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Introduction
This document describes the Ivanti Service Manager Web Services API, which can be used for 
integrating your application with Ivanti Service Manager.

By the end of this document, you should be able to create an API for your application that can work 
with Ivanti Service Manager Web Services.
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FRSHEATIntegration Web Service URL
The FRSHEATIntegration Web Service can be accessed at a link similar to the example shown below:

https://<TenantName>/ServiceAPI/FRSHEATIntegration.asmx

Replace <TenantName> with the hostname corresponding to your particular tenant.

Notice when accessing the above URL, information is provided for the available Web Methods.

 

The corresponding WSDL file can be accessed at by adding “?wsdl” at the end of the previous URL, as 
seen in the example link shown below:

https://<TenantName>/ServiceAPI/FRSHEATIntegration.asmx?wsdl
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Establishing the Connection and Role 
Selection
Before an application can access a Web Service API on the SaaS platform, it has to be properly 
authenticated and authorized, with respect to the tenant. This is achieved by first invoking the 
Connect() WebMethod, before performing any subsequent Web Service operations.

Connect
The Connect WebMethod is responsible for performing both the authentication and authorization 
operations, to ensure that the Web Service user is properly authenticated, and belongs to the 
specified role.

Request syntax:
FRSHEATIntegrationConnectResponse Connect(string userName, string password, string tenantId, string 
role)
 

Parameters:

userName: loginId  for which the session is to be created. The loginId is searched against LoginID 
column in the Profile.Employee business object (Profile table).

password: user password. Either internal or external (Active Directory) password can be used, 
depending on the Employee record configuration.

tenantId: tenant for which the session is to be created. The tenant ID is matched against the 
“TenantURL” field, in the Tenants business object in the ConfigDB database. The tenant record must 
be in “Active” state in order for authentication to succeed.

role: the role that the indicated user will be logging in as.

Return Value:
An FRSHEATIntegrationConnectResponse object, defined as follows:
    public class FRSHEATIntegrationConnectResponse
    {
        public string connectionStatus;
        public string sessionKey;
        public string exceptionReason;
    }

The FRSHEATIntegrationConnectResponse class comprises the following fields:

• connectionStatus – this field provides a Status value indicating the state of the Connection.         
    A full description of the available Status values is provided in the table below.

• sessionKey – the sessionKey which needs to be used in all subsequent Web Service 
operations. This field will only be populated when the connectionStatus has a value of 
“Success”, otherwise the value will be null.

Copyright © 2019 , Ivanti. All Rights Reserved. Privacy & Legal.

Page 7 of 90

Service and Asset Manager 2019.1 Web Services Guide

http://www.ivanti.com/en-US/company/legal


• exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

If the Connect WebMethod operation completes successfully, the sessionKey will be stored in the 
corresponding member in the FRSHEATIntegrationConnectResponse object.

However, if there is an error encountered during the Connect operation (either during the 
authentication or authorization phases), a SOAP Exception will be thrown by the server, and the Web 
Services Client will be required to handle the exception accordingly.

The following table lists the possible kinds of exceptions which can be encountered, while executing 
the Connect WebMethod.

 

SOAP Exception Explanation

AccessDenied Either the specified username does not exist in the tenant, or the password provided 
is invalid for the username.

 

Double-check the credentials passed into the Connect Web Method, to ensure that 
they are specified properly.

TenantNotFound Either the specified TenantURL cannot be found, or that the tenant is not currently in 
“Active” status.

 

Double-check the TenantURL to ensure that it is the correct URL for accessing the 
tenant.

 

If the TenantURL is correct, please double check with FRS Operations regarding the 
status of the given Tenant.

TenantInMaintenance The specified Tenant is currently in maintenance mode.       
       Confirm whether the Tenant is in maintenance mode, and double-check with FRS 
Operations, as to when the tenant will be set back to Active status.

InvalidRole Either the specified Role definition is not available in the tenant, or that the user is not 
currently associated with the specified role.       
       Confirm whether the Role actually does exist in the tenant, and that the user does 
belong to the given role.

SessionExpired The SessionKey refers to a session which has since expired.         
       This typically occurs when the API operation uses the SessionKey from an earlier 
Connect webmethod call, and the session has expired due to inactivity.       
       Whenever this occurs, it is necessary to execute the Connect webmethod call again, 
so that a new sessionkey can be obtained, for performing any further actions. This 
will be explained in the next section.
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Important Note: For all subsequent WebMethods described in this document, the user may 
run into authentication / authorization errors, when reusing the same sessionKey value – the 
Web Services client will need to account for the possibility of connection failures, while 
exercising the remaining WebMethods described in this document.

Example
FRSHEATIntegration frSvc = new FRSHEATIntegration();
 
FRSHEATIntegrationConnectResponse connectresponse = frSvc.Connect(username, password, tenantId, 
role);
 
if (connectresponse.connectionStatus == "Success")
{
        ...
}
 

Handling Session Expirations

After making the initial call to the Connect WebMethod to obtain the sessionkey, typically Web Service 
Clients would reuse the same sessionKey value for invoking all subsequent WebMethod operations, 
such as Search, UpdateObject, etc.

If the Web Services Client remains idle for a period of time, which exceeds the session timeout value 
that has been set for the tenant, the session will expire - the sessionkey that was obtained earlier will 
no longer be valid.

Once the session has expired, if the client tries to use the expired sessionkey for any subsequent 
operation (such as Search), a SOAP Exception will be returned by the server, alerting the client that the 
session has indeed expired.

By throwing the explicit SOAP Exception back to the client, the client can then use standard exception 
handling techniques, for calling the Connect WebMethod again, to obtain a brand new sessionkey, 
which can then be used in subsequent operations.

For .NET-based web services clients, the reference to the FRSHEATIntegration API can be established 
using either a Web Reference or a Service Reference – the code to handle the SOAP exception differs 
slightly based on the type of reference.

The following code sample illustrates how this can be achieved, if the Web Services Client is defined 
using a Web Reference to the FRSHEATIntegration API:
 
            ObjectQueryDefinition query = new ObjectQueryDefinition();
            query.Select = new SelectClass();
            FieldClass[] incidentFieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass() 
                {
                    Name = "Service",
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                    Type = "Text"
                }
            };
            query.Select.Fields = incidentFieldObjects;
            query.From = new FromClass();
            query.From.Object = "Incident";
 
            query.Where = new RuleClass[] { 
                new RuleClass()
                {
                    Join = "AND", 
                    Condition = "=", 
                    Field = "IncidentNumber", 
                    Value = "10001"
                }
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = null;
 
            try
            {
               searchResponse = frSvc.Search(authSessionKey, tenantId, query);
            }
            catch (SoapException soapException)
            {
               if (soapException.Actor == "SessionExpired")
               {
                   connectresponse = frSvc.Connect(username, password, tenantId, role);
                   if (connectresponse.connectionStatus == "Success")
                   {
                       authSessionKey = connectresponse.sessionKey;
                       searchResponse = frSvc.Search(connectresponse.sessionKey, tenantId, query);
                   }
               }
            }
 
            if (searchResponse != null && searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] incidentList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] incidentOuterList in incidentList)
                {
                    foreach (WebServiceBusinessObject incident in incidentOuterList)
                    {
                        Console.WriteLine("Incident {0} matches the selection criteria", 
incident.FieldValues[0].Value);
                    }
                }
            }
 

In particular, note the following code fragment:
            try
            {
               searchResponse = frSvc.Search(authSessionKey, tenantId, query);
            }
            catch (SoapException soapException)
            {
               if (soapException.Actor == "SessionExpired")
               {
                   connectresponse = frSvc.Connect(username, password, tenantId, role);
                   if (connectresponse.connectionStatus == "Success")
                   {
                       authSessionKey = connectresponse.sessionKey;
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                       searchResponse = frSvc.Search(authSessionKey, tenantId, query);
                   }
               }
            }
 

Notice that the Search WebMethod operation is wrapped inside the try-catch block.

If the SOAP Exception occurs corresponding to the session expiration, the Actor property in the 
SoapException can be inspected, to determine whether the connection error is due to the session 
timeout.

If the exception is due to the session timeout, it then goes ahead and invokes the Connect 
WebMethod again, to obtain a brand new sessionkey. 

Assuming that authSessionKey is a globally accessible string, it is now updated to the sessionkey 
property of the connectresponse object, and the Search WebMethod can be successfully run the 
second time.

The following code sample now illustrates how this can be achieved, if the Web Services Client is 
defined using a Service Reference to the FRSHEATIntegration API:
            ObjectQueryDefinition query = new ObjectQueryDefinition();
            query.Select = new SelectClass();
            FieldClass[] incidentFieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass() 
                {
                    Name = "Service",
                    Type = "Text"
                }
            };
            query.Select.Fields = incidentFieldObjects;
            query.From = new FromClass();
            query.From.Object = "Incident";
 
            query.Where = new RuleClass[] { 
                new RuleClass()
                {
                    Join = "AND", 
                    Condition = "=", 
                    Field = "IncidentNumber", 
                    Value = "10001"
                }
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = null;
 
            try
            {
                searchResponse = frSvc.Search(authSessionKey, tenantId, query);
            }
            catch (FaultException faultException)
            {
                MessageFault messageFault = faultException.CreateMessageFault();
 
                if (messageFault.Actor == "SessionExpired")
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                {
                    connectresponse = frSvc.Connect(username, password, tenantId, role);
                    if (connectresponse.connectionStatus == "Success")
                    {
                        authSessionKey = connectresponse.sessionKey;
                        searchResponse = frSvc.Search(connectresponse.sessionKey, tenantId, query);
                    }
                }
            }
 
            if (searchResponse != null && searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] incidentList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] incidentOuterList in incidentList)
                {
                    foreach (WebServiceBusinessObject incident in incidentOuterList)
                    {
                        Console.WriteLine("Incident {0} matches the selection criteria", 
incident.FieldValues[0].Value);
                    }
                }
            }
 
In particular, note the following code fragment:
 
            try
            {
                searchResponse = frSvc.Search(authSessionKey, tenantId, query);
            }
            catch (FaultException faultException)
            {
                MessageFault messageFault = faultException.CreateMessageFault();
 
                if (messageFault.Actor == "SessionExpired")
                {
                    connectresponse = frSvc.Connect(username, password, tenantId, role);
                    if (connectresponse.connectionStatus == "Success")
                    {
                        authSessionKey = connectresponse.sessionKey;
                        searchResponse = frSvc.Search(connectresponse.sessionKey, tenantId, query);
                    }
                }
            }
 

Again, notice that the Search WebMethod operation is wrapped inside the try-catch block.

However, for Service References, the exception that is caught is now a FaultException, and not the 
SOAP exception (as was the case with the earlier Web Reference).

Here, once the faultException is caught, it is first necessary to obtain the MessageFault from it.

From the MessageFault, the Actor property can then be the Actor property can then be inspected, to 
determine whether the connection error is due to the session timeout. 

The reconnect logic is then the same as the case for Web Reference based clients, as explained earlier.

The above example illustrates how to properly handle session expirations. The same technique can be 
used for handling any other kinds of exceptions, such as AccessDenied, InvalidRole, etc. 
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For example, for the “AccessDenied” exception, the Web Services client might log the error locally to a 
log file, or send an email to the administrator, alerting that the username / password is not valid, when 
used in the client.

GetRolesForUser
This Web Method retrieves a list of roles, which are available to the current Web Service user. 

The response object returned from this WebMethod, contains a field which stores an array of Roles 
which are associated with the Profile.Employee record of the current user.

Request Syntax:
FRSHEATIntegrationGetRolesResponse GetRolesForUser(string sessionKey, string tenantId)
 
NameDisplayPair[] GetRolesForUser(string sessionKey, string tenantId, string userName)

Parameters:

• sessionKey: Key received in the earlier Connect request.

• tenantid: ID of the tenant in question.

Return Value:

An FRSHEATIntegrationGetRolesResponse object, defined as follows:
    public class FRSHEATIntegrationGetRolesResponse
    {
        public string status { get; set; }
        public List<NameDisplayPair> roleList { get; set; }
        public string exceptionReason { get; set; }
    }

The FRSHEATIntegrationGetRolesResponse class is comprises  the following fields:

• Status – this field provides a Status value, indicating whether the WebMethod was able to 
successfully retrieve the list of roles for the current user. 
Assuming the sessionKey (returned from the previous Connect WebMethod call) is valid, this 
field should return a value of “Success” under most circumstances.

• roleList – contains an array of NameDisplayPair objects. Each NameDisplayPair entry 
corresponds to a role which the current user belongs to.        
        For each NameDisplayPair record in the array, the Name property returns the name of the 
role, whereas the DisplayName property returns the DisplayName of the role.

• exceptionReason  – if there is an exception thrown in the course of running the 
GetRolesForUser WebMethod, the exception information will be captured in this field.

Example
FRSHEATIntegrationGetRolesResponse getRolesResponse = frSvc.GetRolesForUser(authSessionKey, 
tenantId);
 
NameDisplayPair[] rolePairList = null;
 
if (getRolesResponse.status == "Success")
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{
                rolePairList = getRolesResponse.roleList;
                Console.WriteLine("The current user belongs to the following roles:");
                foreach (NameDisplayPair rolePair in rolePairList)
                {
                    Console.WriteLine("\tRole: {0} => DisplayName: \"{1}\"", rolePair.Name, 
rolePair.DisplayName);
                }
}
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Request Offerings and Service Requests
Various Web methods have been added to  the FRSHEATIntegration API, to provide access to the 
Request Offerings available in the Service Catalog, as well as providing the ability to submit and Service 
Requests, and retrieve them once they are submitted.

The following table summarizes the available Web Methods for this:

Web Method Description

GetCategories Get the list of available Categories for the Service Catalog

GetCategoryTemplates Get the list of Request Offerings in the Service Catalog, which belong 
to the indicated Category

GetAllTemplates Get the full list of Request Offerings in the Service Catalog

GetSubscriptionId Fetches the Subscription ID, corresponding to the Request Offering for 
the current user

GetPackageData Retrieve the details of the indicated Request Offering

UserCanAccessRequestOffering Check whether the current user is entitled to access the given Request 
Offering

SubmitRequest Creates and submits the Service Request, on behalf of a given user

GetRequestData Retrieves the data for the given Service Request 

FetchServiceReqValidationListData Fetch the allowable validation list data for the given Service Request 
parameter
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Searching for Records
The FRS HEAT Integration Web Service provides several means to search for records in a given tenant. 
The following table summarizes the four Web Methods providing  for searching records:

WebMethod Applicability

Search General purpose method for searching for records, using an arbitrary 
query criteria.

 

Use this WebMethod, if the other three available convenience 
WebMethods mentioned below, cannot be used to express the 
desired query criteria.

FindBusinessObject Search for the business object record, by means of its RecId field 
value in the database.

 

Since records are uniquely identified by the RecId (i.e. the primary 
key), this Web Method will return exactly one record, assuming the 
provided RecId does match one of the existing records in the business 
object.

 

If the RecId of the record to search for is not readily available, then the 
other WebMethods should alternatively be used. 

FindSingleBusinessObjectByField Search for the business object record, by means of the  provided field / 
value criteria, and return the exact record match, if it can be found.

 

For example, this WebMethod can be used to identify a 
Profile.Employee record, by means of either the LoginId or 
PrimaryEmail field (assuming the field values for the column is unique 
in the database table).

 

As the name suggests, this Web Method will return exactly one 
matching record, if it can be located.

 

Note that if the search returns multiple records, it will not return any 
results.

 

 

If you are unsure of whether multiple results will be returned, use 
either the FindMultipleBusinessObjectsByField or FindBusinessObject 
Web Methods, as an alternative.
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WebMethod Applicability

FindMultipleBusinessObjectsByField Search for the business object record, by means of the  provided field / 
value criteria, and return all of the results in an array.

 

For example, this WebMethod can be used to identify all Incident  
records with a Status of “Resolved”.

 

As the name suggests, this Web Method will return one or more 
matching results via an array.

 

If it is known beforehand that the search criteria will return exactly one 
record, the FindSingleBusinessObjectByField Web Method provides a 
more convenient way of accessing the record directly.

 

Otherwise the FindMultipleBusinessObjecsByFieldWebMethod can 
still be used, where the record can be retrieved via the first item in the 
array. 

 

From the above table, it can be seen that the FindBusinessObject, FindSingleBusinessObjectByField, 
and FindMultipleBusinessObjectsByField Web Methods are all special cases of the Search 
WebMethod – the latter Web Method can be used to express any arbitrarily complex query.

The following sections will describe the four query Web Methods in further detail.

FindBusinessObject
Retrieves a single business object using its primary identifier (RecId field in the database)

Request syntax:
FRSHEATIntegrationFindBOResponse FindBusinessObject(string sessionKey, string tenantId, string 
boType, string recId)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

• boType: type of the business object to retrieve, for example Incident or Change.

• recId: unique identifier for the object

Return Value:

An FRSHEATIntegrationFindBOResponse object, defined as follows:
    public class FRSHEATIntegrationFindBOResponse
    {
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        public string status { get; set; }
        public string exceptionReason { get; set; }
        public WebServiceBusinessObject obj { get; set; }
    }
 

The FRSHEATIntegrationFindBOResponse class comprises the following fields:

• status – this field provides a Status value indicating whether the operation was successful.     
              A full description of the available Status values is provided in the table below.

• exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

• obj – if the exact record can be found via the FindBusinessObject WebMethod call (i.e. the 
value of the status field is “Success”), the business object record can be accessed via this field

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The business object can be successfully found – access the record via the obj field in the 
response object.

Error The business object cannot be successfully found – the obj field will be null, and the exception 
will be stored in the exceptionReason field.

The most typical error is the Table not found exception, which occurs when the specified 
business object does not exist in the tenant.

Double-check to make sure that the name of the business object is spelled properly (e.g. 
“Incident”, “Profile.Employee”, etc.)

NotFound The specified business object does exist in the tenant, but the provided RecID value does not 
match any of the existing records in the object.

 

Since this is not an exceptional condition, there will not be an exception stored in the 
exceptionReason field, and the obj field will be null.

 

Double-check to make sure the RecID field for the intended record does in fact exist in the 
tenant. An alternate query Web Method (e.g. “FindSingleBusinessObjectByField”) might be 
alternatively used for retrieving the record.

 

Example
FRSHEATIntegrationFindBOResponse res = frSvc.FindBusinessObject(authSessionKey, tenantId, 
"Incident", "A981FBEBAA8B4EE2820364505855ABC2");
if (res.status == "Success")
{
foreach (WebServiceFieldValue f in res.obj.FieldValues)
{
if (string.Compare(f.Name, "LastModDateTime", true) == 0)
{
DateTime lastMod;
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if (f.Value != null)
{
lastMod = (DateTime)f.Value;
Console.WriteLine("The LastModDateTime of the record is " + lastMod.ToString());
}
}
}
}
 
 

FindSingleBusinessObjectByField
This Web Method retrieves a single business object, by means of the specified field / value criteria.

This is a convenience Web Method introduced for searching for a matching record, by means of a 
unique field. 

Here are some common use cases, where this query Web Method can come in handy:

• Search for a specific Profile.Employee record, by means of the LoginID field

• Search for a specific Profile.Employee record, by means of the PrimaryEmail field

• Search for a specific StandardUserTeam record, by means of the Team field

• Search for a specific OrganizationalUnit record, by means of the Name field

Request syntax:
FRSHEATIntegrationFindBOResponse FindSingleBusinessObjectByField(string sessionKey, string tenantId, 
string boType, string fieldName, string fieldValue)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

• boType: type of the business object to retrieve, for example Incident or Change.

• recId: unique identifier for the object

• fieldName: the name of the field in the business object, to search against (e.g. “Status”)

• fieldValue: the value for the field to search for in the matching record (e.g. “Active”)

Return Value:

An FRSHEATIntegrationFindBOResponse object, defined as follows:
    public class FRSHEATIntegrationFindBOResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public WebServiceBusinessObject obj { get; set; }
    }
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The FRSHEATIntegrationFindBOResponse class comprises the following fields:

• status – this field provides a Status value indicating whether the operation was successful.         
       A full description of the available Status values is provided in the table below.

• exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

• obj – if the exact record can be found via the FindBusinessObject WebMethod call (i.e. the 
value of the status field is “Success”), the business object record can be accessed via this field

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The business object can be successfully found – access the record via the obj field in the 
response object.

Error The business object cannot be successfully found – the obj field will be null, and the 
exception will be stored in the exceptionReason field.

 

One typical error is the Table not found exception, which occurs when the specified 
business object does not exist in the tenant. Double-check to make sure that the name of 
the business object is spelled properly (e.g. “Incident”, “Profile.Employee”, etc.)

 

The other common error encountered, is when the specified field does not exist for the 
business object – here, the error message would be of the form:

 

ObjectTableMap: field <FieldName> is not found in table <Business Object>#

 

Double-check to make sure that the field name is spelled correctly, and is actually defined 
for the given business object.

NotFound The specified business object does exist in the tenant, but the provided RecID value does 
not match any of the existing records in the object.

 

Since this is not an exceptional condition, there will not be an exception stored in the 
exceptionReason field, and the obj field will be null.

 

Double-check to make sure the fieldValue field for the intended record does in fact exist in 
the tenant.

 

An alternate query Web Method (e.g. “FindSingleBusinessObjectByField”) might be used 
for retrieving the record.

MultipleResults The provided search criteria returned more than one matching result.
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Status Explanation

 

Since the intent of this WebMethod is to return a single matching business object, the obj 
field in the response object will remain null, whenever the Status of the response object is 
“MultipleResults”.

 

If there is a possibility for returning multiple matching results, the 
“FindSingleBusinessObjectByField” Web Method should be used instead.

Example
FRSHEATIntegrationFindBOResponse res = frSvc.FindSingleBusinessObjectByField(authSessionKey, 
tenantId, "Incident", "IncidentNumber", "10001");
 
if (res.status == "Success")
{
foreach (WebServiceFieldValue f in res.obj.FieldValues)
{
if (string.Compare(f.Name, "LastModDateTime", true) == 0)
{
DateTime lastMod;
 
if (f.Value != null)
{
lastMod = (DateTime)f.Value;
Console.WriteLine("The LastModDateTime of the record is " + lastMod.ToString());
}
}
}
}
 
 

FindMultipleBusinessObjectsByField
This Web Method retrieves one or more business objects, by means of the specified field / value 
criteria, and returns the result as an array of business objects.

For example, this Web Method can be used to retrieve all Incident records with Status of “Active”, all 
Changes with Type of “Major”, etc.

This Web Method only allows for searches based on a single field / value criteria – if more complex 
queries need to be expressed, the Search Web Method should be used instead.

Also, this Web Method will always return the results in an array, even if there is exactly one matching 
record returned. In that case, the FindSingleBusinessObjectByField Web Method might be more 
convenient to use, if the desired query criteria will return exactly one record.

Request syntax:
FRSHEATIntegrationSearchResponse FindMultipleBusinessObjectsByField(string sessionKey, string 
tenantId, string boType, string fieldName, string fieldValue)
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Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

• boType: type of the business object to retrieve, for example Incident or Change.

• recId: unique identifier for the object

• fieldName: the name of the field in the business object, to search against (e.g. “Status”)

• fieldValue: the value for the field to search for the matching record (e.g. “Active”)

Return Value:

A FRSHEATIntegrationSearchResponse object, defined as follows:
    public class FRSHEATIntegrationSearchResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public List<List<WebServiceBusinessObject>> objList { get; set; }
    }

The FRSHEATIntegrationSearchResponse class comprises the following fields:

• status – this field provides a Status value indicating whether the operation was successful.         
        A full description of the available Status values is provided in the table below.

• exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

• objList – if one or more records can be found via the WebMethod call (i.e. the value of the 
status field is “Success”), the results will be returned via this field, which is a List of Lists of 
WebServiceBusinessObject objects.        
        The outer list contains multiple business objects, if the search condition matched more than 
one object. 
       The inner list contains joined business objects if the search condition requested joins.  
        Unlike SQL response fields from each joined objects are kept in a separate list, they are not 
mingled together.

The following table lists the available status values, and describes how to interpret them.

 

Status Explanation

Success The business objects can be successfully found – access the matching records via the objList 
field in the response object, which returns the results as a List of List of 
WebServiceBusinessObjects. 
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Status Explanation

Error The business objects cannot be successfully found – the objList field will be null, and the 
exception will be stored in the exceptionReason field.

 

One typical error is the Table not found exception, which occurs when the specified business 
object does not exist in the tenant. Double-check to make sure that the name of the business 
object is spelled properly (e.g. “Incident”, “Profile.Employee”, etc.)

 

The other common error encountered, is when the specified field does not exist for the business 
object – here, the error message would be of the form:

 

ObjectTableMap: field <FieldName> is not found in table <Business Object>#

 

Double-check to make sure that the field name is spelled correctly, and is actually defined for the 
given business object.

NotFound The specified business object does exist in the tenant, but the provided RecID value does not 
match any of the existing records in the object.

 

Since this is not an exceptional condition, there will not be an exception stored in the 
exceptionReason field, and the objList field will be null.

 

Double-check to make sure the fieldValue for the intended records does in fact exist in the tenant. 

Example
FRSHEATIntegrationSearchResponse res = frSvc.FindMultipleBusinessObjectsByField(authSessionKey, 
tenantId, "Incident", "Status", "Active");
 
if (res.status == "Success")
{
WebServiceBusinessObject[][] incidentList = res.objList;
foreach (WebServiceBusinessObject[] incidentOuterList in incidentList)
{
foreach (WebServiceBusinessObject incident in incidentOuterList)
{
WebServiceFieldValue[] incidentFieldList = incident.FieldValues;
 
WebServiceFieldValue incidentNumberField = incidentFieldList.SingleOrDefault(f => f.Name == 
"IncidentNumber");
 
Console.WriteLine("Incident {0} matches the selection criteria", incidentNumberField.Value);
}
}
}            
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Search
This Web Method retrieves one or more business objects satisfying the search criteria. This is an SQL-
style query.

Compared to the earlier three query Web Methods, this is a general purpose Web Method which can 
be used to express arbitrarily complex queries.

Request syntax:
FRSHEATIntegrationSearchResponse Search(string sessionKey, string tenantId, ObjectQueryDefinition 
query)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: Tenant for which the key is authenticated. 

• query: A structure describing the search criteria. It follows the structure of a SQL SELECT 
request and captures most of the possible parameters in SELECT queries, including TOP, 
WHERE, JOIN, ORDER BY clauses.

Return Value:
An FRSHEATIntegrationSearchResponse object, defined as follows:
    public class FRSHEATIntegrationSearchResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public List<List<WebServiceBusinessObject>> objList { get; set; }
    }

The FRSHEATIntegrationSearchResponse class comprises the following fields:

• status – this field provides a Status value indicating whether the operation was successful.                  
A full description of the available Status values is provided in the table below.

• exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

• objList – if one or more records can be found via the WebMethod call (i.e. the value of the 
status field is “Success”), the results will be returned via this field, which is a List of Lists of 
WebServiceBusinessObject objects.         
        The outer list contains multiple business objects, if the search condition matched more than 
one object.         
  The inner list contains joined business objects if the search condition requested joins.     
       Unlike SQL response fields from each joined objects are kept in a separate list, they are not 
mingled together.

The following table lists the available status values, and describes how to interpret them.
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Status Explanation

Success The business objects can be successfully found – access the matching records via the objList 
field in the response object, which returns the results as a List of List of 
WebServiceBusinessObjects.

Error The business objects cannot be successfully found – the objList field will be null, and the 
exception will be stored in the exceptionReason field.

 

One typical error is the Table not found exception, which occurs when the specified business 
object does not exist in the tenant. Double-check to make sure that the name of the business 
object is spelled properly (e.g. “Incident”, “Profile.Employee”, etc.)

 

The other common error encountered, is when the specified field does not exist for the business 
object – here, the error message would be of the form:

 

ObjectTableMap: field <FieldName> is not found in table <Business Object>#

 

Double-check to make sure that the field name is spelled correctly, and is actually defined for the 
given business object.

NotFound The specified business object does exist in the tenant, but the provided RecID value does not 
match any of the existing records in the object.

 

Since this is not an exceptional condition, there will not be an exception stored in the 
exceptionReason field, and the objList field will be null.

 

Double-check to make sure the fieldValue for the intended records does in fact exist in the tenant. 

 

Example:
The following example will search for Incident records where the Priority is equal to 1, and the 
Status is equal to “Active”, and retrieves the corresponding IncidentNumber values from the matching 
results.
ObjectQueryDefinition query = new ObjectQueryDefinition();
query.Select = new SelectClass();
// Retrieve just the IncidentNumber field value from the Incident,
// when invoking the search
FieldClass[] incidentFieldObjects = new FieldClass[] { 
new FieldClass() 
       {
Name = "IncidentNumber",
Type = "Text"
}
};
 
query.Select.Fields = incidentFieldObjects;
query.From = new FromClass();
query.From.Object = "Incident";
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query.Where = new RuleClass[] { 
new RuleClass()
       {
       Join = "AND", 
              Condition = "=", 
              Field = "Priority", 
              Value = "1"
}, 
       new RuleClass() 
       {
       Join = "AND", 
              Condition = "=", 
              Field = "Status", 
              Value = "Active"
}
};
 
FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, query);
 
if (searchResponse.status == "Success")
{
WebServiceBusinessObject[][] incidentList = searchResponse.objList;
       foreach (WebServiceBusinessObject[] incidentOuterList in incidentList)
       {
       foreach (WebServiceBusinessObject incident in incidentOuterList)
              {
              // Since we are just retrieving one field in the selection criteria
                     // (i.e. IncidentNumber), this corresponds to 
                     // incident.FieldValues[0].Value when retrieving the results
                     Console.WriteLine("Incident {0} matches the selection criteria", 
incident.FieldValues[0].Value);
              }
       }
}
 

 

Understanding the Search Results
As mentioned above, the return value of the Search Web Method is a list of list of 
WebServiceBusinessobject objects (i.e. a two dimensional array). 

The previous section provided a simple search example, where the records are returned against a 
single business object (e.g. “Incident”).

When performing searches against the current object and related objects, it is important to note that 
each item in the two-dimensional array represents the matching parent - child combination.

The best way to understand the format of the search results is to consider the following four search 
scenarios, with the above point in mind:

Scenario 1: Perform a search against a single business object, which returns 
an exact match

Assume the search is defined against a single business object (e.g. Incident), and the search result 
returns 1 exact record.
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Here, objList[0][0] contains the matching Incident record.

Consider the following code sample:
            ObjectQueryDefinition query = new ObjectQueryDefinition();
 
            FieldClass[] fieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass()
                {
                    Name = "Status",
                    Type = "Text"
                }
            };
 
            query.Select = new SelectClass();
            query.Select.Fields = fieldObjects;
 
            query.From = new FromClass();
            query.From.Object = "Incident";
            query.Where = new RuleClass[] { 
                new RuleClass() 
                {
                    Field = "IncidentNumber",
                    Condition = "=",
                    Value = "10001"
                }
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, 
query);
            if (searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] objList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] objOuterList in objList)
                {
                    foreach (WebServiceBusinessObject obj in objOuterList)
                    {
                        WebServiceFieldValue[] objFieldList = obj.FieldValues;
                        Console.WriteLine("{0} with {1} \"{2}\" matches the selection criteria", 
obj.BusinessObjectName, objFieldList[0].Name, objFieldList[0].Value);
                    }
                }
            }
        }

Here we are searching specifically for Incident 10001 in the tenant. Assuming the record exists in the 
tenant, it will be available via objList[0][0].
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Scenario 2: Perform a search against a single business object, which returns 
several matches

Assume the search is defined against a single business object (e.g. “Incident”), and the search result 
returns n matching records.

In this case, the matching records can be accessed from objList[0][0] through objList[n-1][0].

For example, assume the search returns 10 Incident records – the Incident records can be accessed 
from objList[0][0] through objList[9][0].

Here, the first index in the two-dimensional array changes, but the second index remains at 0.

Consider the following code sample:
            ObjectQueryDefinition query = new ObjectQueryDefinition();
 
            FieldClass[] fieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass()
                {
                    Name = "Status",
                    Type = "Text"
                }
            };
 
            query.Select = new SelectClass();
            query.Select.Fields = fieldObjects;
 
            query.From = new FromClass();
            query.From.Object = "Incident";
            query.Where = new RuleClass[] { 
                new RuleClass() 
                {
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                }
            };
            query.OrderBy = new OrderByClass[] {
                new OrderByClass()
                {
                    Name = "IncidentNumber",
                    Direction = "ASC"
                }
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, 
query);
 
            if (searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] objList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] objOuterList in objList)
                {
                    foreach (WebServiceBusinessObject obj in objOuterList)
                    {

Copyright © 2019 , Ivanti. All Rights Reserved. Privacy & Legal.

Page 28 of 90

Service and Asset Manager 2019.1 Web Services Guide

http://www.ivanti.com/en-US/company/legal


                        WebServiceFieldValue[] objFieldList = obj.FieldValues;
                        Console.WriteLine("{0} with {1} \"{2}\" matches the selection criteria", 
obj.BusinessObjectName, objFieldList[0].Name, objFieldList[0].Value);
                    }
                }
            }
        }

Compared to the code from scenario 1, only the following has been updated:
            query.Where = new RuleClass[] { 
                new RuleClass() 
                {
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                }
            };

Here, we are searching for Incident records where the IncidentNumber is less than or equal to 10010.

Assuming that the tenant has Incident records starting from 10001 through 10010, Incident 10001 can 
be accessed via objList[0][0], Incident 10002 can be accessed via objList[1][0], up to Incident 10010 
which can be accessed via objList[9][0].

The following diagram illustrates how each of the items in the collection can be accessed individually, 
via the two dimensional array of search results.

Since there are no child objects to be searched against, all of the items can be accessed using objList
[n][0].

 

Scenario 3: Perform a search against a single business object and its related 
child objects, which returns one exact match for the parent object

Assume we are searching for Incidents with matching Journal.Email records.

Assume that the search returns with one matching Incident record, which contains four related 
Journal.Email records.
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When performing searches against the current object and related objects, it is important to note that 
each item in the two-dimensional array represents the matching parent / child combination.

In this scenario, since there is only one matching parent Incident record, the search results will contain 
the same parent record four times, one for each matching Journal.Email record.

So the parent Incident record can be accessed using either objList[0][0], objList[1][0], objList[2][0], or 
objList[3][0]. Here, the first index value varies, and the second index value will be 0 (to denote the main 
object).

Each individual matching Journal.Email child record can be accessed using objList[0][1], objList[1][1], 
objList[2][1], and objList[3][1]. Here, the first index value varies (to correspond to each matching 
Journal.Email record), and the second index will be 1 (to denote the first child object).

Consider the following code sample:
            ObjectQueryDefinition query = new ObjectQueryDefinition();
 
            FieldClass[] fieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass()
                {
                    Name = "Journal.Subject",
                    Type = "Text"
                }
            };
 
            query.Select = new SelectClass();
            query.Select.Fields = fieldObjects;
 
            query.From = new FromClass();
            query.From.Object = "Incident";
            query.From.Links = new FromLinkClass[] { 
                new FromLinkClass {
                    Relation = "",
                    Object = "Journal#Email" 
                } 
            };
            query.Where = new RuleClass[] { 
                new RuleClass() 
                {
                    Field = "IncidentNumber",
                    Condition = "=",
                    Value = "10001"
                },
                new RuleClass() 
                {
                    Field = "Journal.Category",
                    Condition = "=",
                    Value = "Incoming Email"
                },
            };
            query.OrderBy = new OrderByClass[] {
                new OrderByClass()
                {
                    Name = "IncidentNumber",
                    Direction = "ASC"
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                },
                new OrderByClass()
                {
                    Name = "Journal.Subject",
                    Direction = "ASC"
                }
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, 
query);
 
            if (searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] objList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] objOuterList in objList)
                {
                    foreach (WebServiceBusinessObject obj in objOuterList)
                    {
                        WebServiceFieldValue[] objFieldList = obj.FieldValues;
                        Console.WriteLine("{0} with {1} {2} matches the selection criteria", 
obj.BusinessObjectName, objFieldList[0].Name, objFieldList[0].Value);
                    }
                }
            }
 

Here, we are searching for Incident records where the IncidentNumber is equal to 10001, and has 
associated Journal.Email records with Category of “Incoming Email” (i.e. emails attached to the 
Incident record, via the email listener).

Because the search needs to consider not only the top level object (i.e. “Incident”), but also the related 
“Journal.Email” records, additional lines of code needs to be written.

First off, the FromLinkClass needs to be specified:
            query.From.Links = new FromLinkClass[] { 
                new FromLinkClass {
                    Relation = "",
                    Object = "Journal#Email" 
                } 
            };

Here, we create a new instance of the FromLinkClass, which designates the relationship from Incident 
to Journal.Email.

The existing “IncidentContainsJournal” relationship (which points to the Journal base object) can be 
used to associate the Incident with the child Journal records. 

Because the relationship has no value specified for the internal reference name parameter, the 
Relation value is left as an empty string, in the Relation member above.

The actual object to be searched against (in this case, Journal.Email) needs to be specified above in the 
Object member.

With the Links property specified for the FromClass, the fields from the related business object can be 
accessed. For example, besides accessing the IncidentNumber field of the Incident, the Subject of the 
Journal.Email can be accessed:
            FieldClass[] fieldObjects = new FieldClass[] { 
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                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass()
                {
                    Name = "Journal.Subject",
                    Type = "Text"
                }
            };

Notice that to reference the Subject field in the Journal.Email business object, the field name needs to 
be specified as “Journal.Subject”.

Similarly, to specify the rule condition using fields in the Journal.Email business object (e.g. “Category”), 
the field name needs to be specified as “Journal.Category”:
            query.Where = new RuleClass[] { 
                new RuleClass() 
                {
                    Field = "IncidentNumber",
                    Condition = "=",
                    Value = "10001"
                },
                new RuleClass() 
                {
                    Field = "Journal.Category",
                    Condition = "=",
                    Value = "Incoming Email"
                },
            };

So in the example scenario, assume that Incident 10001 exists in the tenant, with four Journal.Emails 
attached to it, with subject values of “Email 1”, “Email 2”, “Email 3”, and “Email 4”.

Running the above sample code yields the following results in the console window:
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 1" matches the selection criteria
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 2" matches the selection criteria
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 3" matches the selection criteria
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 4" matches the selection criteria

As mentioned in the previous sections, the results are returned for each parent / child combination. 
Because the four Journal.Email records are associated with the same Incident record (Incident 10001), 
this same Incident record will show up four times, once for each Journal.Email child record associated 
with it.

The following diagram illustrates how each of the items in the parent / child combination can be 
accessed individually, via the two dimensional array of search results.
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Scenario 4: Perform a search against a single business object and its related 
child objects, which returns several matches for the parent object

Assume we are searching for Incidents with matching Journal.Email records.

Assume that the search returns with two matching Incident records, which contains six related 
Journal.Email records – four for the first Incident record (e.g. Incident 10001), and two for the second 
Incident record (e.g. Incident 10008).

As before, recall that when performing searches against the current object and related objects, it is 
important to note that each item in the two-dimensional array represents the matching parent / child 
combination.

In this scenario, since there are two matching parent Incident records, and six related Journal.Email 
records, the search results will return six results.

The first Incident record will show up using either objList[0][0], objList[1][0], objList[2][0], and objList[3]
[0], and its corresponding Journal.Email records will show up via objList[0][1], objList[1][1], objList[2][1], 
and objList[3][1].

The second Incident record will show up using either objList[4][0] and objList[5][0], and its 
corresponding Journal.Email records will show up via objList[4][1] and objList[5][1].

Consider the following code sample:
            ObjectQueryDefinition query = new ObjectQueryDefinition();
 
            FieldClass[] fieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
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                new FieldClass()
                {
                    Name = "Journal.Subject",
                    Type = "Text"
                }
            };
 
            query.Select = new SelectClass();
            query.Select.Fields = fieldObjects;
 
            query.From = new FromClass();
            query.From.Object = "Incident";
            query.From.Links = new FromLinkClass[] { 
                new FromLinkClass {
                    Relation = "",
                    Object = "Journal#Email" 
                } 
            };
            query.Where = new RuleClass[] { 
                new RuleClass() 
                {
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                },
                new RuleClass() 
                {
                    Field = "Journal.Category",
                    Condition = "=",
                    Value = "Incoming Email"
                },
            };
            query.OrderBy = new OrderByClass[] {
                new OrderByClass()
                {
                    Name = "IncidentNumber",
                    Direction = "ASC"
                },
                new OrderByClass()
                {
                    Name = "Journal.Subject",
                    Direction = "ASC"
                }
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, 
query);
 
            if (searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] objList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] objOuterList in objList)
                {
                    foreach (WebServiceBusinessObject obj in objOuterList)
                    {
                        WebServiceFieldValue[] objFieldList = obj.FieldValues;
                        Console.WriteLine("{0} with {1} {2} matches the selection criteria", 
obj.BusinessObjectName, objFieldList[0].Name, objFieldList[0].Value);
                    }
                }
            }
Compared to the code from scenario 3, only the following has been updated:
            query.Where = new RuleClass[] { 
                new RuleClass() 
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                {
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                }
            };

Here, we are searching for Incident records where the IncidentNumber is less than or equal to 10010, 
and has associated Journal.Email records with Category of “Incoming Email” (i.e. emails attached to the 
Incident record, via the email listener).

So in the example scenario, assume that Incident 10001 exists in the tenant, with four Journal.Emails 
attached to it, with subject values of “Email 1”, “Email 2”, “Email 3”, and “Email 4”.

Assume that Incident 10008 also exists in the tenant, with two Journal.Email records attached to it, 
with subject values of “Email 5” and “Email 6”.

Running the above sample code yields the following results in the console window:
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 1" matches the selection criteria
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 2" matches the selection criteria
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 3" matches the selection criteria
Incident with IncidentNumber "10001" matches the selection criteria
Journal.Email with Journal.Subject "Email 4" matches the selection criteria
Incident with IncidentNumber "10008" matches the selection criteria
Journal.Email with Journal.Subject "Email 5" matches the selection criteria
Incident with IncidentNumber "10008" matches the selection criteria
Journal.Email with Journal.Subject "Email 6" matches the selection criteria

As mentioned in the previous sections, the results are returned for each parent / child combination. 

Because there are four Journal.Email records associated with Incident 10001, this same Incident record 
will show up four times, once for each of the four Journal.Email child records associated with it.

Afterwards, there are two Journal.Email records associated with Incident 10008, so this same Incident 
will show up two times, once for each of the two Journal.Email child records associated with it.

In total, there are six such parent / child combinations, so there are twelve object records returned (six 
for the Incident, and six for the distinct Journal.Email records).

The following diagram illustrates how each of the items in the parent / child combination can be 
accessed individually, via the two dimensional array of search results.
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Grouping the Rule Criteria
The previous section describes how to search for records based on the current business object (e.g. 
“Incident”) and its related child business objects (e.g. “Journal.Email”).

The earlier examples describe how to formulate queries such as the following:
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Retrieve all Incident records with IncidentNumber less than 10010, containing related Journal.Email 
records with Category of “Incoming Email”

 

The Search WebMethod is actually flexible enough to express searches through the grouping of the 
rule criteria.

For example, the Search WebMethod allows one to express queries such as the following:
Retrieve all Incident records with IncidentNumber less than 10010, containing related Journal.Email 
records where
(The Category of the Journal.Email is “Incoming Email”

OR
The Subject of the Journal.Email is “Urgent Request”)

The above search allows the user to search for Incidents containing Journal.Email records, either if the 
Journal.Email has a Category of “Incoming Email” (i.e. it was created via the Email Listener), OR the 
Subject of the Journal.Email has a subject line of “Urgent Request” regardless if the email has a 
Category of “Incoming Email” or “Outgoing Email”.

To express the above search, consider the following code sample:
 
            ObjectQueryDefinition query = new ObjectQueryDefinition();
 
            FieldClass[] fieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass()
                {
                    Name = "Journal.Category",
                    Type = "Text"
                }
            };
 
            query.Select = new SelectClass();
            query.Select.Fields = fieldObjects;
 
            query.From = new FromClass();
            query.From.Object = "Incident";
            query.From.Links = new FromLinkClass[] { 
                new FromLinkClass
                {
                    Relation = "",
                    Object = "Journal#Email"
                } 
            };
            query.Where = new RuleClass[] {
                new RuleClass
                {
                    Join = "AND",
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                }, 
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                new RuleClass
                {
                    Rules = new RuleClass[] {
                        new RuleClass
                        {
                            Field = "Journal.Category",
                            Condition = "=",
                            Value = "Outgoing Email"
                        },
                        new RuleClass
                        {
                            Join = "OR",
                            Field = "Journal.Subject",
                            Condition = "=",
                            Value = "Urgent Request"
                        }
                    }
                }
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, 
query);
 
            if (searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] objList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] objOuterList in objList)
                {
                    foreach (WebServiceBusinessObject obj in objOuterList)
                    {
                        WebServiceFieldValue[] objFieldList = obj.FieldValues;
                        Console.WriteLine("{0} with {1} \"{2}\" matches the selection criteria", 
obj.BusinessObjectName, objFieldList[0].Name, objFieldList[0].Value);
                    }
                }
            }
 

This code sample is a variation of the samples from the earlier section, with several important 
differences.

In particular, notice the update to the Where property for the ObjectQueryDefinition object:
            query.Where = new RuleClass[] {
                new RuleClass
                {
                    Join = "AND",
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                }, 
                new RuleClass
                {
                    Rules = new RuleClass[] {
                        new RuleClass
                        {
                            Field = "Journal.Category",
                            Condition = "=",
                            Value = "Outgoing Email"
                        },
                        new RuleClass
                        {
                            Join = "OR",
                            Field = "Journal.Subject",
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                            Condition = "=",
                            Value = "Urgent Request"
                        }
                    }
                }
            };
 

At the top level are two RuleClass objects – one for expression the condition to search for Incident 
records with IncidentNumber less than or equal to 10010, as illustrated in the previous sections:
                new RuleClass
                {
                    Join = "AND",
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                },

The second RuleClass is used solely to populate the Rules member variable of the RuleClass:
                new RuleClass
                {
                    Rules = new RuleClass[] {
                        ...
                        ...
                        ...
                    }
                }
 

So inside the second RuleClass, another RuleClass array is being instantiated with two inner 
RuleClasses:
                        new RuleClass
                        {
                            Field = "Journal.Category",
                            Condition = "=",
                            Value = "Outgoing Email"
                        },
                        new RuleClass
                        {
                            Join = "OR",
                            Field = "Journal.Subject",
                            Condition = "=",
                            Value = "Urgent Request"
                        }
 

So the inner RuleClass array essentially allows one to express the following portion of the search:
Retrieve the related Journal.Email records where either
(The Category of the Journal.Email is “Incoming Email”

OR
The Subject of the Journal.Email is “Urgent Request”)

 

To express the following related query:
Retrieve the related Journal.Email records where either
(The Category of the Journal.Email is “Incoming Email”
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AND
The Subject of the Journal.Email is “Urgent Request”)

 

the Join member variable needs to be changed from “OR” to “AND”, as follows:
                        new RuleClass
                        {
                            Field = "Journal.Category",
                            Condition = "=",
                            Value = "Outgoing Email"
                        },
                        new RuleClass
                        {
                            Join = "AND",
                            Field = "Journal.Subject",
                            Condition = "=",
                            Value = "Urgent Request"
                        }
 

With the above example, it can be seen how Rules can be grouped together, by populating the Rules 
member variable of the RuleClass object.

That is, the RuleClass uses composition to allow RuleClasses to be arbitrarily grouped together, using 
AND or OR operators via the Join property.

Full Text Searching
Besides regular SQL-style searches, the Search WebMethod also supports performing full text 
searches against a business object (e.g. search for records containing the terms “Email Down”, against 
the full text catalog of the Incident object).

The RuleClass contains a member called ConditionType, which is of type SearchConditionType - an 
enumeration with two permissible values:

• ByField - 0 (regular SQL search)

• ByText - 1 (full text SQL search)

 
    public enum SearchConditionType
    {
        ByField = 0,
        ByText = 1
    }
 

Regular searches are performed by setting SearchConditionType to ByField – this is the default mode 
for searching, so it is not necessary to have this explicitly set during the RuleClass instantiation.

To perform full text searches, it is necessary to explicitly set the ConditionType of the RuleClass to 
ByText:
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                new RuleClass()
                {
                    Join = "AND", 
                    Condition = "=",
                    ConditionType = SearchConditionType.ByText,
                    Value = "Email Down"
                }
 

Notice in particular, that the Field member (which was present in the earlier Search examples) is not 
specified in the RuleClass – since the search is now performed against the full text catalog (by virtue of 
the ConditionType value of ByText), it is an error to also specify Field member in the RuleClass.

The following code sample illustrates how to search for Incident records with the matching terms 
“Email Down”:
 
            ObjectQueryDefinition query = new ObjectQueryDefinition();
            query.Select = new SelectClass();
            // Retrieve just the IncidentNumber field value from the Incident,
            // when invoking the search
            FieldClass[] incidentFieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass() 
                {
                    Name = "Service",
                    Type = "Text"
                }
            };
            query.Select.Fields = incidentFieldObjects;
            query.From = new FromClass();
            query.From.Object = "Incident";
 
            query.Where = new RuleClass[] { 
                new RuleClass()
                {
                    Join = "AND", 
                    Condition = "=",
                    ConditionType = SearchConditionType.ByText,
                    Value = "Email Down"
                },
            };
 
            FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, 
query);
 
            if (searchResponse.status == "Success")
            {
                WebServiceBusinessObject[][] incidentList = searchResponse.objList;
                foreach (WebServiceBusinessObject[] incidentOuterList in incidentList)
                {
                    foreach (WebServiceBusinessObject incident in incidentOuterList)
                    {
                        // Since we are just retrieving one field in the selection criteria
                        // (i.e. IncidentNumber), this corresponds to 
                        // incident.FieldValues[0].Value when retrieving the results
                        Console.WriteLine("Incident {0} matches the selection criteria", 
incident.FieldValues[0].Value);
                    }
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                }
            }
 

Formal Description of the Classes used by the Search WebMethod
From the previous sections, it can be seen that in order to execute the Search WebMethod properly, 
objects from several classes need to created and populated accordingly, before the web method is 
called.

Now that the earlier sections have presented several example use cases, this section will formally 
describe the various classes in greater detail.

ObjectQueryDefinition

The ObjectQueryDefinition class is defined as follows:
    class ObjectQueryDefinition
    {
        int Top;
        bool Distinct;
        FromClass From;
        SelectClass Select;
        List<RuleClass> Where;
        List<OrderByClass> OrderBy;
    }
 

From the class definition, it can be seen that the ObjectQueryDefinition is used to model the various 
portions of a typical SQL SELECT statement, specifically:

 l FROM clause

Class FromClass

 l SELECT clause

Class SelectClass

 l WHERE clause

Class RuleClass (implemented as a list)

 l ORDER BY clause

Class OrderByClass (implemented as a list)

With the exception of RuleClass (used to model the WHERE clause in the SQL SELECT statement), the 
other classes are named according to the corresponding clause in the SQL SELECT statement.

Besides these classes, notice that there is also an integer member variable called “Top” – this can be 
used to constrain the number of records being returned by the Search (e.g. return the first 1000 
matching results).
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There is also a boolean member variable called “Distinct” – this can be used to return the distinct 
results, to eliminate the repeated values in the search results.

The following sections will describe the various component classes, which are used to model the 
respective clauses in the SELECT statement.

FromClass

The FromClass class is used to model the FROM clause in a typical SQL SELECT statement, and is 
defined as follows:
    class FromClass
    {
        string Object;
        List<FromLinkClass> Links;
    }
 

The Object member variable needs to be populated with the name of the business object to search 
against:
            query.From = new FromClass();
            query.From.Object = "Incident";

 

If the saved search needs to be performed relative to specific child objects, the Links member variable 
also needs to be populated, using a List of FromLinkClass objects:
 
    class FromLinkClass
    {
        string Relation;
        string Object;
    }
 

The FromLinkClass contains two member variables:

 l The “Relation” member variable specifies the name of the Internal Reference Name of the 
relationship between the parent and child object

For example, for the “IncidentContainsJournal” relationship, the internal reference name of the 
relationship is blank – so to use this relationship, populate the Object member variable with the name 
of the child business object, and leave the Relation member variable as an empty string

 l The “Object” member variable specifies the name of the child business object (e.g. 
“Journal#Email”)

 

From the earlier code samples, recall that to search for the Journal.Email records related to the current 
business object, the Links member variable of the FromClass needs to be populated as follows:
 
            query.From.Links = new FromLinkClass[] { 
                new FromLinkClass {
                    Relation = "",
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                    Object = "Journal#Email" 
                } 
            };

SelectClass

The SelectClass class is used to model the SELECT clause in a typical SQL SELECT statement, and is 
defined as follows:
    class SelectClass
    {
        bool All;
        List<FieldClass> Fields;
    }
 

To select all the fields in the business object, create a new SelectClass object, and set the “All” member 
variable of the object to true:
            query.Select = new SelectClass();
            query.Select.All = true;

 

Note that if the Search is against the main business object (e.g. “Incident”) and its related child 
business objects (e.g. “Journal.Email”), setting the “All” member variable to true will return all the fields 
in the main business object, and all the fields in the child business object.

To restrict the set of fields to be returned by the Search web method, create a new List of FieldClass 
objects, and initialize it with FieldClass objects, corresponding to the fields of interest.

From the earlier code samples, recall that to return the IncidentNumber field of the Incident business 
object, and the Category field of the child Journal.Email object, the following statements are used:
            FieldClass[] fieldObjects = new FieldClass[] { 
                new FieldClass() 
                {
                    Name = "IncidentNumber",
                    Type = "Text"
                },
                new FieldClass()
                {
                    Name = "Journal.Category",
                    Type = "Text"
                }
            };
 
            query.Select = new SelectClass();
            query.Select.Fields = fieldObjects;
 

In particular, for fields from the main business object, the names of the fields can be provided as is, 
whereas for fields in the child business objects, the name of the field needs to be prefixed with the 
name of the child business object in the relationship.
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So for example, if the “IncidentContainsJournal” relationship is used, the relationship is defined 
against the Incident and Journal (base) object, the Category field should be specified as 
“Journal.Category”.

RuleClass

The RuleClass class is used to model the WHERE clause in a typical SQL SELECT statement, and is 
defined as follows:
    class RuleClass
    {
        string Join;
        string Condition;
        SearchConditionType ConditionType;
        string Field;
        string Value;
        List<RuleClass> Rules;
    }
 

The Field member variable is used to designate the name of the field, and the Value member variable 
specifies the value corresponding to the field.

In particular, for fields from the main business object, the names of the fields can be provided as is, 
whereas for fields in the child business objects, the name of the field needs to be prefixed with the 
name of the child business object in the relationship.

So for example, if the “IncidentContainsJournal” relationship is used, the relationship is defined 
against the Incident and Journal (base) object, the Category field should be specified as 
“Journal.Category”.

For example, the following statement can be used to search for Incident records with a Priority value 
equal to 1, where the Category value of the related Journal.Email records is equal to “Incoming Email”:
 
query.Where = new RuleClass[] { 
new RuleClass()
       {
       Join = "AND", 
              Condition = "=", 
              Field = "Priority", 
              Value = "1"
}, 
       new RuleClass() 
       {
       Join = "AND", 
              Condition = "=", 
              Field = "Journal.Category", 
              Value = "Incoming Email"
}
};
 

The Join property can contain a value of either “AND” / “OR”, for specifying how the RuleClass objects 
are to be related to one another.
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The Condition member variable specifies the comparison operator used for relating the Field and the 
specified Value.

The allowable values for the Condition member variable include the following:

Operator Meaning

= Equal to

!= Not Equal to

> Greater than

< Less than

>= Greater than or Equal

<= Less than or Equal

 

For grouping the rule criteria together, notice that within the RuleClass class, there is a member 
variable called Rules, which can optionally hold a list of RuleClass objects. 

The Rules member variable can therefore be used to group related RuleClass objects together, by 
composing the RuleClass objects.

Recall from the earlier “Grouping the Rule Criteria” section, the following code example:
            query.Where = new RuleClass[] {
                new RuleClass
                {
                    Join = "AND",
                    Field = "IncidentNumber",
                    Condition = "<=",
                    Value = "10010"
                }, 
                new RuleClass
                {
                    Rules = new RuleClass[] {
                        new RuleClass
                        {
                            Field = "Journal.Category",
                            Condition = "=",
                            Value = "Outgoing Email"
                        },
                        new RuleClass
                        {
                            Join = "OR",
                            Field = "Journal.Subject",
                            Condition = "=",
                            Value = "Urgent Request"
                        }
                    }
                }
            };
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From the above example, it can be seen that inside the second RuleClass at the top level, the Rules 
member variable is being initialized with another, inner List of RuleClass objects, where the criteria for 
Journal.Email is being expressed.

As explained in the earlier “Full Text Searching” section, normal SQL-style searches are performed, 
where the ConditionType is set to the enumeration value of SearchConditionType.ByField – this is the 
default mode for searches, and does not need to be explicitly specified in the RuleClass instantiation.

To support full text searches, set the ConditionType to the enumeration value of 
SearchConditionType.ByText, and do not include the Field member, when instantiating the RuleClass.

OrderByClass

The OrderByClass class is used to model the Order By clause in a typical SQL SELECT statement, and is 
defined as follows:
    class OrderByClass
    {
        public string Name;
        public string Direction;
    }
 

Here, the Name member variable is used to specify the field to be ordered against, and the Direction 
member variable specifies whether the records should be specified in ascending or descending order, 
using the values of “ASC” or “DESC”, respectively.

For example, from the earlier code samples, assume that the search returns the Incident and related 
Journal.Email records. 

If the Incident records should be sorted in ascending order based on the IncidentNumber, and the 
related Journal.Subject records should be sorted in ascending order based on Subject, the following 
code can be used for this:
 
            query.OrderBy = new OrderByClass[] {
                new OrderByClass()
                {
                    Name = "IncidentNumber",
                    Direction = "ASC"
                },
                new OrderByClass()
                {
                    Name = "Journal.Subject",
                    Direction = "ASC"
                }
            };
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Record Operations
CreateObject
This WebMethod creates a new instance of a single Business Object, and may also establish 
relationships with other objects. Runs initialization rules first, then applies the supplied values to the 
fields and invokes auto-fill, calculated, save and business rules in the same way, if the object was being 
created interactively via UI. Validation rules are also executed and they might prevent the saving 
operation, if the resulting object field values do not pass the validation.

Fields are initialized in the order provided.

Request Syntax:
FRSHEATIntegrationCreateBOResponse CreateObject(string sessionKey, string tenantId, 
ObjectCommandData commandData)

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: tenant for which the key is authenticated. 
 l commandData: a structure containing information about the creation request:

public class ObjectCommandData
{
public string ObjectId;
public string ObjectType;
public List<ObjectCommandDataFieldValue> Fields;
public List<LinkEntry> LinkToExistent;
}

 l ObjectId: recid of the object to be created
 l ObjectType: type of the object to be created
 l FieldValues: a list of name-value pairs, containing the field names and new values for the fields 

of the business object that should be populated.
 l LinkToExistent: references the LinkEntry class, which controls whether relationships between 

this object and other objects should be established.
public class LinkEntry
{
public string Action;
public string Relation;
public string RelatedObjectType;
public string RelationshipName;
public string RelatedObjectId;
public List<SearchCondition> SearchCriteria;
}
 

The following are the field members of the LinkEntry class:

 l Action: either “link” or “unlink” – determines whether this object is to be linked with the other 
objects or unlinked. Only “link” is meaningful in CreateObject operation
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 l Relation: the relationship tag (shown as Internal Reference Name in Admin UI) for the 
relationship type to be established. 

 l RelationshipName: the relationship name (shown as display name in Admin UI) for the 
relationship type to be established

 l RelatedObjectType: the type of the business object in an object reference notation to be linked 
with 

 l RelatedObjectId: the recId of the business object to be linked or unlinked. Optional, either 
RelatedObjectId or SearchCriteria must be provided. 

 l SearchCriteria: a list of structures defining search criteria for matching objects that have to be 
linked with this object.

 
public class SearchCondition
{
public string ObjectId;
public string ObjectDisplay; 
public string JoinRule;
public string Condition;
public SearchConditionType ConditionType;
public string FieldName;
public string FieldDisplay; 
public string FieldAlias;
public string FieldType;
public string FieldValue;
public string FieldValueDisplay;
public string FieldValueBehavior;
public string FieldStartValue;
public string FieldEndValue; 
public List<SearchCondition> SubQuery;
}

 l ObjectId:  recId of the object to match 
 l ObjectDisplay: No definition present
 l JoinRule: determines how individual search criteria combine together. Possible values are “and” 

and “or”
 l Condition:  how the field value should be matched. Possible values:

               =   Equal to 
              !=   Not Equal to 
               >   Greater than 
               <   Less than 
              >=   Greater or Equal 
              <=   Less or Equal 
              ->   Begin with 
              {}   Contains 
             !{}   Does Not Contain 
               0   Is Empty 
              !0   Is Not Empty
              ()   In List
              !()  Not In list
               ><   In range

 l ConditionType: controls how text fields are searched. Possible values:
0 – use regular SQL field search (SQL like, contains clauses)
1 – use fulltext SQL field search

 l FieldName: field name
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 l FieldValue: field value
 l FieldValueBehavior: either “single” or “list”
 l FieldStartValue: start value for “In range” condition only
 l FieldEndValue: end value for “In range” condition only

Return Value:

An FRSHEATIntegrationCreateBOResponse object, defined as follows:
public class FRSHEATIntegrationCreateBOResponse
{
public string status { get; set; }
public string exceptionReason { get; set; }
public string recId { get; set; }
public WebServiceBusinessObject obj { get; set; }
}

The FRSHEATIntegrationCreateBOResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the WebMethod, 
the exception information will be captured in this field.

 l recId – the RecId of the newly created record, assuming the status of the Web Method is 
“Success”

 l obj – assuming the business object record can be created successfully, this field returns the 
record as a WebServiceBusinessObject object

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The business object can be successfully created.

 

The RecId of the newly created record can be accessed via the recId field of the response object, 
and the obj field references the newly created WebServiceBusinessObject

Error The business object cannot be successfully created – the recId and obj fields will be null, and the 
exception will be stored in the exceptionReason field.

One typical error is the Table not found exception, which occurs when the specified business 
object does not exist in the tenant. Double-check to make sure that the name of the business 
object is spelled properly (e.g. “Incident”, “Profile.Employee”, etc.)

 

The other common error encountered, is when the specified field does not exist for the business 
object – here, the error message would be of the form:

 

ObjectTableMap: field <FieldName> is not found in table <Business Object>#
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Status Explanation

 

Double-check to make sure that the field name is spelle d correctly, and is actually defined for the 
given business object.

 

A third common error is to specify a value for a field, which does not exist in the associated 
validation list – in such cases, the following exception would be encountered:

 

<BusinessObject>.<Field>:`<FieldValue>` is not in the validation list

To specify date/time values, the string value should be specified using ISO 8601 format, and the value 
itself should be relative to UTC.

So the date/time value can be specified in one of the following two ways:
yyyy-mm-dd  hh:mm

or
yyyy-mm-ddThh:mm

Either a space character or “T” character can be used to separate between the date and time values.

The following are two examples of specifying a date/time value of March 26th, 2013, 18:38 UTC, relative 
to the above two formats:
2013-03-26 18:38
2013-03-26T18:38

Example:

The following example will first create a brand new Change record with specific field values, then locate 
an existing CI.Computer record, by means of the Search() WebMethod, and will link the two records 
together, by means of the CreateObject() WebMethod.
ObjectCommandData data = new ObjectCommandData();
data.ObjectType = "Change#";
 
List<ObjectCommandDataFieldValue> dataFields = new List<ObjectCommandDataFieldValue>();
Dictionary<string, object> fields = new Dictionary<string, object>();
 
fields["RequestorLink"] = "FB884D18F7B746A0992880F2DFFE749C";
fields["Subject"] = "Need to swap out the hard disk";
fields["Description"] = "The hard drive just crashed - need to replace with a new drive from the 
vendor";
fields["Status"] = "Logged";
fields["TypeOfChange"] = "Major";
fields["OwnerTeam"] = "Operations";
fields["Owner"] = "Admin";
fields["Impact"] = "Medium";
fields["Urgency"] = "Medium";
fields["CABVoteExpirationDateTime"] = "2013-03-26 18:38:30";
 
foreach (string key in fields.Keys)
{
dataFields.Add(new ObjectCommandDataFieldValue()
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{
Name = key,
Value = fields[key].ToString()
});
}
 
data.Fields = dataFields.ToArray();
 
// Here we will identify a CI.Computer record, to link to the 
// new Change record
 
// For this example, we will attempt to locate the CI.Computer record 
// with the name of "APAC-DEPOT-SERV01", and retrieve its RecId
ObjectQueryDefinition ciQuery = new ObjectQueryDefinition();
 
// Just retrieve only the RecId field for the CI.Computer record
FieldClass[] ciFieldObjects = new FieldClass[] { 
new FieldClass() 
{
Name = "RecId",
Type = "Text"
}
};
 
ciQuery.Select = new SelectClass();
ciQuery.Select.Fields = ciFieldObjects;
ciQuery.From = new FromClass();
// Search for the record against the CI.Computer member object
ciQuery.From.Object = "CI.Computer";
 
ciQuery.Where = new RuleClass[]
{ 
// Provide the criteria to search for the CI.Computer
// Here, we will search for the CI.Computer by its Name
new RuleClass() 
{
Condition = "=",
Field = "Name",
Value = "APAC-DEPOT-SERV01"
}
};
 
// Pass in the ObjectQueryDefinition for the query
FRSHEATIntegrationSearchResponse searchResponse = frSvc.Search(authSessionKey, tenantId, ciQuery);
WebServiceBusinessObject[][] cilist = searchResponse.objList;
 
// Assuming that the CI record is uniquely identified by its Name, and 
// because the above query does not join with other tables, we should be
// able to locate the CI record, by accessing cilist[0][0], in the 
// list of list of WebServiceBusinessObjects
 
WebServiceBusinessObject ci = cilist[0][0];
string ciRecId = ci.RecID;
 
// Define the LinkEntry record, to link the new Change record to the CI 
// record, by means of the RecId of the Change (i.e. ciRecId), as 
// determined above
data.LinkToExistent = new LinkEntry[]
{
new LinkEntry()
{
Action = "Link",
Relation = "",
RelatedObjectType = "CI#",
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RelatedObjectId = ciRecId
}
};
 
// If the record creation succeeds, the result variable will store the 
// RecId of the new Change record, otherwise it will be null
FRSHEATIntegrationCreateBOResponse result = frSvc.CreateObject(authSessionKey, tenantId, data);
 
if (result.status == "Success")
{
Console.WriteLine("A new Change record is created with RecId of {0}", result.recId);
}
 

The next example will create a new Profile.Employee record, and link the user to the respective roles 
and teams.

Notice in particular, that the password value is specified in plain text – it will be automatically 
converted to the internal hashed value, upon save of the record.
ObjectCommandData data = new ObjectCommandData();
data.ObjectType = "Profile#Employee";
 
List<ObjectCommandDataFieldValue> dataFields = new List<ObjectCommandDataFieldValue>();
Dictionary<string, object> fields = new Dictionary<string, object>();
 
fields["Status"] = "Active";
fields["FirstName"] = "Brian";
fields["LastName"] = "Wilson";
fields["LoginID"] = "BWilson";
fields["IsInternalAuth"] = true;
 
// Notice when setting the password for the Employee, that the plain text 
// password is specified here - it will be converted to the hashed value
// upon save of the record
fields["InternalAuthPasswd"] = "Manage1t";
fields["PrimaryEmail"] = "BWilson@example.com";
fields["Phone1"] = "14158665309";
 
// RecId for the "Admin" user, to serve as the Manager for the new Employee
fields["ManagerLink"] = "FB884D18F7B746A0992880F2DFFE749C";
// RecId for the "GMI" Org Unit, for the OrgUnit of the new Employee
fields["OrgUnitLink"] = "4A05123D660F408997A4FEE714DAD111";
fields["Team"] = "IT";
fields["Department"] = "Operations";
fields["Title"] = "Administrator";
 
foreach (string key in fields.Keys)
{
dataFields.Add(new ObjectCommandDataFieldValue()
{
       Name = key,
              Value = fields[key].ToString()
});
}
 
data.Fields = dataFields.ToArray();
 
data.LinkToExistent = new LinkEntry[]
{
// First we link the new Employee to the "SelfService" and 
// "ServiceDeskAnalyst" roles by RecID
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// The internal reference name for the relationship between
// Profile.Employee and Frs_def_role is empty, so we leave
// the Relation attribute in the LinkEntry empty in this case
 
       // Link to "SelfService" role
new LinkEntry()
       {
       Action = "Link",
              Relation = "",
              RelatedObjectType = "Frs_def_role#",                    
              RelatedObjectId = "0a4724d8478b451abea3fb44d33db1b6" 
},
// Link to "ServiceDeskAnalyst" role
       new LinkEntry()
       {
       Action = "Link",
              Relation = "",
              RelatedObjectType = "Frs_def_role#",
              RelatedObjectId = "06d780f5d7d34119be0d1bc8fc997947" 
},
                
       // We then link the new Employee to the "IT" and "HR" teams
 
       // The internal reference name for the relationship between
       // Profile.Employee and StandardUserTeam is "Rev2", so we 
       // specify this in the Relation attribute in the LinkEntry
 
       // Link to the "IT" team
       new LinkEntry()
       {
       Action = "Link",
              Relation = "Rev2",
              RelatedObjectType = "StandardUserTeam#",
              RelatedObjectId = "10F60157A4F34A4F9DDB140E2328C7A6" 
},
       // Link to the "HR" team
       new LinkEntry()
       {
       Action = "Link",
              Relation = "Rev2",
              RelatedObjectType = "StandardUserTeam#",
              RelatedObjectId = "1FF47B9EDA3049CC92458CE3249BA349" 
}
};
 
FRSHEATIntegrationCreateBOResponse result = frSvc.CreateObject(authSessionKey, tenantId, data);
 
if (result.status == "Success")
{
Console.WriteLine("A new Employee record is created with recId of {0}", result.recId);
}
 

UpdateObject
This WebMethod updates a single object by changing its field values, and may also establish or break 
relationships with other objects. Note that the auto-fill, calculated, save and business rules run during 
the update and they may trigger additional field changes. Validation rules are also executed and they 
might block the update operation if the resulting object field values do not pass the validation.

The order of operations is preserved during the update.
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Request Syntax:
FRSHEATIntegrationUpdateBOResponse UpdateObject(string sessionKey, string tenantId, 
ObjectCommandData commandData)

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: tenant for which the key is authenticated. 
 l commandData: see description of ObjectCommandData in CreateObject request

Return Value:

An FRSHEATIntegrationUpdateBOResponse object, defined as follows:
public class FRSHEATIntegrationUpdateBOResponse
{
public string status { get; set; }
public string exceptionReason { get; set; }
public string recId { get; set; }
public WebServiceBusinessObject obj { get; set; }
}
 

The FRSHEATIntegrationUpdateBOResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the WebMethod, 
the exception information will be captured in this field.

 l recId – the RecId of the updated record, assuming the status of the Web Method is “Success”
 l obj – assuming the business object record can be updated successfully, this field returns the 

updated record as an WebServiceBusinessObject object

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The business object can be successfully updated.

 

The RecId of the updated record can be accessed via the recId field of the response object, and 
the obj field references the updated WebServiceBusinessObject

Error The business object cannot be successfully updated  – the recId and obj fields will be null, and the 
exception will be stored in the exceptionReason field.

 

One typical error is the Table not found exception, which occurs when the specified business 
object does not exist in the tenant. Double-check to make sure that the name of the business 
object is spelled properly (e.g. “Incident”, “Profile.Employee”, etc.)
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Status Explanation

The other common error encountered, is when the specified field does not exist for the business 
object – here, the error message would be of the form:

 

ObjectTableMap: field <FieldName> is not found in table <Business Object>#

 

Double-check to make sure that the field name is spelled correctly, and is actually defined for the 
given business object.

 

A third common error is to specify a value for a field, which does not exist in the associated 
validation list – in such cases, the following exception would be encountered:

 

<BusinessObject>.<Field>:`<FieldValue>` is not in the validation list

To specify date/time values, the string value should be specified using ISO 8601 format, and the value 
itself should be relative to UTC.

So the date/time value can be specified in one of the following two ways:
yyyy-mm-dd  hh:mm

or
yyyy-mm-ddThh:mm

 

Either a space character or “T” character can be used to separate between the date and time values.

The following are two examples of specifying a date/time value of March 26th, 2013, 18:38 UTC, relative 
to the above two formats:
2013-03-26 18:38
2013-03-26T18:38

Example:

The following example will locate an existing Change record and CI.Computer record, by means of the 
Search() WebMethod, and will link the two records together, by means of the UpdateObject() 
WebMethod.
 
// First, locate the Change record to update, using the ChangeNumber 
// (e.g. Change 21)
ObjectQueryDefinition changeQuery = new ObjectQueryDefinition();
 
// Just retrieve only the RecId field for the Change record
FieldClass[] changeFieldObjects = new FieldClass[] { 
new FieldClass() 
{
Name = "RecId",
Type = "Text"
}
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};
 
changeQuery.Select = new SelectClass();
changeQuery.Select.Fields = changeFieldObjects;
changeQuery.From = new FromClass();
// Search for the record against the Change object
changeQuery.From.Object = "Change";
changeQuery.Where = new RuleClass[] {
new RuleClass() 
{
// Provide the criteria to search for the Change
// Here, we will search for the Change by its ChangeNumber
Condition = "=",
Field = "ChangeNumber",
Value = "21"
}
};
 
// Pass in the ObjectQueryDefinition for the query
 
FRSHEATIntegrationSearchResponse changeSearchResponse = frSvc.Search(authSessionKey, tenantId, 
changeQuery);
 
WebServiceBusinessObject[][] changeList = changeSearchResponse.objList;
 
// Assuming that the Change record is uniquely identified by the 
// ChangeNumber, and because the above query does not join with other 
// tables, we should be able to locate the Change record, by accessing
// changeList[0][0], in the list of list of WebServiceBusinessObjects
WebServiceBusinessObject change = changeList[0][0];
string changeRecId = change.RecID;
 
// Now locate the CI.Computer record, to link with the existing Change
// Here we will attempt to locate the CI.Computer record with
// the name of "APAC-DEPOT-SERV01" and retrieve its RecId
ObjectQueryDefinition ciQuery = new ObjectQueryDefinition();
 
// Just retrieve only the RecId field of the CI for the matching result
FieldClass[] ciFieldObjects = new FieldClass[] { 
new FieldClass() 
{
       Name = "RecId",
              Type = "Text"
}
};
ciQuery.Select = new SelectClass();
ciQuery.Select.Fields = ciFieldObjects;
ciQuery.From = new FromClass();
// Search for the record against the CI.Computer member object
ciQuery.From.Object = "CI.Computer";
ciQuery.Where = new RuleClass[]
{ 
// Search for the CI.Computer by its Name
new RuleClass() 
{
Condition = "=",
Field = "Name",
Value = "EMEA-EXCH-SERV01"
}
};
 
// Pass in the ObjectQueryDefinition for the query
FRSHEATIntegrationSearchResponse ciSearchResponse = frSvc.Search(authSessionKey, tenantId, ciQuery);
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WebServiceBusinessObject[][] cilist = ciSearchResponse.objList;
 
// Assuming that the CI record is uniquely identified by Name, and 
// because the above query does not join with other tables, we should 
// be able to locate the CI record, by accessing cilist[0][0], in the 
// list of list of WebServiceBusinessObjects
WebServiceBusinessObject ci = cilist[0][0];
 
// Since we are only retrieving the RecId field for CI, it will appear 
// as the first item in the list of Fields, i.e. ci.FieldValues[0]
string ciRecId = (string)ci.FieldValues[0].Value;
 
// At this point, we now have the RecId of the Change and CI records, 
// and can proceed with the update
 
// For the ObjectCommandData, use the changeRecId value that was 
// determined above, for looking up the record to update
ObjectCommandData data = new ObjectCommandData();
data.ObjectType = "Change#";
data.ObjectId = changeRecId;
 
List<ObjectCommandDataFieldValue> dataFields = new List<ObjectCommandDataFieldValue>();
Dictionary<string, object> fields = new Dictionary<string, object>();
 
// To demonstrate that the existing field value can be updated, set the 
// Urgency of the existing Change record to "High"
fields["Urgency"] = "Medium";
 
// Update the CABVoteExpirationDateTime to a specific date/time value
fields["CABVoteExpirationDateTime"] = "2013-03-26 18:38:30";
 
foreach (string key in fields.Keys)
{
dataFields.Add(new ObjectCommandDataFieldValue()
       {
       Name = key,
              Value = fields[key].ToString()
       });
}
 
data.Fields = dataFields.ToArray();
 
data.LinkToExistent = new LinkEntry[]
{
new LinkEntry()
       {
       Action = "Link",
              Relation = "",
RelatedObjectType = "CI#",
RelatedObjectId = ciRecId
}
};
 
FRSHEATIntegrationUpdateBOResponse response = frSvc.UpdateObject(authSessionKey, tenantId, data);
 
if (response.exceptionReason != null)
{
Console.WriteLine("Encountered the following error while updating the record: {0}", 
response.exceptionReason);
}
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DeleteObject
Deletes the specified business object record.

Request Syntax:
FRSHEATIntegrationDeleteBOResponse DeleteObject(string sessionKey, string tenantId, 
ObjectCommandData commandData)

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: tenant for which the key is authenticated. 
 l commandData: see description of ObjectCommandData in CreateObject request

Return Value:

An FRSHEATIntegrationDeleteBOResponse object, defined as follows:
    public class FRSHEATIntegrationDeleteBOResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
    }
 

The FRSHEATIntegrationDeleteBOResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the WebMethod, 
the exception information will be captured in this field.

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The business object record can be successfully deleted.

 

Note that a value of Success is returned, either if the record is successfully deleted from the tenant, 
or that the indicated record cannot be found in the tenant.

Error An error has occurred, in the process of deleting the indicated record from the system.

 

Typically the error can occur if the specified business object does not exist in the system – here, 
the error message would be:

 

definition for business object <BusinessObject># was not found

 

In such cases, please ensure that the specified business object exists in the tenant.
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Example:

The following example will delete the Incident record with the provided RecID value.
 
ObjectCommandData data = new ObjectCommandData();
data.ObjectType = "Incident#";
data.ObjectId = "96F889A8CE6E4F9C8B3A99852F788670";
 
FRSHEATIntegrationDeleteBOResponse response = frSvc.DeleteObject(authSessionKey, tenantId, data);
 
if (response.status != "Success")
{
Console.WriteLine("Ran into the following error when deleting the record: " + 
response.exceptionReason);
}
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Attachments
AddAttachment
This WebMethod adds an attachment to the specified business object record.

Request syntax:
FRSHEATIntegrationAddAttachmentResponse AddAttachment(string sessionKey, string tenantId, 
ObjectAttachmentCommandData commandData)

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: tenant for which the key is authenticated. 
 l commandData: structure containing information about the attachment:

public class ObjectAttachmentCommandData
{
public string ObjectId;
public string ObjectType;
public string fileName;
public Byte[] fileData;
}

 l ObjectId: Record ID of the new attachment.
 l ObjectType: Type of the main Business Object to which this attachment is attached in the 

object reference notation.
 l Filename: Name of the file.
 l fileData: Actual file bytes.

Return Value:

An FRSHEATIntegrationAddAttachmentResponse object, defined as follows:
    public class FRSHEATIntegrationAddAttachmentResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
    }

The FRSHEATIntegrationAddAttachmentResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the WebMethod, 
the exception information will be captured in this field.

The following table lists the available status values, and describes how to interpret them.
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Status Explanation

Success The attachment can be successfully added to the business object record.

Error The attachment cannot be successfully added to the business object record, and the exception 
information is stored in the exceptionReason field in the response object.

 

One typical reason for the error, is when the attachment has a file extension which has been 
disallowed for the given tenant – here, the error message would be of the form:

 

The file that is uploaded is a restricted file extension. Please contact your System Administrator for 
a list of allowed file extensions for upload.

 

Another common reason for the error is when the business object record cannot be successfully 
found – here, the error message would be of the form:

 

Attachment upload finished unsuccessfully.

 

A third reason for the error occurs when the specified business object does not exist in the tenant  
– here, the error message would be of the form:

 

definition for business object <Business Object># was not found

Example:

The following example reads in a sample image from the user’s local filesystem, and attaches the file to 
the indicated Incident record.
const string fileName = "C:\\Temp\\sample.jpg";
 
using (FileStream fs = new FileStream(fileName, FileMode.Open, FileAccess.Read))
{
using (BinaryReader r = new BinaryReader(fs))
{
byte[] AttachmentData = new byte[fs.Length];
 
for (int i = 0; i < fs.Length; i++)
{
AttachmentData[i] = r.ReadByte();
}
 
ObjectAttachmentCommandData data = new ObjectAttachmentCommandData()
{
ObjectId = "9981FBEBAA8B4EE2820364505855ABC2",
ObjectType = "Incident#",
fileName = "sample.png",
fileData = AttachmentData
};
 
FRSHEATIntegrationAddAttachmentResponse response = frSvc.AddAttachment(authSessionKey, tenantId, 
data);
if (response.status != "Success")
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{
Console.WriteLine("Encountered the following error while adding the attachment to the record: " + 
response.exceptionReason);
}
}
}

ReadAttachment
This WebMethod is used for reading out the data of a specific Attachment record, identified by its 
RecId value.

Request syntax:
FRSHEATIntegrationReadAttachmentResponse ReadAttachment(string sessionKey, string tenantId, 
ObjectAttachmentCommandData commandData)

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: tenant for which the key is authenticated. 
 l commandData: structure containing information about the attachment:

public class ObjectAttachmentCommandData
{
public string ObjectId;
}

 l ObjectId: Record ID of the new attachment.

Return Value:

An FRSHEATIntegrationReadAttachmentResponse object, defined as follows:
    public class FRSHEATIntegrationReadAttachmentResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public byte[] attachmentData { get; set; }
    }
 

The FRSHEATIntegrationReadAttachmentResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the WebMethod, 
the exception information will be captured in this field.

 l attachmentData - a byte array, containing the contents of the specified Attachment

The following table lists the available status values, and describes how to interpret them.
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Status Explanation

Success The specified attachment record can be successfully retrieved from the tenant, and the data is 
returned via the attachmentData byte array field in the response object.

NotFound The specified attachment record cannot be located in the tenant.

 

Double-check the records in the Attachment business object, to confirm that the desired 
Attachment record does in fact exist.

Error An unforeseen error was encountered during the retrieval of the attachment record from the 
tenant, and the exception information is stored in the exceptionReason field in the response 
object.

 

Under most circumstances, the attachment retrieval should result in either a Status of “Success” 
or “NotFound”.

 

Example:
byte[] AttachmentData;
const string fileName = "C:\\Temp\\test.png";
 
ObjectAttachmentCommandData data = new ObjectAttachmentCommandData()
{
ObjectId = "94069732037142E7BF3D81DB02128289", // RecId of the Attachment record 
};
 
FRSHEATIntegrationReadAttachmentResponse response = frSvc.ReadAttachment(authSessionKey, tenantId, 
data);
 
if (response.status == "Success")
{
AttachmentData = response.attachmentData;
 
if (AttachmentData != null)
{
using (FileStream fs = new FileStream(fileName, FileMode.Create))
              {
              using (BinaryWriter w = new BinaryWriter(fs))
                     {
                     for (int i = 0; i < AttachmentData.Length; i++)
                            {
                                w.Write(AttachmentData[i]);
                            }
}
              }
}
}
else if (response.status == "NotFound")
{
Console.WriteLine("The attachment record with the specified RecId, cannot be located in the 
tenant");
}
else
{
Console.WriteLine("Encountered the following error while reading the attachment from the record: " + 
response.exceptionReason);
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}
 

Important Note: For .NET based Web Service clients, the application may run into the 
following error when retrieving large attachments, via the Web Service:

CommunicationException occurred: The maximum message size quota for incoming messages (65536) 
has been exceeded. To increase the quota, use the MaxReceivedMessageSize property on the 
appropriate binding element.

Here, the .NET client application which consumes the web service, needs to be configured so that the 
“MaxReceivedMessageSize” and “MaxBufferSize” attributes are set sufficiently large in the App.config 
file, to accommodate the large attachment sizes; e.g.
<binding name="IPCMServiceSoap" closeTimeout="00:01:00" openTimeout="00:01:00"
 receiveTimeout="00:10:00" sendTimeout="00:01:00" allowCookies="false"
 bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
maxBufferSize="65536" maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
 useDefaultWebProxy="true">
...
</binding>

Please note that the size values above are represented in bytes.
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Metadata access
You can import an existing set of Business Objects into the FRS HEAT tenant using the Business 
Object Uploader tool. The tool communicates with the FRS SaaS application server using public web 
services to facilitate user logins, population of data-entry forms and the upload of Business Object 
data.

The workflow in the Business Object Uploader is as follows: 

Log into an instance.

Load the list of all allowable Business Objects.

Select a business object,

Load the metadata for the selected object.

Complete the data for the fields being imported, if needed.

Submit new object to system

When designing your API, to know what objects you can create, you need to obtain a list of allowed 
objects (GetAllAllowedObjectNames)

To know what fields you want to submit to the create object call, you need to obtain the metadata 
(GetSchemaForObject).

In some cases, you may want to upload objects even with “special” fields visible (like RecID) 
(GetAllSchemaForObject).

GetSchemaForObject
Retrieves an XML version of the metadata behind a Business Object. In the process, it screens out 
properties not appropriate for end user consumption, such as the RecID

Request syntax:
string GetSchemaForObject(string sessionKey, string tenantId, string objectName)

 

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: Tenant for which the key is authenticated. 
 l objectName: Name of the business object, in object reference notation (e.g. "Incident#")

Return Value:

A string value representing the schema for the given business object, which is represented in XML.

Example:
string schemaDoc = frSvc.GetSchemaForObject(authSessionKey, tenantId, "Incident#");
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GetAllSchemaForObject
Retrieves an XML version of the metadata behind an object, including all fields such as RecId.

Request syntax:
string GetAllSchemaForObject(string sessionKey, string tenantId, string objectName)
 

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: Tenant for which the key is authenticated. 
 l objectName: Name of the business object, in object reference notation (e.g. "Incident#")

Return Value:

A string value representing the schema for the given business object, which is represented in XML.

Example:
string schemaDoc = frSvc.GetSchemaForObject(authSessionKey, tenantId, "Incident#");

 

GetAllAllowedObjectNames
Retrieves a list of all business objects.

Request syntax:
List<string> GetAllAllowedObjectNames(string sessionKey, string tenantId);

Parameters:

 l sessionKey: Key received in the earlier Connect request
 l tenantId: Tenant for which the key is authenticated. 

Return Value:

An array of strings, where each item corresponds to the name of the business object.

Example:
string[] boNameArray = frSvc.GetAllAllowedObjectNames(authSessionKey, tenantId);
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Web Methods.
The following sections describe the full details for these 

Important Note Regarding Service Request Subscription

Note that when accessing the various Service Catalog web methods via the API, most of the 
Web Methods are invoked with respect to the Id of the Service Request Subscription record, 
and not with the Id of the Request Offering itself.

Recall that when the Request Offering is defined, the user needs to specify whether it is configured as 
"Published and Subscribe", or "Publish".

 

 

• When configured as Published and Subscribe, users belonging to the indicated 
Organizational Unit and below will have access to the Request Offering.

• When configured as Published, user will have access to the Request Offering, based on the 
Service Level Agreement (SLA) for the Organizational Unit the user belongs to.
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The ServiceReqSubscription record (used internally by the Service Catalog) contains the information 
regarding which Organizational Unit is associated with the Request Offering, and the SLA information, 
if it is configured relative to the SLA.

In the following sections, several of the Web Methods will make use of the Id value of the 
ServiceReqSubscription record. For this, a helper web method called GetSubscriptionId() can be 
used, for obtaining the Subscription Id, which can then be used in any subsequent operations, such 
as SubmitRequest().

GetCategories
Get the list of available Categories for the Service Catalog.

Request syntax:
public FRSHEATGetCategoriesResponse GetCategories(string sessionKey, string tenantId)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

Return Value:

An FRSHEATGetCategoriesResponse object, defined as follows:
    public class FRSHEATGetCategoriesResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public List<FRSHEATServiceReqCategory> srCategories { get; set; }
    }

 

The FRSHEATIntegrationFindBOResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.         
        A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l srCategories – a list of FRSHEATServiceReqCategory objects, each of which represents the 
Category value in the Service Catalog.

The FRSHEATServiceReqCategory class is defined as follows:
    public class FRSHEATServiceReqCategory
    {
        public string strRecId;
        public string strName;
        public string strDescription;
    }
 

The FRSHEATServiceReqCategory class comprises the following fields:
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 l strRecId – the RecId corresponding to the Category value
 l strName – the Name of the Category
 l strDescription – the Description for the Category

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The list of Categories in the Service Catalog can be successfully retrieved, and are available via 
the srCategories list.

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has failed.

Example
            FRSHEATGetCategoriesResponse getCategoriesResponse = frSvc.GetCategories(authSessionKey, 
tenantId);
 
            if (getCategoriesResponse.status == "Success")
            {
                foreach (FRSHEATServiceReqCategory srCategory in getCategoriesResponse.srCategories)
                {
                    Console.WriteLine("Category: {0}", srCategory.strName);
                }
            }

 

GetCategoryTemplates
Get the list of Request Offerings in the Service Catalog, which belong to the indicated Category

Request syntax:
public FRSHEATGetTemplatesResponse GetCategoryTemplates(string sessionKey, string tenantId, string 
categoryid, string searchString)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

• categoryId: the RecId of the Category in the Service Catalog, obtained via the GetCategories 
WebMethod

• searchString: a substring for determining the matching Request Offerings 

Return Value:

An FRSHEATGetTemplatesResponse object, defined as follows:
    public class FRSHEATGetTemplatesResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
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        public List<FRSHEATServiceReqTemplateListItem> srtList { get; set; }
    }

 

The FRSHEATGetTemplatesResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.
                    A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l srtList – a list of FRSHEATServiceReqTemplateListItem objects, each of which represents the 
Request Offering matching the search criteria.                              

The FRSHEATServiceReqTemplateListItem class is defined as follows:
    public class FRSHEATServiceReqTemplateListItem
    {
        public string strRecId;
        public string strName;
        public string strDescription;
        public string strSubscriptionId;
    }
 

The FRSHEATServiceReqTemplateListItem class comprises the following fields:

 l strRecId – the RecId corresponding to the Request Offering
 l strName – the Name of the Request Offering
 l strDescription – the Description for the Request Offering
 l strSubscriptionId – the SubscriptionId

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The list of matching Request Offerings in the Service Catalog can be successfully retrieved, and 
are available via the srtList member.

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has failed.

Example
            FRSHEATGetTemplatesResponse getTemplatesResponse = frSvc.GetCategoryTemplates
(authSessionKey, tenantId, categoryid, searchString);
 
            if (getTemplatesResponse.status == "Success")
            {
                foreach (FRSHEATServiceReqTemplateListItem srTemplateListItem in 
getTemplatesResponse.srtList)
                {
                    Console.WriteLine("Request Offering: {0} {1}", 
srTemplateListItem.strSubscriptionId, srTemplateListItem.strName);
                }
            }
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GetAllTemplates
Get the full list of Request Offerings in the Service Catalog

Request syntax:
public FRSHEATGetTemplatesResponse GetAllTemplates(string sessionKey, string tenantId)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

Return Value:

An FRSHEATGetTemplatesResponse object, defined as follows:
    public class FRSHEATGetTemplatesResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public List<FRSHEATServiceReqTemplateListItem> srtList { get; set; }
    }
 

The FRSHEATGetTemplatesResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l srtList – a list of FRSHEATServiceReqTemplateListItem objects, each of which represents the 
Request Offering matching the search criteria.

The FRSHEATServiceReqTemplateListItem class is defined as follows:
    public class FRSHEATServiceReqTemplateListItem
    {
        public string strRecId;
        public string strName;
        public string strDescription;
        public string strSubscriptionId;
    }

The FRSHEATServiceReqTemplateListItem class comprises the following fields:

 l strRecId – the RecId corresponding to the Request Offering
 l strName – the Name of the Request Offering
 l strDescription – the Description for the Request Offering
 l strSubscriptionId – the Subscription Id

The following table lists the available status values, and describes how to interpret them.
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Status Explanation

Success The list of matching Request Offerings in the Service Catalog can be successfully retrieved, and 
are available via the srtList member.

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has failed.

Example
            FRSHEATGetTemplatesResponse getTemplatesResponse = frSvc.GetAllTemplates(authSessionKey, 
tenantId);
 
            if (getTemplatesResponse.status == "Success")
            {
                foreach (FRSHEATServiceReqTemplateListItem srTemplateListItem in 
getTemplatesResponse.srtList)
                {
                    Console.WriteLine("Request Offering: {0} {1}", 
srTemplateListItem.strSubscriptionId, srTemplateListItem.strName);
                }
            }

 

GetSubscriptionId
Fetches the Subscription ID corresponding to the Request Offering for the current user

Request syntax:
public FRSHEATGetSubscriptionIdResponse GetSubscriptionId(string sessionKey, string tenantId, string 
name)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

• name: name of the Request Offering

Return Value:

An FRSHEATGetSubscriptionIdResponse object, defined as follows:
    public class FRSHEATGetSubscriptionIdResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public string subscriptionId { get; set; }
    }

The FRSHEATGetSubscriptionIdResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.       
A full description of the available Status values is provided in the table below.
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 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l subscriptionId – the Subscription ID corresponding to the Request Offering for the current 
user.

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The Subscription ID of the indicated Request Offering can be accessed via the subscriptionId 
member

NotFound There is no Request Offering available with the given name in the tenant – please ensure that the 
name of the Request Offering is spelled correctly

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has failed.

Example
            FRSHEATGetSubscriptionIdResponse subscriptionIdResponse = frSvc.GetSubscriptionId
(authSessionKey, tenantId, offeringName);
 
            string offeringname = "Domain Password Reset";
 
            if (subscriptionIdResponse.status == "Success")
            {
                string subscriptionId = subscriptionIdResponse.subscriptionId;
                Console.WriteLine("The Subscription Id for the \"{0}\" Request Offering is {1}", 
offeringName, subscriptionId);
            }   

 

GetPackageData
Retrieve the details of the indicated Request Offering

Request syntax:
public FRSHEATGetPackageDataResponse GetPackageData(string sessionKey, string tenantId, string 
strSubscrRecId)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

• strSubscrRecId: the Subscription ID corresponding to the Request Offering for the current 
user

Return Value:

An FRSHEATGetPackageDataResponse object, defined as follows:
    public class FRSHEATGetPackageDataResponse
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    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public FRSHEATServiceReqSubscription srSubscription { get; set; }
    }
 

The FRSHEATGetPackageDataResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful.                
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l srSubscription – an FRSHEATServiceReqSubscription object, containing the full details of the 
Request Offering (such as the parameter details)

The FRSHEATServiceReqSubscription class is defined as follows:
    public class FRSHEATServiceReqSubscription
    {
        public string strSubscriptionRecId;
        public string strDateSubscribed;
        public string strOrgUnitId;
        public string strName;
        public string strDescription;
        public string strServiceName;
        public string strRecId;
        public List<FRSHEATServiceReqTemplateParam> lstParameters;
    }

The FRSHEATServiceReqTemplateListItem class comprises the following fields:

 l strSubscriptionRecId – the Subscription ID corresponding to the Request Offering for the 
current user

 l strDateSubscribed – date when the Request Offering was marked as Published and Subscribed
 l strOrgUnitId – RecId of the OrganizationalUnit the Request Offering is associated with
 l strName – the name of the Request Offering
 l strDescription – description value of the Request Offering
 l strServiceName – name of the Service the Request Offering is associated with 
 l strRecId – the RecId of the Request Offering
 l lstParameters – a list of FRSHEATServiceReqTemplateParam objects, each item representing a 

parameter in the Request Offering 

The FRSHEATServiceReqTemplateParam class is defined as follows:
    public class FRSHEATServiceReqTemplateParam
    {
        public string strName;
        public string strLabel;
        public string strDescription;
        public string strType;
        public bool bAllowSelectByUser;
        public bool bDBValidated;
        public string strRequiredExpression;
        public bool isCalculated;
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        public bool autoFillOnlyWhenEmpty;
        public string strValidationListRecId;
        public string strValidationListTableRef;
        public bool bIsHidden;
        public string strRecId;
        public List<ValidationConstraint> validationConstraints;
        public string strValidationConstraints;
        public string strAutoFillExpression;
        public List<string> triggerFields;
        public string strTriggerFields;
        public string strDefaultValue;
    }

The FRSHEATServiceReqTemplateListItem class comprises the following fields:

 l strName – name of the parameter
 l strLabel – label of the parameter
 l strDescription – description of the parameter
 l strType – type of the parameter
 l bAllowSelectByUser – flag indicating whether the parameter can be selected by the user
 l bDBValidated – flag indicating whether the parameter is validated
 l strRequiredExpression – expression indicating how the parameter is (conditionally) required
 l isCalculated – flag indicating whether the parameter is calculated (i.e. does not take inputs 

from users)
 l autoFillOnlyWhenEmpty – flag indicating whether the autofill for the parameter occurs, when 

the parameter is initially empty
 l strValidationListRecId – RecId of the named validation list (i.e. pick list), if the parameter is a 

Dropdown Selection 
 l strValidationListTableRef – the name of the Business Object, from which the dropdown values 

are retrieved, for the Dropdown Selection
 l bIsHidden – flag indicating whether the parameter is hidden
 l strRecId – RecId of the Request Offering parameter
 l validationConstraints – list of ValidationConstraint objects, used for representing the 

validation constraints currently set on the parameter
 l strValidationConstraints – textual representation of the validationConstraints member
 l strAutoFillExpression – textual representation of the autofill expression
 l triggerFields – list of dependent parameters, upon which the current parameter is dependent 

upon
 l strTriggerFields – textual representation of the triggerFields member
 l strDefaultValue – textual representation of the default value for the parameter

The following table lists the available status values, and describes how to interpret them.
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Status Explanation

Success The details of the Request Offering can be successfully retrieved, and can be accessed via the 
srSubscription member

NotFound There is no Request Offering available with the given Subscription Id in the tenant – please 
ensure that the ID of of the Request Offering is specified correctly.

 

Recall that the GetSubscriptionId Web Method is used for fetching the Subscription ID 
corresponding to the current user

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has failed.

Example
            FRSHEATGetPackageDataResponse getPackageDataResponse = frSvc.GetPackageData
(authSessionKey, tenantId, strSubscrRecId);
 
            FRSHEATServiceReqSubscription scsrs;
 
            if (getPackageDataResponse.status == "Success")
            {
                scsrs = getPackageDataResponse.srSubscription;
                // Go ahead and access the relevant properties of interest from the Request Offering 
..
            }
 

UserCanAccessRequestOffering
Check whether the current user is entitled to access the given Request Offering

Request syntax:
public FRSHEATUserCanAccessReqOfferingResponse UserCanAccessRequestOffering(string sessionKey, 
string tenantId, string loginId, string reqOfferingName)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 

• loginId: loginId of the user

• reqOfferingName: name of the Request Offering

Return Value:

An FRSHEATUserCanAccessReqOfferingResponse object, defined as follows:
    public class FRSHEATUserCanAccessReqOfferingResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public bool canAccess { get; set; }
    }
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The FRSHEATUserCanAccessReqOfferingResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful. 
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l canAccess – boolean field, indicating whether the user is entitled to access the given Request 
Offering

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The indicated user and Request Offering can be successfully located in the tenant  - the 
canAccess field can then be checked, to determine whether the indicated user is entitled 
to access the Request Offering

UserNotFound No user  record can be located in the tenant, with the given LoginID value.

 

Check the LoginID value that was passed in, to ensure that it is spelled correctly

OfferingNotFound No Request Offering can be found with the given name.

 

Check the name of the Request Offering that is passed in, to ensure that it is spelled 
correctly

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has 
failed.

Example
            string loginId = "ASimon";
            string reqOfferingName = "Domain Password Reset";
            FRSHEATUserCanAccessReqOfferingResponse canAccessReqOfferingResponse = 
frSvc.UserCanAccessRequestOffering(sessionKey, tenantId, loginId, reqOfferingName);
            if (canAccessReqOfferingResponse.status == "Success")
            {
                if (canAccessReqOfferingResponse.canAccess)
                {
                    Console.WriteLine("User {0} can access the Request Offering {1}", loginId, 
reqOfferingName);
                }
                else
                {
                    Console.WriteLine("User {0} has no access to the Request Offering {1}", loginId, 
reqOfferingName);
                }
 
            }
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SubmitRequest
Creates and submits the Service Request, on behalf of a given user

Request syntax:
public FRSHEATSubmitRequestResponse SubmitRequest(string sessionKey, string tenantId, string 
subscriptionId, List<FRSHEATServiceReqParam> srparameters, string loginId)

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated

• subscriptionId: the Subscription ID corresponding to the Request Offering for the current 
user

• srparameters: list of FRSHEATServiceReqParam objects, representing the key / values for the  
parameters, for submission for the Service Request

• loginId: loginId of the user

An FRSHEATServiceReqParam class is defined as follows:
    public class FRSHEATServiceReqParam
    {
        public string strName;
        public string strValue;
    }
 

The FRSHEATServiceReqParam class comprises the following fields:

strName: name of the parameter

strValue: value for the parameter

Return Value:

An FRSHEATSubmitRequestResponse object, defined as follows:
    public class FRSHEATSubmitRequestResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public FRSHEATServiceReqRequest reqData { get; set; }
    }
 

The FRSHEATSubmitRequestResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful. 
        A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

Copyright © 2019 , Ivanti. All Rights Reserved. Privacy & Legal.

Page 79 of 90

Service and Asset Manager 2019.1 Web Services Guide

http://www.ivanti.com/en-US/company/legal


 l reqData – an FRSHEATServiceReqRequest object, containing the Service Request that is 
successfully submitted

The FRSHEATServiceReqRequest class is defined as follows:
    public class FRSHEATServiceReqRequest
    {
        public string strRequestRecId;
        public string strRequestNum;
        public decimal fTotalPrice;
        public decimal fTotalRecurPrice;
        public string strByEmployee;
        public string strFulfillmentPlanType;
        public string strUrgency;
        public DateTime? DateSubmitted;
        public DateTime? DateUpdated;
        public string strUpdatedBy;
        public DateTime? DateDelivery;
        public string strSubscriptionRecId;
        public bool isFulfilled;
        public string strName;
        public string strDescription;
        public decimal fPrice;
        public decimal fRecurPrice;
        public int nRecurPeriod;
        public int nDeliveryCommitment;
        public string strStatus;
        public string strCreatedBy;
        public string strRecId;
 
        public List<FRSHEATServiceReqTemplateParam> lstParameters;
}

The FRSHEATServiceReqRequest class comprises the following fields:

 l strRequestRecId – RecId of the Service Request
 l strRequestNum – ID of the Service Request
 l fTotalPrice – total non-recurring price on the Service Request
 l fTotalRecurPrice – total recurring price on the Service Request
 l strByEmployee - LoginId of the requestor of the Service Request
 l strFulfillmentPlanType – type of fulfillment
 l strUrgency – urgency value on the Service Request
 l DateSubmitted – date when the Service Request was submitted
 l DateUpdated - date when the Service Request was last updated
 l strUpdatedBy – LoginId of the user who last updated the Service Request
 l DateDelivery – delivery date for the Service Request
 l strSubscriptionRecId – RecId of the Subscription corresponding to the Service Request
 l isFulfilled – flag indicating whether the Service Request has been fulfilled or not
 l strName – name of the Request Offering, from which the Service Request was created from
 l strDescription – description of the Service Request
 l fPrice – Price on the Service Request
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 l fRecurPrice – Recurring Price on the Service Request
 l nRecurPeriod – recurrence period for the Service Request
 l nDeliveryCommitment – delivery commitment period for the Service Request
 l strStatus – Status of the Service Request
 l strCreatedBy - LoginId of the user who created the Service Request
 l strRecId – RecId of the Service Request
 l lstParameters – list of FRSHEATServiceReqTemplateParam objects, where each item in the list 

represents the parameter value for the Service Request

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The list of matching Request Offerings in the Service Catalog can be 
successfully retrieved, and are available via the srtList member.

UserNotFound No user recordcan be located in the tenant, with the given LoginID value.

 

Check the LoginID value that was passed in, to ensure that it is spelled correctly

ReqParamsNotFilled One or more required parameters are not filled out.

 

Check the exceptionReason member ,to determine which specific required 
parameters were not filled out properly

ValidationValuesMismatch The value that was passed in for a drop-down selection parameter, does not 
belong in the validation list.

 

For example, assume there is a drop-down selection parameter  which is 
validated against the Departments validation list. If a value of “Billing” is 
supplied to the SubmitRequest WebMethod, but “Billing” does not exist in the 
validation list, the return Status in this case will be “ValidationValuesMismatch”.

 

Check the exceptionReason member, to determine which specific validated 
parameters did not have the proper values filled out for it

ParameterTypeMismatch One or more parameters were specified with values, which are inappropriate for 
the underlying parameter data type.

 

For example, the Text Field parameter type can be used to store various types of 
values. If the data type of the parameter is Number, and a text value is specified 
for the parameter, the return status in this case will be 
“ParameterTypeMismatch”.
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Status Explanation

Check the exceptionReason member, to determine which specific parameters 
were specified with values with the incorrect type.

Error An Error was encountered during the execution of this Web Method - the 
corresponding exceptionReason member should be inspected, to determine 
why the web method has failed.

 

Service Request Submission Validation
Before submitting the Service Request, the SubmitRequest Web Method performs three types of 
validation:

 l Required Parameters – ensures that all parameters marked as required are filled out. Currently 
the code will handle unconditional required parameters, as well as simple conditional required 
parameters.      
  If there are one or more required parameters which are not filled out properly, the 
SubmitRequest WebMethod will return a status value of “ReqParamsNotFilled”. In such cases, 
the exceptionReason member can be consulted, for determining which specific parameter 
values have not been filled out.

 l Validation Values – ensures that the supplied values are allowable values, based on the 
existing records in the validation list table.     
Currently the code will handle regular validation (i.e. validation against a single field) as well as 
simple constrained validation (i.e. validation which is constrained, based on the value of an 
earlier field). 
If there are one or more parameters which do not satisfy the validation, the SubmitRequest 
WebMethod will return a status value of “ValidationValuesMismatch”. In such cases, the 
exceptionReason member can be consulted, for determining which specific parameter values 
do not match up with the validation list.

 l Parameter Type Checking – ensures that the supplied value is appropriate with respect to the 
data type of the given parameter.         
        If there are one or more values which do not match the corresponding parameter type, the 
SubmitRequest WebMethod will return a status value of “ParameterTypeMismatch”. In such 
cases, the exceptionReason member can be consulted, for determining which specific 
parameter values do not match the corresponding data type. 
        This will be defined in detailed in the next section.

Type Checking of Parameters in the Service Request
Prior to submitting the Service Request, the SubmitRequest Web Method will perform the data type 
checking of the values, with respect to the data types of the respective parameters.
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The following table summarizes the various parameter types. If data type validation is performed, the 
details section will describe this information in greater detail.

 

Data Type Details

Text Currently not validated (matches the current Service Catalog behavior)

CheckBox Allowed values are those which can be parsed as either true or false.

Uses the Boolean.TryParse() method in .NET for determining if the value for checkbox is 
valid or not.

Date / Time / 
DateTime

Allowed values are those which can be parsed as date/time values.

 

Uses the DateTime.TryParse() method in .NET for determining if the value for date / time / 
datetime is valid or not.

To specify date/time values, the string value should be specified using ISO 8601 format, and 
the value itself should be relative to UTC.

So the date/time value can be specified in one of the following two ways:

yyyy-mm-dd  hh:mm

or

yyyy-mm-ddThh:mm

Either a space character or “T” character can be used to separate between the date and 
time values.

The following are two examples of specifying a date/time value of March 26th, 2013, 18:38 
UTC, relative to the above two formats:

2013-03-26 18:38

2013-03-26T18:38

Number / 
Money

Allowed values are those which can be parsed as decimal values.

Uses the Decimal.TryParse() method in .NET for determining if the numerical value is valid 
or not.

Phone Allowed values are phone numbers which match a US phone number; e.g. (415)555-1212

This matches the current Service Catalog behavior. Do not use this parameter type for 
validating International phone numbers.

SSN Allowed values are US Social Security Numbers; e.g.

123-45-6789

Email Currently not validated (matches the current Service Catalog behavior)

URL Currently not validated (matches the current Service Catalog behavior)
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Example
            string strSubscrRecId = frSvc.GetSubscriptionId(authSessionKey, tenantId, "Domain 
Password Reset").subscriptionId;
 
            List<FRSHEATServiceReqParam> srparamListItems = new List<FRSHEATServiceReqParam>();
 
            srparamListItems.Add(new FRSHEATServiceReqParam
            {
                strName = "RequesterDepartment",
                strValue = "IT"
            });
 
            srparamListItems.Add(new FRSHEATServiceReqParam
            {
                strName = "Requester",
                strValue = "Ashley Simon"
            });
 
            FRSHEATSubmitRequestResponse srResponse = frSvc.SubmitRequest(authSessionKey, tenantId, 
strSubscrRecId, srparamListItems.ToArray(), loginId);
            FRSHEATServiceReqRequest srres;
 
            if (srResponse.status == "Success")
            {
                srres = srResponse.reqData;
            }
            else
            {
                if (srResponse.exceptionReason != null)
                {
                    Console.WriteLine("Error: " + srResponse.exceptionReason);
                }
            }
 
 

GetRequestData
Retrieves the data for the given Service Request

Request syntax:
public FRSHEATGetRequestDataResponse GetRequestData(string sessionKey, string tenantId, string 
strReqNumber)

Parameters:
sessionKey: Key received in the earlier Connect request
tenantId: tenant for which the key is authenticated. 
strReqNumber: numeric ID value for the Service Request
Return Value:
An FRSHEATGetRequestDataResponse object, defined as follows:
    public class FRSHEATGetRequestDataResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public FRSHEATServiceReqRequest reqData { get; set; }
    }
 

The FRSHEATGetRequestDataResponse class comprises the following fields:
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 l status – this field provides a Status value indicating whether the operation was successful.       
   A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l reqData – an FRSHEATServiceReqRequest object, containing the Service Request that is 
successfully submitted

 

Refer to the earlier SubmitRequest section, regarding the definition of the 
FRSHEATServiceReqRequest class.

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The Service Request with the given numeric ID can be located, and is available via the reqData 
member.

NotFound The Service Request with the given numeric ID cannot be located.

 

Confirm that the numeric ID of the Service Request was specified correctly .

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has failed.

Example
            FRSHEATGetRequestDataResponse getRequestDataResponse = frSvc.GetRequestData
(authSessionKey, tenantId, strReqRecId);
            FRSHEATServiceReqRequest srRequest;
 
            if (getRequestDataResponse.status == "Success")
            {
                srRequest = getRequestDataResponse.reqData;
                // Go ahead and access the relevant properties of interest from the Service Request 
..
            }
 

FetchServiceReqValidationListData
Fetch the allowable validation list data for the given Service Request parameter

Request syntax:
public FRSHEATFetchSRValListDataResponse FetchServiceReqValidationListData(string sessionKey, string 
tenantId, string offeringName, string paramName, FRSHEATDepValItem depvalItem = null, string 
subStrMatch = "")

Parameters:

• sessionKey: Key received in the earlier Connect request

• tenantId: tenant for which the key is authenticated. 
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• offeringName: Name of the Request Offering

• paramName: Name of the parameter in the Request Offering

• depValItem: an FRSHEATDepValItem object, representing the dependent validation item

• substrMatch: substring to match against the returned validation list items

Return Value:

An FRSHEATFetchSRValListDataResponse object, defined as follows:
    public class FRSHEATFetchSRValListDataResponse
    {
        public string status { get; set; }
        public string exceptionReason { get; set; }
        public List<FRSHEATValListValue> validationValuesList { get; set; }
    }
 

The FRSHEATFetchSRValListDataResponse class comprises the following fields:

 l status – this field provides a Status value indicating whether the operation was successful. 
A full description of the available Status values is provided in the table below.

 l exceptionReason – if there is an exception thrown in the course of running the Connect 
WebMethod, the exception information will be captured in this field.

 l validationValuesList – a List of FRSHEATValListValue objects, each item representing the 
records returned from the underlying validation list, based on the specified search criteria

The FRSHEATValListValue class is defined as follows:
    public class FRSHEATValListValue
    {
        public string strRecId;
        public string strStoredValue;
        public string strDisplayValue;
    }
 

The FRSHEATValListValue class comprises the following fields:

 l strRecId – RecId of the validation list record
 l strStoredValue – the stored value of the validation list record (e.g. “ASimon”, if the validation 

list record corresponds to the “Ashley Simon” Employee record)
 l strDisplayValue - the display value of the validation list record (e.g. “Ashley Simon”, if the 

validation list record corresponds to the “Ashley Simon” Employee record)

The following table lists the available status values, and describes how to interpret them.

Status Explanation

Success The Service Request with the given numeric ID can be located, and is available via the reqData 
member.
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Status Explanation

NotFound The Service Request with the given numeric ID cannot be located.

 

Confirm that the numeric ID of the Service Request was specified correctly .

Error An Error was encountered during the execution of this Web Method - the corresponding 
exceptionReason member should be inspected, to determine why the web method has failed.

Example
            // Fetch the matching validation list records for Requester, in the "Domain Password 
Reset" Request Offering
 
            // Since the Requester is constrained by the "RequesterDeparment" parameter, this needs 
to be specified as an input parameter to the Web Method
 
            string offeringName = "Domain Password Reset";
            string paramName = "Requester";
 
            FRSHEATDepValItem depValItem = new FRSHEATDepValItem()
            {
                strParName = "RequesterDepartment",
                strParValue = "IT"
            };
 
            FRSHEATFetchSRValListDataResponse validationValuesResponse = 
frSvc.FetchServiceReqValidationListData(authSessionKey, tenantId, offeringName, paramName, 
depValItem, subStrQuery);
            FRSHEATValListValue[] valListValues;
 
            if (validationValuesResponse.status == "Success")
            {
                valListValues = validationValuesResponse.validationValuesList;
 
                Console.WriteLine("Here are the matching validation list records:\n");
                foreach (FRSHEATValListValue valListItem in valListValues)
                {
                    Console.WriteLine("Stored Value: \"{0}\"\t\tDisplay Value: \"{1}\"", 
valListItem.strStoredValue, valListItem.strDisplayValue);
                }
            }
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Appendix A: Creating a Test Console 
Application using Visual Studio
As explained in the earlier Introduction section, the FRSHEATIntegration Web Service uses standard 
Web Service technologies, and can be consumed using various programming languages /  platforms 
such as Microsoft .NET, Java, etc.

This section describes how one would create a test console application using Visual Studio 2010, 
specifically for creating the Web Reference to access the SOAP-based FRSHEATIntegration API. 

Note that alternative .NET based clients such as WPF, ASP.NET, and Windows Forms clients can also be 
created, using the same concepts as presented here.

To create a new test console application in Visual Studio, follow these steps:

1. Launch Visual Studio 2010, and then create a new Visual C# Console Project.             

2. In the Solution Explorer, right click the References folder, then select Add Service Reference 
from the context menu.
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The Add Service Reference dialog box appears.         
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3. Click Advanced in the lower left hand corner, to launch the Service Reference Settings dialog box.

4. Click Add Web Reference in the lower left hand corner, to launch the Add Web Reference dialog 
box. 

At this point, you are now ready to author the necessary code, for exercising the 
FRSHEATIntegration Web Service.
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