user/Desktop/”

Result:

Allow execution of anything in “/home/user/Desktop/”

Logic:

Allow by location takes precedence to deny by location.        
Rule 1’s path will expand, compose sub-paths, and remove extra “/”.           

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Maintenance
This section provides information and guidance that can help you maintain and debug your system.

Logging & Debugging
Please find below details on the logging locations and their debugging purposes for your entire 
experience with the AC for Linux system, from initial installation to deploying policies in production.

Windows Server

Installation

The installation of the AC for Linux Master Installer is logged in "C:\ProgramData\Ivanti\ACServer\", in 
files named similar to "master_20211028113915.txt", 
where "20211028113915" is the installation time-stamp, and the AC for Linux sub-installer for the AC & 
AF Servers is logged also in "C:\ProgramData\Ivanti\ACServer\", in files named similar to "master_
20211028113915_002_AFServerHostSetup.msi.txt" where "20211028113915" is the installation 
timestamp and the "002" is the current rotation number.

Utilization

The communication part of the AC for Linux solution, via the AF Server, is activelly logged as follows:

• C:\ProgramData\Ivanti\ACServer contains runtime logging information, detailing the execution 
of the AF Server instance.

Linux Endpoints

AC Agent Logs

Location

Current log files are located here: "/opt/ivanti/ac/logs/".

Rotation

Older log files are rotated here: "/opt/ivanti/ac/logs/old".

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Older log files are moved to this location and new versions are generated in the main one. 
Versioning adds an “<underscore_number>” to the log file name.

Log Files

“acengd_0.log”

Purpose
Agent-Engine supervisory log, detailing the management of the Engine by the 
Agent.

Example
In connection error scenarios, when the Engine doesn't appear to receive any 
data, the Agent will be aware of and report the issues.

“stagentctl_0.log”

Purpose
Agent registration and control log, detailing the registration of the Agent with 
the Windows Backend, including secured communication status.

Example
During registration, SSL_HANDSHAKE error scenarios can appear, and they be 
reported here.

“stagentd_0.log”

Purpose
Agent daemon main log, detailing the secured communication events between 
the Linux Endpoint and the Windows Backend.

Example
At runtime, any communication errors will be reported here (the Agent handles 
and secures all communication between the AC Engine and the Windows 
Backend).

“stagentlistener_0.log”

Purpose
Agent daemon listener log, detailing the status of commands and package 
exchanges via all communication channels (HTTPS, MQTT).

“stagentupdater_0.log”

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Purpose
Agent daemon updater log, detailing the status of updates and configuration 
arrivals from the Windows Backend infrastructure.

“stmqttservice_0.log”

Purpose
Agent MQTT communication log, detailing all the communication via MQTT 
between the Linux Endpoint and the Windows Backend.

“sttelemetryreporter_0.log”

Purpose
Agent daemon telemetry log, providing detailed telemetry for all the 
operations executed by the agent.

Example
At runtime, this is the best starting point for debugging all types of business 
logic and communication error scenarios.

AC Engine Logs

Location

Current log files are located here: "/opt/ivanti/ac/engines/ivanti-ac-engine-<distro_
name>/logs/".
Logs are located per your running distribution, so <distro_name> can be: "centos-8", or 
"oracle-8", or "redhat-8", quotes excluded.

Rotation

Older log files are rotated here: "/opt/ivanti/ac/engines/ivanti-ac-engine-<distro_
name>/logs/old".

Logs are also rotated per your running distribution, so <distro_name> can be: "centos-8", or 
"oracle-8", or "redhat-8", quotes excluded.

Older log files are archived and moved to this location and new files are generated in the main 
one. Rotation changes the file name as follows: “<log_file_name><underscore_number 
><.log.gzip>”.

Log Files

“acengd.log”

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal


Purpose
Engine general log, detailing all the telemetry and debug-mode information 
for the engine at runtime, with maximum verbosity.

Example
Any engine business logic event (such as local whitelist caching and decision 
engine policy handling scenarios), can be inspected and debugged with the 
help of this log file.

Copyright © 2021 , Ivanti. All Rights Reserved. Privacy and Legal.

Application Control for Linux 2021.3 - Utilization Guide

https://www.ivanti.com/company/legal

	cover-Zacx
	Copyright Notice
	Utilization Guide - Ivanti Application Control for Linux
	Capabilities

	Utilization
	Zero-Day Protection
	Local Whitelisting
	Allow/Deny Rules
	Audit vs. Restrict
	Root User Exclusion

	Deployment - Additional Notes
	Saving without Deploying
	Deployments on Groups
	Managing Deployments

	Administration
	Web Console
	Rules System

	Maintenance
	Logging & Debugging


