
MobileIron AppConnect Guide for
MobileIron Cloud

October 28, 2020

For complete product documentation see:
MobileIron Cloud Product Documentation HomePage

Proprietary and Confidential | Do Not Distribute

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Cloud&Id=a1s3400000240gfAAA&Name=MobileIron+Cloud

MobileIronAppConnectGuide forMobileIronCloud| 2

Copyright © 2012 - 2020MobileIron, Inc. All Rights Reserved.

Any reproduction or redistribution of part or all of thesematerials is strictly prohibited. Information in this publication
is subject to change without notice. MobileIron, Inc. does not warrant the use of this publication. For some phone
images, a third-party database and image library, Copyright © 2007-2009 Aeleeta's Art and Design Studio, is used.
This database and image library cannot be distributed separate from theMobileIron product.

“MobileIron,” theMobileIron logos and other trade names, trademarks or servicemarks of MobileIron, Inc.
appearing in this documentation are the property of MobileIron, Inc. This documentation contains additional trade
names, trademarks and servicemarks of others, which are the property of their respective owners. We do not
intend our use or display of other companies’ trade names, trademarks or servicemarks to imply a relationship
with, or endorsement or sponsorship of us by, these other companies.

MobileIronAppConnectGuide forMobileIronCloud| 3

Contents
Contents 3

AppConnect Overview 10

What are AppConnect-enabled apps? 10

AppConnect apps fromMobileIron 11

Third-party and in-house AppConnect apps 11

AppTunnel overview 11

HTTP/S tunneling 11

TCP tunneling (also known as Advanced AppTunnel) 12

AppTunnel with TCP tunneling support for Android AppConnect apps 12

Types of apps that can use AppTunnel with TCP tunneling 13

When to use AppTunnel with HTTP/S tunneling versus TCP tunneling 14

The AppConnect passcode 14

AppConnect apps and authentication to enterprise app servers 15

Authentication using Kerberos Constrained Delegation 15

Certificate authentication for Android AppConnect apps 16

Certificate authentication for iOS AppConnect apps 16

Authentication throughMobileIron Access 16

App-specific configuration for AppConnect apps 17

Compliance actions 17

AppConnect for Android overview 17

Wrappingmodes 18

TheMobileIron client app, the Secure Apps Manager, and the AppConnect wrapper 18

Supported Android device processors 19

Supported Android operating systems 19

Samsung Knox container (Knox Workspace) and AppConnect apps 19

AppConnect for Android component support and compatibility 20

Contents

MobileIronAppConnectGuide forMobileIronCloud| 4

Data loss prevention for secure apps for Android 20

Data encryption for secure apps for Android 20

Special badging for secure apps for Android 20

AppConnect for Android apps 20

Types of AppConnect Apps 20

AppConnect apps that MobileIron provides for Android 21

Docs@Work 21

Email+ 21

Web@Work 21

File Manager 22

Other documentation about MobileIron-provided AppConnect apps 22

When an Android device user can use AppConnect for Android 22

AppConnect for iOS overview 22

Component support and compatibility 22

Wrapping support for mobile development platforms 23

Data loss prevention for secure apps for iOS 23

Data encryption for secure apps for iOS 23

AppConnect-related data 23

App-specific data 23

MobileIron Go for iOS and AppConnect apps 24

App check-in andMobileIron Go 25

The AppConnect passcode auto-lock time andMobileIron Go 25

Dual-mode apps 26

AppConnect apps that MobileIron provides for iOS 26

When an iOS device user can use AppConnect for iOS 27

Quick start configuration AppConnect for Android 28

Adding AppConnect apps toMobileIron Cloud 28

Adding an AppConnect Custom Configuration 30

Adding an AppConnect Devices configuration 31

Contents

MobileIronAppConnectGuide forMobileIronCloud| 5

Android AppConnect Devices field description 32

Quick start configuration AppConnect for iOS 35

Adding AppConnect apps toMobileIron Cloud 35

Adding an AppConnect Custom Configuration 36

Editing AppConnect Devices configuration 37

iOS AppConnect Devices field description 38

AppConnect for Android 41

Hybrid web app support 41

Fingerprint login for AppConnect apps for Android 42

Required product versions for fingerprint login for AppConnect for Android 42

Requirements for fingerprint login for AppConnect for Android 43

Configuring fingerprint login for AppConnect for Android (Cloud) 43

Device User impact of fingerprint login for AppConnect for Android 44

Device user experience at registration 44

Device user experience if already registered 44

Device user options for enabling or disabling fingerprint login 45

Less common device user scenarios for fingerprint login for AppConnect for Android 45

Security versus convenience of passcode and fingerprint for AppConnect for Android 47

Lock, unlock, and retire impact on AppConnect for Android 49

Lock impact 49

Unlock the AppConnect container impact 50

Retire impact 50

Copy/Paste for AppConnect for Android 51

Comparison with AppConnect for iOS copy/paste policy 52

Copying from non-AppConnect apps to AppConnect apps 52

Interaction with Exchange setting 52

Web-related DLP policies 53

WebDLP policy for browser launching 53

DLP allowing links from non-AppConnect apps to open inWeb@Work 54

Contents

MobileIronAppConnectGuide forMobileIronCloud| 6

WebDLP versus Non-AppConnect apps can open URLs inWeb@Work DLP 54

DLP policy for media player access 55

Media file requirements 55

Device-initiated security controls for AppConnect for Android 56

Interaction with the Exchange setting 56

Secure File Manager features 56

Secure folder access 57

About allowing a secure app to ignore the auto-lock time 57

App requirements to ignore the auto-lock time 58

What the device user sees when an app ignores the auto-lock time 58

Situations that wipe Android AppConnect app data 58

Accessible Android apps to preserve the user experience 59

Secure Apps Manager Android permissions 59

Disable analytics data collection for AppConnect for Android 60

AppConnect for iOS 62

Open-In data loss prevention policy details 62

Open In behavior in wrapped apps versus SDK apps 62

iOS native email use and theOpen In DLP policy 64

Open In and native email with an AppConnect version prior to AppConnect 4.0 for iOS 65

Open In and native email with AppConnect 4.0 for iOS throughmost recently released version 65

Putting iOS native email into the Open InWhitelist 66

AirDrop use and theOpen In DLP policy 66

App extension use and theOpen In DLP policy 67

Whitelisting services integrated into iOS in the Open In DLP policy 67

Overriding the Open In policy for an app 67

Custom keyboard control 68

Screen blurring 69

Dictation with the native keyboard is not allowed for wrapped apps 69

Heightened security for AppConnect apps using the Secure Enclave 70

Contents

MobileIronAppConnectGuide forMobileIronCloud| 7

Situations that wipe AppConnect for iOS app data 70

Device-initiated (local) compliance for iOS jailbreak detection 71

Touch ID or Face ID for accessing secure apps 71

Device user experience with Touch ID or Face ID 71

Security versus convenience of passcode and Touch ID/Face ID options 72

Certificate authentication from AppConnect apps to enterprise services 73

Impact on AppTunnel use 74

Set up certificate authentication from an AppConnect app 74

Configuring a certificate onMobileIron Cloud 74

Configuring the key-value pairs for the certificate and URLmatching rule 75

Details about MI_AC_CLIENT_CERT_#_RULE 76

Configuring AppTunnel for AppConnect apps 79

Adding an AppTunnel configuration 79

Configuring per-app idle session timeout for AppTunnel with TCP tunneling 81

Certificate authentication using AppConnect with TCP tunneling for Android AppConnect apps 82

App and enterprise server requirements 82

Configuring certificate authentication using AppTunnel with TCP tunneling for Android AppConnect apps 82

AppTunnel and TLS protocol versions in Android AppConnect apps 86

Impact to tunneling when using a global HTTP proxy 87

AppConnect Key-value Pairs 89

AppConnect for Android key-value pairs 89

AppConnect for iOS key-value pairs 90

Troubleshooting AppConnect 93

Troubleshooting AppConnect setup 93

Logging for AppConnect apps for iOS 93

Overview of logging for AppConnect apps for iOS 93

Log levels 94

How the log level appears in messages 95

Log file details 96

Contents

MobileIronAppConnectGuide forMobileIronCloud| 8

Enable logging for an AppConnect app 97

Log level configuration impact on the device 97

Activating verbose or debug logging on the device 98

Emailing log files fromMobileIron Go 99

Secure Apps on Android Devices - User Perspective 100

Downloading and installing the secure apps 100

Creating the secure apps passcode 101

Choosing amore complex AppConnect passcode 101

Secure apps notifications 102

Secure apps status bar icons 102

Camera, gallery, andmedia player warningmessages 103

Secure apps on iOS Devices - User Perspective 104

Secure apps passcodemanagement 104

Creating a secure apps passcode 105

Creating amore complex secure apps passcode 107

Logging in with the secure apps passcode 108

Logging out or resetting passcode for secure apps 109

Resetting the secure apps passcode - administrator initiated 110

When the device user exceeds themaximum number of attempts 110

Touch ID or Face ID with fallback to device passcode -- device user perspective 111

Choosing Touch ID or Face ID with fallback to device passcode to access secure apps 112

The device user chooses Touch ID/Face ID 112

The device user chooses passcode 112

Changing from secure apps passcode to Touch ID/Face ID to access secure apps 114

Changing from Touch ID/Face ID to secure apps passcode to access secure apps 115

Touch ID or Face ID with fallback to AppConnect passcode -- device user perspective 118

The device user creates an AppConnect passcode 118

The device user chooses whether to use Touch ID/Face ID 119

The device user uses Touch ID/Face ID when the auto-lock time expires 120

Contents

MobileIronAppConnectGuide forMobileIronCloud| 9

The device user changes Touch ID/Face ID choice 121

Contents

1

MobileIronAppConnectGuide forMobileIronCloud| 10

AppConnect Overview

AppConnect is aMobileIron feature that containerizes apps to protect data on iOS and Android devices. Each
AppConnect-enabled app becomes a secure container whose data is encrypted, protected from unauthorized
access, and removable. Because each user has multiple business apps, each app container is also connected to
other secure app containers. This connection allows the AppConnect-enabled apps to share data, like documents.
Polices and configurations set up in aMobileIron unified endpoint management (UEM) platform are used tomanage
AppConnect-enabled apps.

TheMobileIron UEM areMobileIron Cloud andMobileIron Core.

While AppConnect protects data on a device -- data-at-rest, another MobileIron feature, AppTunnel, protects data
as it moves between a device and enterprise data sources -- data-in-motion. MobileIron AppTunnel is aMobileIron
feature that provides secure tunneling and access control to enterprise data sources. App-by-app session security
protects the connection between each app container and the corporate network. AppTunnel is particularly useful
when an organization does not want to open up VPN access to all apps on the device. This feature requires a
Standalone Sentry configured to support app tunneling.

Related topics

l What are AppConnect-enabled apps?

l AppTunnel overview

l The AppConnect passcode

l AppConnect apps and authentication to enterprise app servers

l App-specific configuration for AppConnect apps

l AppConnect for Android overview

l AppConnect for iOS overview

What are AppConnect-enabled apps?
AppConnect-enabled apps, also known as AppConnect apps, are apps that have been containerized using one of
the followingmethods:

l wrapping (iOS and Android)

l AppConnect SDK (iOS)

l AppConnect Cordova Plugin (iOS)

MobileIronAppConnectGuide forMobileIronCloud| 11

You configure and distribute AppConnect apps to devices on theMobileIron unified endpoint management (UEM)
platform. TheMobileIron UEM areMobileIron Cloud andMobileIron Core. From the device user perspective,
AppConnect apps are called secure apps. Secure apps can share data only with other secure apps. Unsecured
apps cannot access the data.

Related topics
AppConnect Overview

AppConnect apps from MobileIron

MobileIron provides a number of AppConnect apps, including Email+, Web@Work, and Docs@Work.

Third-party and in-house AppConnect apps

Your organization and third-party providers can create secure apps by either:

l wrapping the apps (Android and iOS)

l developing iOS apps by using the AppConnect for iOS SDK or AppConnect for iOS Cordova Plugin

NOTE: You cannot wrapanapp that youget fromGoogle Play or the Apple App Store.

See the following for details about how to wrap or develop an AppConnect app :

l AppConnect for Android Product Documentation Home Page
o MobileIron AppConnect for Android App Developers Guide

l AppConnect for iOS Product Documentation Hope Page
o MobileIron AppConnect for iOS AppWrapping Developers Guide

o MobileIron AppConnect for iOS SDK AppDevelopers Guide

o MobileIron AppConnect for iOS Cordova Plugin Developers Guide

AppTunnel overview
MobileIron AppTunnel provides per-app secure tunneling and access control to protect app data as it moves
between the device and corporate backend resources. You configureMobileIron Cloud and Standalone Sentry to
support AppTunnel for an app. AppTunnel provides:
• HTTP/S tunneling
• TCP tunneling (also known as Advanced AppTunnel)

HTTP/S tunneling

AppTunnel can tunnel HTTP/S traffic between an iOS or Android AppConnect app and a corporate backend
resource. The apps must use specific APIs tomake their HTTP/S connections. Contact the app vendor or
developer to find out if the app works with AppTunnel for HTTP/S tunneling.

AppConnectapps fromMobileIron

https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android
https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+iOS&Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

MobileIronAppConnectGuide forMobileIronCloud| 12

TCP tunneling (also known as Advanced AppTunnel)

AppTunnel can tunnel TCP traffic between an AppConnect app and a corporate backend resource. A TCP tunnel
supports HTTP/S connections and TCP connections. TCP tunneling for AppConnect apps is set up differently for
iOS and Android:

l Android AppConnect apps
AppConnect apps for Android that are wrapped with the Generation 2 wrapper support TCP tunneling using
AppTunnel.

l iOS AppConnect apps
AppConnect apps for iOS support TCP tunneling using theMobileIron Tunnel app. Therefore, to use
TCP tunneling for iOS AppConnect apps, in addition to Standalone Sentry, also deploy and install
MobileIron Tunnel on iOS devices and apply the Tunnel VPN profile to the iOS AppConnect app.

NOTE: AppTunnel does not support UDP tunneling. Therefore, if anAppConnect app requires UDP, such
as for streaming video, it cannot use AppTunnel to tunnel its data.

Related topics

l AppTunnel with TCP tunneling support for Android AppConnect apps

l See "AppTunnel with Standalone Sentry" in theMobileIron Sentry Guide for MobileIron Cloud on the
MobileIron Sentry Product Documentation Home Page.

l For information about deployingMobileIron Tunnel for iOS, seeMobileIron Tunnel for iOS Guide on the
MobileIron Tunnel for iOS Product Documentation Home Page.

AppTunnel with TCP tunneling support for Android AppConnect
apps
AppTunnel can tunnel HTTP/S requests from an AppConnect app to an enterprise server that is behind the
enterprise firewall. AppTunnel with HTTP/S tunneling is supported with wrapped Java apps that use a specific set
of Java HTTP/S APIs. If a wrapped Java app uses APIs outside of this set, or uses TCP for its network
connections, it can use AppTunnel with TCP tunneling to secure data-in-motion to enterprise servers. AppTunnel
with TCP tunneling therefore expands the set of AppConnect apps that can tunnel data to an enterprise server.

When an AppConnect app uses AppTunnel with TCP tunneling, the traffic between the device and the Standalone
Sentry is secured using an Secure Sockets Layer (SSL) session, as shown in the following diagram:

TCP tunneling (also knownas AdvancedAppTunnel)

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Sentry&Id=a1s3400000240gYAAQ&Name=MobileIron+Sentry
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Tunnel&Id=a1s3400000240gzAAA&Name=Tunnel+for+iOS

MobileIronAppConnectGuide forMobileIronCloud| 13

FIGURE 1.APPTUNNEL WITH TCP TUNNELING FORANDROID DEVICES

Types of apps that can use AppTunnel with TCP tunneling

The following types of apps can use AppTunnel with TCP tunneling:

l Hybrid web apps, including PhoneGap apps.
Hybrid web apps use AndroidWebView andWebKit technologies to access and display web content.
WebView does not use one of the Java HTTP/S APIs that Android AppConnect wrapping supports with
AppTunnel with HTTP/S tunneling. Therefore, AppTunnel with TCP tunneling is required.

l Java apps
Java apps that use APIs outside of the set of Java HTTP/S APIs that AppTunnel with HTTP/S tunneling
supports can tunnel the data using AppTunnel with TCP tunneling.

l Java apps which use C or C++ code to access an enterprise server
C or C++ code does not use the set of Java HTTP/S APIs that AppTunnel with HTTP/S tunneling
supports. These apps can tunnel the data using AppTunnel with TCP tunneling.

l React Native apps

l Xamarin apps that use APIs outside the set of APIs that AppTunnel with HTTP/S tunneling supports.

Note The Following:

l AppTunnel does not support UDP tunneling. For example, apps that require UDP for streaming video are
not supported.

l AppTunnel with TCP tunneling does not support Kerberos authentication to the enterprise server. It
supports only pass through authentication. With pass through authentication, the Standalone Sentry
passes the authentication credentials, such as the user ID and password (basic authentication) or NTLM,
to the enterprise server.
Therefore, apps that must use AppTunnel with TCP tunneling, such as hybrid apps, cannot use Kerberos
authentication to the enterprise server. However, these apps can use “Certificate authentication using
AppConnect with TCP tunneling for Android AppConnect apps.

Types of apps thatcanuseAppTunnelwith TCP tunneling

MobileIronAppConnectGuide forMobileIronCloud| 14

When to use AppTunnel with HTTP/S tunneling versus TCP tunneling

The following table shows whether to use AppTunnel with HTTP/S tunneling or AppTunnel with TCP tunneling for
an Android AppConnect app. It also shows which generation of the wrapper to use.

AppTunnel with HTTP/S tunneling AppTunnel with TCP tunneling

Java code using supported
HTTP/S APIs *

Supported with Generation 1 or 2
wrapper

Supported

Requires Generation 2 wrapper

Java code using
unsupported HTTP/S
APIs *

Not supported Supported

Requires Generation 2 wrapper

C or C++ code Not supported Supported

Requires Generation 2 wrapper

Hybrid web app, including
Phonegap apps

Not supported Supported

Requires Generation 2 wrapper

Xamarin apps Supported with Generation 1 or 2
wrapper if using supported HTTP/S
APIs

Supported

Requires Generation 2 wrapper

React Native Not supported Supported

Requires Generation 2 wrapper

TABLE 1.APPTUNNEL SUPPORT FORHTTP/S VERSUS TCP TUNNELINGONANDROIDAPPCONNECT APPS

* The supported HTTP/S Java APIs are listed in theMobileIron AppConnect for Android App Developers Guide.

Contact the application vendor or developer to find out whether to configure AppTunnel with HTTP/S tunneling or
AppTunnel with TCP tunneling.

The AppConnect passcode
You can require an AppConnect passcode, also known as the secure apps passcode. With a single login using the
AppConnect passcode, the device user can access all the secure apps. You configure the rules for the
AppConnect passcode onMobileIron Cloud. The AppConnect passcode is not the same as the passcode used to
unlock the device.

For the highest possible security when using AppConnect, MobileIron recommends that devices use both of the
following:

l a device passcode

l an AppConnect passcode

Whento useAppTunnelwithHTTP/S tunnelingversus TCP tunneling

MobileIronAppConnectGuide forMobileIronCloud| 15

In some environments, however, using both passcodes is not feasible due to usability and other requirements. For
these reasons, you have the option to not require an AppConnect passcode. Also, you can allow Touch ID or Face
ID (iOS) or fingerprint (Android) instead of an AppConnect passcode for accessing AppConnect apps for a simpler
user experience.

When the AppConnect passcode is not required, users enter only a device passcode, if one is required, to unlock
the device. Users are not encumbered with entering a second authentication to access secure apps. Only access
to the secure apps changes. The apps are AppConnect-enabled, therefore, secured with AppConnect features
such as data loss prevention policies. Also, the secure apps’ data is still protected with encryption. However, no
AppConnect passcodemeans that data encryption does not use the AppConnect passcode in creating the
encryption key.

Your organization’s security requirements determine whether accessing secure apps without an AppConnect
passcode is an acceptable trade-off for an improved user experience.

Related topics

l Data encryption for secure apps for Android

l Data encryption for secure apps for iOS

l Touch ID or Face ID for accessing secure apps.

l Security versus convenience of passcode and Touch ID/Face ID options

l Fingerprint login for AppConnect apps for Android

AppConnect apps and authentication to enterprise app servers
You can set up AppConnect apps to provide device users a seamless authentication experience to your enterprise
applications. In such a setup, users do not have to enter any credentials when accessing enterprise applications
from an AppConnect app from a devicemanaged by MobileIron. When users launch an AppConnect app,
MobileIron Go on themanaged device authenticates the user. After the user is authenticated the user can access
the enterprise application without having to enter any credentials.

The followingmethods are available to support this capability:

l Authentication using Kerberos Constrained Delegation

l Certificate authentication for Android AppConnect apps

l Certificate authentication for iOS AppConnect apps

l Authentication throughMobileIron Access

Authentication using Kerberos Constrained Delegation

You can use Kerberos Constrained Delegation (KCD) for authenticating a user to an enterprise server.

To use this feature, the appmust do the following:

AppConnectapps andauthentication toenterprise appservers

MobileIronAppConnectGuide forMobileIronCloud| 16

l Use the AppTunnel feature, configured for authenticating the user to the enterprise server using Kerberos
Constrained Delegation (KCD).

l Interact with an enterprise server that supports authentication using KCD.

NOTE: AppConnect-enabledActiveSync email apps suchas , Email+ for Android, and Email+ for iOS do
not use AppTunnel. You configure the Standalone Sentry for authenticating the user to the
ActiveSync server using KCD.

All AppConnect apps can use this feature, including:

l Android third-party AppConnect apps

l iOS third-party AppConnect apps built with the AppConnect for iOS SDK or the AppConnect for iOS
Cordova Plugin

l Web@Work

l Docs@Work

NOTE: MobileIron does not support KCDwithCIFS-basedcontent servers.

Certificate authentication for Android AppConnect apps

An Android AppConnect app can send a certificate to identify and authenticate the app user to an enterprise server
when using AppTunnel with TCP tunneling.

Related topics

Certificate authentication using AppConnect with TCP tunneling for Android AppConnect apps.

Certificate authentication for iOS AppConnect apps

An iOS AppConnect app can send a certificate to identify and authenticate the app user to an enterprise service.

Related topics

Certificate authentication from AppConnect apps to enterprise services.

Authentication throughMobileIron Access

For an AppConnect app in aMobileIron Access deployment, if an enterprise cloud service is set up in Access,

l Authentication to the cloud service goes through Access.

l If AppTunnel rules are configured in the AppConnect app configuration, data traffic goes through
AppTunnel, however authentication traffic goes through Tunnel to Access.

l In addition, with zero sign-on, device users can get passwordless access to cloud services on their
managed devices.

Certificateauthentication for AndroidAppConnectapps

MobileIronAppConnectGuide forMobileIronCloud| 17

Related topics

l For information about MobileIron Access and how to set up Access, see theMobileIron Access Guide on
theMobileIron Access Product Documentation Home Page.

App-specific configuration for AppConnect apps
OnMobileIron Cloud, you can configure settings that are specific to an AppConnect app. BecauseMobileIron
Cloud provides these settings to the app, device users do not have tomanually enter configuration details that an
AppConnect app requires. By automating the configuration for the device users, each user has a better experience
when installing and setting up apps. Also, the enterprise has fewer support calls, and the app is secured from
misuse due tomisconfiguration. This feature is also useful for apps which do not want to allow the device users to
provide certain configuration settings for security reasons.

Each AppConnect-enabled app’s product documentation should specify the necessary configuration for the app.

Compliance actions
Compliance actions determine what happens if a device does not comply with policy requirements.

WhenMobileIron Go detects that the device is non-compliant it takes action depending on the compliance action
set in the policy.

Some compliance actions impact AppConnect apps as follows:

l Immediately block access to the web sites configured to use the AppTunnel feature.

l Unauthorize AppConnect apps.

l Delete (wipe) the secure data of AppConnect apps.

Related topics

l Situations that wipe Android AppConnect app data

l Situations that wipe AppConnect for iOS app data

l For information about policies and their associated compliance action, see "Policies" in theMobileIron
Cloud Administrator Guide.

AppConnect for Android overview
MobileIron supports AppConnect for Android by wrapping Android apps. The following sections provide an
overview.

App-specific configuration for AppConnectapps

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Access&Id=a1s3400000240gUAAQ&Name=MobileIron+Access

MobileIronAppConnectGuide forMobileIronCloud| 18

l Wrappingmodes

l TheMobileIron client app, the Secure Apps Manager, and the AppConnect wrapper

l Supported Android device processors

l Supported Android operating systems

l Samsung Knox container (Knox Workspace) and AppConnect apps

l AppConnect for Android component support and compatibility

l Data loss prevention for secure apps for Android

l Data encryption for secure apps for Android

l Special badging for secure apps for Android

Wrappingmodes

Twomodes of wrapping are available:

l Generation 2

l Generation 1

Generation 2 wrapping is the default mode, and is required for a number of Android features. Generation 1 wrapping
should only be used for features not supported by Generation 2. For information about the features supported by
Generation 2 andGeneration 1 wrappingmodes, see "Wrapping support of commonly used app capabilities" in the
MobileIron AppConnect for Android App Developers Guide available on theMobileIron AppConnect for Android
Product Documentation Home Page.

NOTE: AppConnect apps are supportedonly inmultiple-app kiosk mode. Theyare not supported in
single-app kiosk mode. For Kiosk mode information, see theMobileIron Cloud Administrator
Guideon theMobileIronCloud Product Documentation Home Page.

TheMobileIron client app, the Secure AppsManager, and the AppConnect
wrapper

TwoMobileIron apps work together on the Android device to support AppConnect. Together, they provide the
security andmanagement of all the AppConnect apps.

TheseMobileIron apps are:

l MobileIron Go

l Secure Apps Manager

Each AppConnect app is wrapped with the AppConnect wrapper, which enforces security along with the
MobileIron client app and the Secure Apps Manager. On the device, the AppConnect apps are called secure apps.

The Secure Apps Manager performs the following tasks to support AppConnect apps on Android devices:

Wrappingmodes

https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android
https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Cloud&Id=a1s3400000240gfAAA&Name=MobileIron+Cloud

MobileIronAppConnectGuide forMobileIronCloud| 19

l manages the data encryption key.

l handles the AppConnect passcode login for all AppConnect apps.

l provides a list of all the AppConnect apps on the device.

When a new Secure Apps Manager becomes available, you do not need to re-wrap all your apps. Secure Apps
Manager is backward compatible. A wrapped app requires the corresponding or newer version of Secure Apps
Manager. For example, an app wrapped withWrapper 8.5.0.0 requires Secure Apps Manager 8.5.0.0 or later
version that supports apps wrapped withWrapper 8.5.0.0.

For MobileIron Cloud deployments, the Secure Apps Manager is bundled with MobileIron Go. The Secure Apps
Manager is automatically installed on a device when you distribute an AppConnect app for Android to a device. The
Secure Apps Manager is automatically updated to the latest version of Secure Apps Manager that MobileIron Cloud
supports.

For the AppConnect app compatibility with the latest version of Secure Apps Manager, see the AppConnect for
Android release notes available in theMobileIron AppConnect for Android Product Documentation Home Page.

NOTE: Support for various AppConnect for Android features sometimes require minimum versions of the
MobileIron client app, Secure AppsManager, and the wrapper, as specified in each feature’s
description.

Supported Android device processors

AppConnect on Android is supported on devices with:

l 32-bit ARM processors

l 64-bit ARM processors

Supported Android operating systems

For Android versions that AppConnect for Android supports, see theAppConnect Secure Apps for Android Release
Notes and UpgradeGuide.

For Android versions that theMobileIron Cloud supports, see the release note for MobileIron Cloud.

However, some AppConnect for Android features require one of themore recent Android versions. These
exceptions are noted in specific feature descriptions.

Samsung Knox container (KnoxWorkspace) and AppConnect apps

The Samsung Knox container, known as the Knox Workspace, is not supported with AppConnect apps.
Specifically:

l The Samsung Knox container does not support any AppConnect apps running inside the Knox container.

l MobileIron does not support using both a Knox container and AppConnect container on the same device.

SupportedAndroiddeviceprocessors

https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android

MobileIronAppConnectGuide forMobileIronCloud| 20

AppConnect for Android component support and compatibility

For the supported versions of the various components in an AppConnect deployment, including the Secure Apps
Manager, MobileIron Go, andMobileIron Cloud, see theMobileIron AppConnect for Android Release Notes and
UpgradeGuide in theMobileIron AppConnect for Android Product Documentation Landing Page.

Data loss prevention for secure apps for Android

Data loss prevention policies for secure apps allow you to secure the sensitive data in AppConnect apps. With
data loss prevention policies, you determine whether:

l device users can take screen captures of protected data.

l AppConnect apps can access camera photos or gallery images.

l AppConnect apps can streammedia tomedia players.

l AppConnect apps have copy/paste restrictions.

l tapping a web link in an AppConnect app can open the web page in an unsecured browser.

l tapping a web link in a non-AppConnect app can open the web page inWeb@Work.

NOTE: Document interaction (Open In) is always restricted to all AppConnect apps for Android.

Data encryption for secure apps for Android

App data for AppConnect apps on the device is encrypted. AES-256 encryption (which uses a key size of 256 bits)
is used.

The encryption key is not stored on the device. It is programmatically derived. If an AppConnect passcode is
required, it is used in the encryption key’s derivation, making the application data secure even on a device that
becomes compromised. When a device is compromised, it is rooted.

Special badging for secure apps for Android

An Android device user recognizes that an app is a secure app because its icon is overlaid with a special badge.

AppConnect for Android apps

The following provides an overview of the types of AppConnect apps:

l Types of AppConnect Apps

l AppConnect apps that MobileIron provides for Android

l Other documentation about MobileIron-provided AppConnect apps

Types of AppConnect Apps

AppConnect for Android supports apps developed by:

AppConnect for Androidcomponent supportandcompatibility

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240gcAAA&Name=AppConnect+for+Android

MobileIronAppConnectGuide forMobileIronCloud| 21

l third-party developers

l in-house developers

l MobileIron

The apps can be:

l Java apps

l Hybrid web apps, including Cordova and PhoneGap apps
Hybrid web apps use AndroidWebView andWebKit technologies to access and display web content.

l Java apps which use C or C++ code
C and C++ code are native code languages on Android devices. These apps are built with the Android
Native Development Kit (NDK)

l Apps built with the Xamarin development platform

l Apps built with the React Nativemobile development framework

All apps are wrapped with the AppConnect for Android wrapper. All apps are distributed by uploading them to the
App Catalog onMobileIron Cloud as in-house apps.

Wrapping does not support all Java APIs and features or all NDK features. Details are listed in theMobileIron
AppConnect for Android App Developers Guide.

AppConnect apps that MobileIron provides for Android

MobileIron provides the following AppConnect apps. These apps are available on theSoftware > Downloads
page at:

https://help.mobileiron.com/s/software

Docs@Work

The Docs@Work for Android app provides users with an easy way to access, annotate, share, and view
documents across a variety of on-premise and cloud storage repositories (for example, SharePoint, CIFS,
WebDAV, O365, Box, and Dropbox).

Email+

Email+ provides secure email, calendar, and contacts on corporate-owned and BYOD Android devices by
communicating with an ActiveSync server in your enterprise.

Web@Work

Web@Work is a secure browser that allows your device users to easily and securely access your organization's
web content.

AppConnectapps thatMobileIronprovides for Android

MobileIronAppConnectGuide forMobileIronCloud| 22

File Manager

This secure File Manager allows a user to save, browse, andmanage files in the secure container. For example,
the user can browse saved email attachments. The user can also save documents from any other AppConnect
app.

Other documentation about MobileIron-provided AppConnect apps

Formore information about the AppConnect apps that MobileIron provides for Android, see:

l MobileIron Docs@Work for Android Guide

l MobileIron Email+ for Android Guide

l MobileIronWeb@Work for Android Guide

When an Android device user can use AppConnect for Android

An Android device user can use an AppConnect app only if:

l The device user has been authenticated through aMobileIron Cloud viaMobileIron Go.

l You have authorized the app to run on the device.
o If the app is not authorized, the app does not allow the device user to access any secure data or

functionality. If a device user launches an unauthorized wrapped app, the app displays amessage and
exits.

l No situation has caused an authorized AppConnect app to become unauthorized for a device.
o These situations include, for example, when the device has been out of contact with Cloud for a period

of time that you configure.

l The device user has entered the AppConnect passcode, if you have required one.

AppConnect for iOS overview
AppConnect for iOS apps are either:

l built using the AppConnect for iOS SDK

l wrapped

AppConnect functionality on iOS devices is provided by the AppConnect app andMobileIron Go for iOS.

Component support and compatibility

For the supported versions of the various components in an AppConnect deployment, includingMobileIron Cloud
andMobileIron Go, see “Product versions required” in either

FileManager

MobileIronAppConnectGuide forMobileIronCloud| 23

l theMobileIron AppConnect for iOS SDK AppDevelopers Guide

l theMobileIron AppConnect for iOS AppWrapping Developers Guide

See the guide that corresponds to the version of AppConnect with which the app is built or wrapped.

Wrapping support for mobile development platforms

Many iOS apps are created usingmobile development platforms, rather than using the Apple environment that
targets only iOS devices. You can wrap iOS apps that were created using thesemobile development platforms:

l PhoneGap

l IBMWorklight

l Xamarin

Data loss prevention for secure apps for iOS

You determine whether an app can use the iOS pasteboard, the document interaction feature (Open In), copy-
paste, or print. AppConnect for iOS uses this information to limit the app’s functionality to prevent data loss through
these features.

Data encryption for secure apps for iOS

The following describe the data encryption for secure apps for iOS:

l AppConnect-related data

l App-specific data

AppConnect-related data

AppConnect-related data, such as app configurations and certificates, is encrypted on the device. The encryption
key is not stored on the device. It is either:

l Protected by the device user’s AppConnect passcode.

l Protected by the device passcode if the administrator does not require an AppConnect passcode.

If no AppConnect passcode or device passcode exists, the data is encrypted, but the encryption key is not
protected by either passcode.

App-specific data

Data that the app saves on the device is also protected with encryption. Specifically:

l For a wrapped app, if the device has a device passcode, then iOS encrypts the app’s data.
If no device passcode exists, iOS encrypts the data, but the encryption key is not protected.

Wrapping support formobile developmentplatforms

MobileIronAppConnectGuide forMobileIronCloud| 24

l For an app built with the SDK or Cordova Plugin, if the app enables iOS data protection on its files, and the
device has a device passcode, then iOS encrypts the app’s data. Most apps enable iOS data protection,
which is default app behavior.
If no device passcode exists, iOS encrypts the data, but the encryption key is not protected.

l SomeSDK apps use SDK-provided secure services. For these apps, the app’s data is encrypted if the
device has a device passcode or an AppConnect passcode.
If no device passcode or AppConnect passcode exists, iOS encrypts the data, but the encryption key is
not protected.

NOTE: SDK apps that use SDK-provided secure services canalso share encrypteddatawith
other SDK apps. To do this, the app’s documentation provides anencryption group ID
key for you to include in the app’s app-specific configuration. If you include the same
value for an encryption group ID key for another AppConnect app, the apps can share
the encrypteddata.

Contact the app developer or vendor to determine whether the app enables iOS data protection, and whether SDK
apps use the SDK-provided secure file I/O. This information contributes to your decisions to require an
AppConnect passcode and device passcode.

The following table summarizes the protection of the data that AppConnect apps save on the device. Note that if a
device user uses Touch ID or Face ID to access AppConnect apps, a device passcode is available.

Device passcode
but no
AppConnect
passcode

AppConnect
passcode but no
device passcode

Device passcode
and AppConnect
passcode

Neither a device
passcode or
AppConnect
passcode

Wrapped apps App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

SDK and Cordova
apps that enable iOS
data protection
(typical behavior)

App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

SDK apps that use
SDK-provided
secure services

App data encrypted App data encrypted App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

TABLE 2. ENCRYPTIONOFAPPCONNECT APP DATAON THE DEVICE

MobileIron Go for iOS and AppConnect apps

TheMobileIron Go for iOS supports AppConnect apps, including the following:

MobileIronGo for iOSandAppConnectapps

MobileIronAppConnectGuide forMobileIronCloud| 25

l Periodically does an app check-in with theMobileIron Cloud to get management and security-related
information and passes the information to the AppConnect app.

l Enforces the AppConnect passcode and Touch ID / Face ID for accessing AppConnect apps.

App check-in and MobileIron Go

On each app check-in, MobileIron Go gets AppConnect policy updates for all the AppConnect apps that have
already run on the device. These updates include changes to:

l the AppConnect Device configuration for the device

l AppConnect app configurations for each of the AppConnect apps that have run on the device.

l the current authorization status for each of the AppConnect apps that have run on the device.

MobileIron Go does an app check-in in the following situations:

l The device user launches an AppConnect app for the first time.
o In this situation, MobileIron Go finds out about the app for the first time, and adds it to the set of

AppConnect apps for which it gets updates.

l The app check-in interval expires while an AppConnect app is running.

l The app check-in interval expired while no AppConnect apps were running and then the device user
launches an AppConnect app.

On iOS devices, whenMobileIron Go does an app check-in, it comes to the foreground and the AppConnect app
goes to the backgroundmomentarily. OnceMobileIron Go has completed the app check-in, the AppConnect app
returns to the foreground.

NOTE: The Force Device Check-in feature onMobileIronClouddoes not sync the policies and settings
related to AppConnect for iOS. The appcheck-in interval in theAppConnect Device
configuration onMobileIronCloudcontrols these updates. However, inMobileIronGo for iOS on
the device, theCheck for Updates optiondoes sync the policies and settings related to
AppConnect.

The AppConnect passcode auto-lock time and MobileIron Go

TheMobileIron Go launches to prompt the device user for the AppConnect passcode or Touch ID / Face ID in the
following situations:

l The device user launched or switched to an AppConnect app after the auto-lock time expired. You
configure the auto-lock time in the AppConnect global policy.

l The AppConnect passcode auto-lock time expires while the device is running an AppConnect app.

NOTE: If the device user is interactingwith the app, the auto-lock time does not expire. This case
occurs onlywhen the device user has not touched the device for the duration of the
timeout interval.

l After the device is powered on and the device user first launches an AppConnect app.

Appcheck-inandMobileIronGo

MobileIronAppConnectGuide forMobileIronCloud| 26

l The device user usedMobileIron Go to log out of AppConnect apps, and then launches an AppConnect
app.

l You have changed the complexity rules of the AppConnect passcode, and an app check-in occurs.

In each of these situations, theMobileIron Go launches, and presents the device user with a screen for entering his
AppConnect passcode or Touch ID / Face ID. After the device user enters the passcode or Touch ID / Face ID, the
device user automatically returns to the AppConnect app.

Related topics

Touch ID or Face ID for accessing secure apps

Dual-mode apps

Some apps that are built with the AppConnect for iOS SDK can behave as either an AppConnect-enabled app, or a
regular, unsecured, standalone app. These apps are called dual-mode apps. For example, Email+ for iOS is a dual-
mode app. As a dual-mode app, the same app can behave as a secure enterprise app for enterprise users, or as a
regular app for general consumers.

A dual-mode app behaves as an AppConnect-enabled app on a device when:

l The device is registered toMobileIron Cloud andMobileIron Go is installed on the device.

l You have configuredMobileIron Cloud to support AppConnect with the relevant AppConnect
configurations.

Otherwise, the app behaves as a regular, unsecured, standalone app.

Regarding the decision to run as an AppConnect-enabled app versus a regular app:

l Some dual-mode apps allow the device user to change the app into an AppConnect-enabled app or regular
app after having already run it the other way.

l Some dual-mode apps require the user to uninstall and reinstall the app tomake this change.

l Some apps delay their decision to run as an AppConnect-enabled app or regular app until after MobileIron
Go is installed on the device.

AppConnect apps that MobileIron provides for iOS

MobileIron provides the following AppConnect apps for iOS. These apps are available in the Apple App Store.

l Docs@Work
Docs@Work provides device users an intuitive way to access, store, view, edit, and annotate documents
from content repositories, such as Microsoft SharePoint, and cloud services like Box and Dropbox.
For more information about Docs@Work, see theMobileIron Docs@Work Product Documentation Home
Page.

Dual-modeapps

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Docs%40Work&Id=a1s3400000240gxAAA&Name=Docs%40Work+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Docs%40Work&Id=a1s3400000240gxAAA&Name=Docs%40Work+for+iOS

MobileIronAppConnectGuide forMobileIronCloud| 27

l Web@Work
Web@Work allows your users to easily and securely access your organization's web content.
For more information about Web@Work, see theMobileIronWeb@Work Product Documentation Home
Page.

l Email+
Email+ for iOS provides secure email, calendar, contacts, and tasks on iOS devices.
For more information about Email+, see theMobileIron Email+ Product Documentation Home Page.

When an iOS device user can use AppConnect for iOS

An iOS device user can use an AppConnect app only if:

l The device user has been authenticated throughMobileIron Cloud.
The user must use theMobileIron Go for iOS app to register the device with MobileIron Cloud. Registration
authenticates the device user.

l You have authorized the app to run on the device.
If the app is not authorized, the app does not allow the device user to access any secure data or
functionality. If a device user launches an unauthorized wrapped app, the app displays amessage and
exits. An SDK app (an app built with AppConnect for iOS SDK or Cordova Plugin) should have the same
behavior if the app handles only secure data and functionality. Otherwise, an SDK app runs but restricts
the user to only unsecured functionality and data.
To authorize an AppConnect app for a device, you apply the appropriate labels to the app’s AppConnect
container policy.

l No situation has caused an authorized AppConnect app to become unauthorized for a device.
These situations include, for example, when the device OS is compromised. MobileIron Go reports device
information toMobileIron Cloud. MobileIron Cloud then determines whether to change the AppConnect
apps on the device to unauthorized based on security policies and associated compliance actions that you
configure.

l The device user has entered the AppConnect passcode or Touch ID / Face ID.
You configure whether the AppConnect passcode is required, and also configure rules about its
complexity. You also configure whether the device user can use Touch ID or Face ID to access secure
apps.

Whenan iOSdevice user canuseAppConnect for iOS

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Web%40Work&Id=a1s3400000240gZAAQ&Name=Web%40Work+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Web%40Work&Id=a1s3400000240gZAAQ&Name=Web%40Work+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Email+&Id=a1s3400000240gVAAQ&Name=Email++for+iOS

2

MobileIronAppConnectGuide forMobileIronCloud| 28

Quick start configuration AppConnect for
Android

MobileIron provides the default configurations needed to quickly set up and distribute AppConnect apps to devices.
MobileIron provides the following default configurations for AppConnect for Android:

l A default AppConnect Device configuration, Default Android AppConnect Configuration, which
includes the default AppConnect passcode and data loss prevention (DLP) settings that are automatically
applied to all devices.

l A default Android AppConnect Passcode Service configuration. The passcode service communicates
the AppConnect passcocde service URL to Android devices. The configuration cannot be edited.

When you add an AppConnect app toMobileIron Cloud, the app settings provided by the AppConnect app are
automatically available. No additional app configurations are needed. Therefore, to quickly distribute an
AppConnect app, simply add and distribute the AppConnect app as you would any other in-house app.

See the following:

l Adding AppConnect apps toMobileIron Cloud

To customize the configuration for the AppConnect app, see the following:

l Adding an AppConnect Custom Configuration

l Adding an AppConnect Devices configuration

l Android AppConnect Devices field description

Adding AppConnect apps toMobileIron Cloud
You add Android AppConnect apps toMobileIron Cloud in the samemanner you add any Android app. Apps are
distributed to devices in the distribution list you selected when adding the app. To add AppConnect apps provided
by MobileIron, in MobileIron Cloud, go toApps > App Catalog > +Add and select In-House. TheMobileIron
AppConnect apps for Android are identified as For Android AppConnect in the app's tile.

Before you begin

1. Obtain the AppConnect apps for Android.

l Check with the app developer for the location of in-house and third-party AppConnect apps.

NOTE: The AppConnect apps for Android providedbyMobileIron are available in the App

MobileIronAppConnectGuide forMobileIronCloud| 29

Catalog for upload toMobileIronCloud.

2. Put the APK files where they are available for upload toMobileIron Cloud.

Procedure

1. In MobileIron Cloud, go toApps > App Catalog > Add+ > In-House.
FIGURE 2.ADD APP THEAPPCATALOG INMOBILEIRONCLOUD

2. Choose the app to add.

l To add an in-house app or third-party app, click Choose File to navigate to the APK file or drag and
drop the APK file.

l To addMobileIron apps, select the tile for the Android AppConnect app from apps available in
Business Apps.

3. Click Next.

4. You can choose to keep the defaults or optionally, make selections forApp Information, Screenshots,
App Delegation, and Distribution by clickingNext.

5. Click Done to add the app to the App Catalog..

6. Select the app in the App Catalog to verify the app's compatibility.
If the app uses an older version of AppConnect that is incompatible with MobileIron Cloud, a warning
message is visible in the app's details. If the AppConnect version is not compatible, the app is not installed
on Android devices.

AddingAppConnectapps toMobileIron Cloud

MobileIronAppConnectGuide forMobileIronCloud| 30

FIGURE 3.VERIFYAPPCONNECT APP COMPATIBILITY

Next steps

l If your app requires any custom configurations, create anAppConnect Custom Configuration.
See Adding an AppConnect Custom Configuration.

l To customize the passcode and data loss prevention (DLP) settings, edit the default AppConnect Device
configuration or create a new AppConnect Device configuration. See Adding an AppConnect Devices
configuration.

Related topics

l See theMobileIron Cloud Administrator Guide or Help for more information on adding apps to the
MobileIron Cloud app catalog.

l See Android AppConnect Devices field description for the field descriptions and defaults for settings in the
AndroidAppConnect Device configuration.

l To add an AppTunnel configuration, see Adding an AppTunnel configuration

Adding an AppConnect Custom Configuration
The settings in an Android AppConnect app are automatically available. To customize the app behavior, add
certificates, or allow screen capture in the app, create anAppConnect Custom Configuration. You configure
key-value pairs to customize the app behavior and add certificates for distribution.

Before you begin

l Check your app documentation for the key-value pairs supported by your app.

l For the supported key-value pairs see AppConnect Key-value Pairs.

Addingan AppConnectCustomConfiguration

MobileIronAppConnectGuide forMobileIronCloud| 31

Procedure

1. In MobileIron Cloud, go to App > App Catalog.

2. Click the app listing to edit the settings.

3. Go toApp Configurations > AppConnect Custom Configuration.

4. Click Add to add a new AppConnect Custom Configuration.

5. Enter a name for the configuration.

6. Enter the key-value pairs for the desired configuration and certificates.

7. Optionally, select Allow screen capture.

8. Select a distribution option.

9. Click Save.

Related topics

AppConnect for Android key-value pairs

Adding an AppConnect Devices configuration
Using AppConnect for Android requires that an AppConnect Devices configuration is set up. This configuration
specifies settings that are not specific to a particular AppConnect app such as the AppConnect passcode
requirements and data loss protection(DLP) requirements.

MobileIron provides a default AppConnect Devices configuration, Default Android AppConnect Configuration,
which is by default applied to all devices. You can either edit the default configuration for you specific deployment
or create a new configuration.

FIGURE 4.DEFAULTAPPCONNECTANDROIDDEVICES CONFIGURATION

Procedure

1. In your instance of MobileIron Cloud, go toConfigurations > +Add.

2. Enter AppConnect Devices in theSearch Configuration text box to filter quickly to the configuration.

AddinganAppConnectDevices configuration

MobileIronAppConnectGuide forMobileIronCloud| 32

FIGURE 5.ADDAPPCONNECTDEVICE CONFIGURATION

3. Click the tile forAppConnect Device.

4. Select Android to diplay the settings for theAppConnect Device configuraiton for Android.

5. Update the settings as needed and click Next.

6. Select a distribution option and click Done.

Next steps
To add an AppTunnel configuration, see Configuring AppTunnel for AppConnect apps

Related topics
Android AppConnect Devices field description

Android AppConnect Devices field description
The following table describes the settings in theAppConnect Devices configuration.

Setting What To Do

Name Enter a name that identifies this configuration.

Description Enter a description that clarifies the purpose of this configuration.

AppConnect Passcode

Enable Secure Apps Passcode Select to require users to enter their secure apps passcode before
accessing AppConnect apps.

Numeric Select to allow the passcode to have only digits in it. However, the user
can choose to create an alphanumeric passcode.

Alphanumeric Select to require the passcode to contain at least one digit and one
letter.

Don't specify Select to allow the passcode to have characters of any type.

TABLE 3.ANDROIDAPPCONNECTDEVICES SETTINGS DESCRIPTION

AndroidAppConnectDevices fielddescription

MobileIronAppConnectGuide forMobileIronCloud| 33

Setting What To Do

Minimum passcode length Select theminimum number of characters required.

Minimum number of complex
characters

For alphanumeric passcodes, select theminimum number of complex
characters required.

NOTE: A complexcharacter is any character which is not 0-9, a-
z, or A-Z. For example, $, \, andäare special characters.

Maximum Password Age Select an age from the list or select Custom to enter a specific number
of days after which the user must change the secure apps passcode.

Auto-Lock Select the amount of time that passes before the AppConnect auto-lock
feature requires the user to re-enter the secure apps passcode.

Passcode history Enter the number of unique secure apps passcodes that the user must
enter before repeating a passcode. For example, if you set this option to
3, then the user must use 3 different passcodes when resetting the
secure apps passcode before being able to reuse the first passcode.

Maximum number of failed attempts Select a value between 1 and 10. Select “None” if you do not want to
limit failed attempts. If the device user fails to correctly enter the
AppConnect passcode after a certain number of attempts, the user
cannot access AppConnect apps.

Allow user to recover passcode Select to allow the user to recover passcode.

Enable Fingerprint Authentication Drag the slider to the right to switchON the option to allow the user to
use fingerprint for authentication. By default, the option is OFF.

App Authorization

Unauthorizedmessage Enter the default message that is displayed to the user if the app is not
authorized on the device. If you do not enter a default message, the
system provides one.

Data Loss Prevention Settings

Copy/Paste

l No restrictions

l Among AppConnect apps

l Within an AppConnect app

Select if you want the device user to be able to copy content from
AppConnect apps to other apps. You can override this option in each
app’s individual AppConnect container policy.

When you select this option, then select either:

l No restrictions
Select if you want the device user to be able to copy content from
the AppConnect app and paste it into any other app.

l Among AppConnect apps
Select AppConnect apps if you want the device user to be able to
copy content from the AppConnect app and paste it only into
other AppConnect apps.

TABLE 3.ANDROIDAPPCONNECTDEVICES SETTINGS DESCRIPTION (CONT.)

AndroidAppConnectDevices fielddescription

MobileIronAppConnectGuide forMobileIronCloud| 34

Setting What To Do

l Within an AppConnect app
Select if you want the device user to be able to copy content from
the AppConnect app and paste it only into the same AppConnect
app.

Allow Camera Select to allow camera photo access for all the AppConnect apps on an
Android device.

Allow Gallery Select to allow all the AppConnect apps on an Android device to access
images from the gallery.

Allow Media Player Select to allow all the AppConnect apps to streammedia tomedia
players.

Allow Screen Capture Select to allow AppConnect apps to do screen capture.

Allow web Select to allow an unsecured browser to attempt to display a web page
when a device user taps the page’s URL in a secure app.

If you do not select Allow web, only Web@Work can display the page.

Allow Non-AppConnect apps to
open URLs inWeb@Work

Select to allow device users to choose to view aweb page in
Web@Work or other AppConnect-enabled browser when they tap a link
(URL) in an app that is not AppConnect-enabled.

TABLE 3.ANDROIDAPPCONNECTDEVICES SETTINGS DESCRIPTION (CONT.)

AndroidAppConnectDevices fielddescription

3

MobileIronAppConnectGuide forMobileIronCloud| 35

Quick start configuration AppConnect for iOS

MobileIron provides the default configurations needed to quickly set up and distribute AppConnect apps to devices.
MobileIron provides the following default configurations for AppConnect for iOS:

l A default AppConnect Device configuration, Default iOS AppConnect Configuration, which includes
the default AppConnect passcode and data loss prevention (DLP) settings that are automatically applied to
all devices.

When you upload an AppConnect app toMobileIron Cloud, the app settings provided by the AppConnect app are
automatically available. No additional app configurations are needed. Therefore, to quickly distribute an
AppConnect app, simply add and distribute the AppConnect app as you would any other in-house app.

Adding AppConnect apps toMobileIron Cloud
TheMobileIron AppConnect apps andmany third-party AppConnect apps for iOS are available in the Apple App
Store. By adding them to theMobileIron Cloud App Catalog, you can distribute them to devices using
Apps@Work.

You add iOS AppConnect apps toMobileIron Cloud in the samemanner you add any iOS apps. Apps are
distributed to devices in the distribution list you selected when adding the app. To add AppConnect apps from the
Apple App Store, go toApps > App Catalog > +Add.

Before you begin
If you are adding in-house AppConnect apps, obtain the apps. Check with the app developer for the location of in-
house and third-party AppConnect apps. Place the IPA files where they are available for upload toMobileIron
Cloud.

NOTE: The AppConnect apps for iOS providedbyMobileIron are available in the Apple App Store.

Procedure

1. In MobileIron Cloud, go toApps > App Catalog > iOS Store.
Or, to add an in-house app, go to Apps > App Catalog > Add+ > In-House.

2. In the search box enter the name of the app to add.
Or, to add an in-house app, click Choose File to navigate to the IPA file or drag and drop the IPA file.

MobileIronAppConnectGuide forMobileIronCloud| 36

FIGURE 6. FIND IOSAPPCONNECT APP IN THEAPPLEAPP STORE

3. Select the app to add, and click Next

4. You can choose to keep the defaults or optionally, make selections forApp Information, Screenshots,
App Delegation, and Distribution by clickingNext.

5. Click Done to add the app to the App Catalog.

Next steps

l If your app requires any custom configurations, create anAppConnect Custom Configuration.
See Adding an AppConnect Custom Configuration.

l To customize the passcode and data loss prevention (DLP) settings, edit theDefault iOS AppConnect
Configuration configuration or create a new AppConnect Device configuration. See Editing
AppConnect Devices configuration.

Related topics

l See theMobileIron Cloud Administrator Guide or help for more information on adding apps to theMobileIron
Cloud app catalog.

l SeeQuick start configuration AppConnect for iOS for the field descriptions and defaults for settings in the
iOS AppConnect Device configuration.

l To add an AppTunnel configuration, see Adding an AppTunnel configuration

Adding an AppConnect Custom Configuration
The settings in an iOS AppConnect app are automatically available. To customize the app behavior, add
certificates, or allow screen capture in the app, create anAppConnect Custom Configuration. You configure
key-value pairs to cusomize the app behavior and add certificates for distribution.

Before you begin

l Check your app documentation for the key-value pairs supported by your app.

l For the supported key-value pairs see AppConnect Key-value Pairs.

Addingan AppConnectCustomConfiguration

MobileIronAppConnectGuide forMobileIronCloud| 37

Procedure

1. In MobileIron Cloud, go to App > App Catalog.

2. Click the app listing to edit the settings.

3. Go toApp Configurations > AppConnect Custom Configuration.

4. Click Add to add a new AppConnect Custom Configuration.

5. Enter a name for the configuration.

6. Enter the key-value pairs for the desired configuration and certificates.

7. Optionally, select Allow screen capture.

8. Select a distribution option.

9. Click Save.

Related topics
AppConnect for iOS key-value pairs

Editing AppConnect Devices configuration
Using AppConnect for iOS requires that an AppConnect Devices configuration is set up. This configuration
specifies settings that are not specific to a particular AppConnect app such as the AppConnect passcode
requirements and data loss protection(DLP) requirements.

MobileIron provides a default AppConnect Devices configuration, Default iOS AppConnect Configuration,
which is by default applied to all devices. You can either edit the default configuration for you specific deployment
or create a new configuration.

FIGURE 7.DEFAULTAPPCONNECT IOSDEVICES CONFIGURATION

Procedure

1. In your instance of MobileIron Cloud, go toConfigurations > +Add.

2. Enter AppConnect Devices in theSearch Configuration text box to filter quickly to the configuration.

EditingAppConnectDevices configuration

MobileIronAppConnectGuide forMobileIronCloud| 38

FIGURE 8.ADDAPPCONNECTDEVICE CONFIGURATION

3. Click the tile forAppConnect Device.

4. Select iOS to diplay the settings for theAppConnect Device configuraiton for iOS.

5. Update the settings as needed and click Next.

6. Select a distribution option and click Done.

Next steps
To add an AppTunnel configuration, see Configuring AppTunnel for AppConnect apps

Related topics
iOS AppConnect Devices field description

iOS AppConnect Devices field description
The following table describes the settings in theAppConnect Devices configuration.

Setting What To Do

Name Enter a name that identifies this configuration.

Description Enter a description that clarifies the purpose of this configuration.

AppConnect Passcode

Enable
Secure Apps
Passcode

Select to require users to enter their secure apps passcode before accessing AppConnect
apps.

4-digit
numeric

Select to allow the passcode to have only 4 digits in it.

Alphanumeric Select to require the passcode to contain at least one digit and one letter.

Maximum
Password

Select an age from the list or select Custom to enter a specific number of days after which the
user must change the secure apps passcode.

TABLE 4. IOSAPPCONNECTDEVICES FIELD DESCRIPTION

iOSAppConnectDevices fielddescription

MobileIronAppConnectGuide forMobileIronCloud| 39

Setting What To Do

Age

Auto-Lock Select themaximum amount of time to allow as an inactivity timeout. After this period of
inactivity in AppConnect apps, the device user is locked out of the apps if an AppConnect
passcode is required. The device user must reenter the AppConnect passcode to access
AppConnect apps.

Passcode
history (1-50
passcodes)

Select a value from 1 to 50. This value specifies the number of most recently used secure apps
passcodes that the device user cannot use when changing his passcode.

By default, no value is set. In this case, the user can reuse any previous passcode, including
the current passcode.

Maximum
number of
failed
attempts

Select a value between 4 and 10. Select “--” if you do not want to limit failed attempts. If the
device user fails to correctly enter the AppConnect passcode after a certain number of
attempts, the user cannot access AppConnect apps.

Enable Touch
ID

Slide the toggle to ON to allow device users to enter their Touch ID (fingerprint) or Face ID, if
available, to access secure apps.

App Authorization

App check-in
interval

Enter the number of minutes the app should wait before checking in with MobileIron Cloud to
receive AppConnect-related configuration updates. Note that app authorization is an automatic
result of adding an app to the app catalog.

Unauthorized
message

Enter the default message that is displayed to the user if the app is not authorized on the
device. If you do not enter a default message, the system provides one.

Device Out of Contact

Wipe
AppConnect
device after

Enter the number days (1-90) that the device can remain out of contact before having its
AppConnect data wiped. Enter 0 to disable this option.

Once the configuration is applied to the device, wiping the AppConnect apps occurs on the
device after the specified time without reconnecting toMobileIron Cloud.

Block
AppConnect
data after

Enter the number days (1-90) that the device can remain out of contact before having its
AppConnect data blocked. Enter 0 to disable this option.

Once the configuration is applied to the device, blocking the AppConnect apps occurs on the
device after the specified time without reconnecting toMobileIron Cloud.

Data Loss Prevention Settings

TABLE 4. IOSAPPCONNECTDEVICES FIELD DESCRIPTION (CONT.)

iOSAppConnectDevices fielddescription

MobileIronAppConnectGuide forMobileIronCloud| 40

Setting What To Do

Allow
copy/paste to

Select to if you want the device user to be able to copy content from AppConnect apps to other
apps. You can override this option in each app’s individual AppConnect container policy.

Allow printing Select if you want AppConnect apps to be allowed to use print capabilities by default. You can
override this option in each app’s individual AppConnect container policy.

Allow open-in Select if you want AppConnect apps to be allowed to use the Open In (document interaction)
feature by default.

When you select this option, then select either:

l All apps
Select if you want the app to be able to send documents to any other app.

l Whitelist Apps only
Select if you want the app to be able to send documents only to the apps that you
specify. Enter the name of each app in your App catalog toWhitelist, one per line, or in
a semi-colon delimited list.

Example
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3

TABLE 4. IOSAPPCONNECTDEVICES FIELD DESCRIPTION (CONT.)

iOSAppConnectDevices fielddescription

4

MobileIronAppConnectGuide forMobileIronCloud| 41

AppConnect for Android

The following provides information about AppConnect features and how to enable the features:

l Hybrid web app support

l Fingerprint login for AppConnect apps for Android

l Lock, unlock, and retire impact on AppConnect for Android

l Copy/Paste for AppConnect for Android

l Web-related DLP policies

l DLP policy for media player access

l Device-initiated security controls for AppConnect for Android

l Secure File Manager features

l Secure folder access

l About allowing a secure app to ignore the auto-lock time

l Situations that wipe Android AppConnect app data

l Accessible Android apps to preserve the user experience

l Secure Apps Manager Android permissions

l Disable analytics data collection for AppConnect for Android

Hybrid web app support
Android Secure Apps supports full containerization for AppConnect-enabled hybrid web apps on devices. A hybrid
web app is an Android app (APK file) that the device user installs on the device, unlike a pure web app that the user
accesses through a web browser. A hybrid web app includes at least one screen that displays a web page.
Phonegap apps are a type of hybrid web app.

NOTE: Web@Work for Android, the secure browser that MobileIron provides, allows you to runpure web
apps in the AppConnect secure container.

In a hybrid web app, business logic and content presentation occurs using AndroidWebView andWebKit
technologies, specifically within an object of the Java class android.Webkit.WebView. TheWebView object locally
renders content using web technologies such as HTML, CSS, and JavaScript. TheWebView object can access
the web content from a network resource or from embedded web content.

Like other app data, data related to the android.webkit.WebView class is encrypted. This web-related data can
include cookies, the web cache, and web databases.

MobileIronAppConnectGuide forMobileIronCloud| 42

The following diagram illustrates a hybrid web app on an Android device.

FIGURE 9.A HYBRID WEB APP ONANANDROID DEVICE

Fingerprint login for AppConnect apps for Android
Fingerprint login for AppConnect apps gives the device user the convenience of using a fingerprint instead of an
AppConnect passcode to access AppConnect apps. When using fingerprint, a user still creates an AppConnect
passcode. If entering the fingerprint fails, the user enters the AppConnect passcode to access AppConnect apps.

The Secure Apps Manager gives the device user the choice to use fingerprint or an AppConnect passcode. This
choice is useful when a device is shared amongmultiple users, such as co-workers or even a family, each of whom
uses a fingerprint to access the device. Although all the users can access the device with fingerprint, sometimes
only one of those users should be allowed to access AppConnect apps. That user can choose to use the
AppConnect passcode instead of fingerprint for accessing AppConnect apps. Having a choice therefore ensures
that only an appropriate device user accesses AppConnect apps.

Required product versions for fingerprint login for AppConnect for Android

The following table shows the required product versions for fingerprint login for Android secure apps.

Fingerprint login for AppConnectapps for Android

MobileIronAppConnectGuide forMobileIronCloud| 43

Product Version

MobileIron Go for
Android

40 through themost recently released version as supported by MobileIron.

Secure Apps Manager 7.6.0 through themost recently released version as supported by MobileIron.

Android 6.0 through themost recently released version as supported by MobileIron

TABLE 5. REQUIRED PRODUCT VERSIONS FOR FINGERPRINT LOGIN FOR SECURE APPS

Requirements for fingerprint login for AppConnect for Android

Device users can use a fingerprint to access AppConnect apps for Android if the following are true:

l The product versions meet the requirements in Required product versions for fingerprint login for
AppConnect for Android.

l The device has a fingerprint reader.

l The fingerprint option is set as follows in theMobileIron Cloud:

o The fingerprint option is enabled in the AppConnect Device configuration for Android.
o The fingerprint unlock option is enabled in the Passcode Config.

NOTE: If fingerprint unlock option is disabled, enabling the fingerprint option in the
AppConnect Device configuration has no impact.

If all of the above are true, Secure Apps Manager gives device users the choice whether to use fingerprint or use an
AppConnect passcode to access AppConnect apps.

NOTE: In addition to choosing fingerprint, device users also create anAppConnect passcode. The
AppConnect passcode is necessary if fingerprint login fails.

Configuring fingerprint login for AppConnect for Android (Cloud)

Configure fingerprint login for AppConnect apps on theMobileIron Cloud.

Procedure

1. OnMobileIron Cloud, go toConfigurations.

2. Select the appropriate AppConnect Device configuration for Android.

3. Click Edit.

4. ForEnable Fingerprint Authentication, drag the slider to the right toON .

5. Click Next andDone.

6. Go toConfigurations > Passcode Config.

7. Click Edit.

Requirements for fingerprint login for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 44

8. Scroll down to theAndroid only section.

9. Verify that Fingerprint Unlock is ON.

Device User impact of fingerprint login for AppConnect for Android

If the requirements to use fingerprint login for AppConnect apps are fulfilled, the Secure Apps Manager gives
device users the choice to use fingerprint or to use the AppConnect passcode for logging into AppConnect apps.

For more information about device user requirements, see Requirements for fingerprint login for AppConnect for
Android

NOTE: The AppConnect passcode is called the secure apps passcode in the Secure AppsManager.

The followig describe the device user experience:

l Device user experience at registration

l Device user experience if already registered

l Device user options for enabling or disabling fingerprint login

Device user experience at registration

The overall device user experience at registration is:

1. The Secure Apps Manager prompts the device user to create a secure apps passcode.

2. After creating the secure apps passcode, the Secure Apps Manager gives the user the option to use
fingerprint to log into secure apps.
If no fingerprint is available, the Secure Apps Manager prompts the user to add a fingerprint in the device’s
settings. The device user can then return to the Secure Apps Manager to enable fingerprint login.

3. If the user chooses the fingerprint option, he can use any fingerprint on the device for subsequent logins to
secure apps.

4. If the user does not choose the fingerprint option, he will use the secure apps passcode for subsequent
logins to secure apps.

5. The device user can at any time use amenu option in the Secure Apps Manager to change the choice
about using fingerprint.

Device user experience if already registered

If you enable fingerprint login on theMobileIron Cloud after a device user is registered and has already created a
secure apps passcode:

1. The next time the user logs into secure apps, the Secure Apps Manager prompts the device user to change
the secure apps passcode.

2. After changing the secure apps passcode, the Secure Apps Manager gives the user the option to use
fingerprint to log into secure apps.

DeviceUser impactof fingerprint login for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 45

If no fingerprint is available, the Secure Apps Manager prompts the user to add a fingerprint in the device’s
settings. The device user can then return to the Secure Apps Manager to enable fingerprint login.

3. If the user chooses the fingerprint option, he can use any fingerprint on the device for subsequent logins to
secure apps.

4. If the user does not choose the fingerprint option, he will use the secure apps passcode for subsequent
logins to secure apps.

5. The device user can at any time use amenu option in the Secure Apps Manager to change the choice
about using fingerprint.

Device user options for enabling or disabling fingerprint login

When the Secure Apps Manager gives the user the option to use fingerprint to log into secure apps:

l If a fingerprint is available on the device, the user chooses one of the following:
o to enable fingerprint login to secure apps immediately
o to be reminded to enable it later
o to never be reminded again

l If no fingerprint exists on the device, the user can choose to go to the device’s settings to add a fingerprint.
After adding the fingerprint, the user can return to the Secure Apps Manager to enable fingerprint login.

The device user can:

l At any time, use the options menu in Secure Apps Manager to disable or enable fingerprint login to secure
apps.

l When fingerprint login is disabled, tap onEnable Fingerprint Login on the screen for entering the secure
apps password.

In both of the above cases, the Secure Apps Manager prompts the device user to enter the secure apps passcode
before changing the fingerprint login status.

Less common device user scenarios for fingerprint login for AppConnect for
Android

These scenarios describe the device user experience in less common scenarios relating to fingerprint login to
Android secure apps.

Device user options for enablingor disabling fingerprint login

MobileIronAppConnectGuide forMobileIronCloud| 46

Scenario Behavior on the device

Device has more than one fingerprint. Any fingerprint can log into secure apps when fingerprint login is
enabled.

Fingerprint login to secure apps fails
due to toomany attempts.

The Secure Apps Manager prompts the user for the secure apps
passcode.

NOTE: The AndroidOS controls the number of fingerprint login
attempts.

The device user taps Cancel on the
Fingerprint Login dialog for logging
into secure apps.

The Secure Apps Manager prompts the user for the secure apps
passcode.

A device user adds a fingerprint and a
device passcode to the device, but
does not enable fingerprint login for the
device.

NOTE: This scenario is possible only
on some devicemodels,
suchas some Samsung
devices.

Fingerprint login is available for secure apps although it is not available
for device login.

A device user adds a fingerprint to the
device, but does not add a device
passcode.

NOTE: This scenario is possible only
on some devicemodels,
suchas some Samsung
devices.

If you have configured fingerprint login for secure apps, the Secure
Apps Manager prompts the user to go to settings. In the settings, the
user must add a device passcode.

A device user adds a fingerprint to the
device without enabling fingerprint
login for the device.

NOTE: This scenario is not possible
on some devicemodels.

Fingerprint login is available for secure apps although it is not available
for device login.

The device user changes the secure
apps passcode while fingerprint login
is enabled for secure apps.

Fingerprint login remains enabled for secure apps.

The device user changes the secure
apps passcode while fingerprint login
is available, but disabled, for secure
apps.

The Secure Apps Manager gives the device user the option to enable
fingerprint login.

TABLE 6. LESS COMMONDEVICE USER SCENARIOS RELATING TO FINGERPRINT LOGIN

Less commondevice user scenarios for fingerprint login for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 47

Scenario Behavior on the device

1. Fingerprint login is available for
secure apps.

2. A device user creates a new
secure apps passcode because
the user forgot the passcode.

The device user must again choose whether to enable fingerprint
login.

NOTE: This case applieswhen the device user initiates the
“forgot passcode” scenario or the administrator unlocks
the AppConnect container.

The device user restarts the device. The device user must enter the secure apps passcode on the next
secure apps login, even if fingerprint login had been enabled. The
device user can use fingerprint login on subsequent logins to secure
apps.

The device user terminates the Secure
Apps Manager.

The device user must enter the secure apps passcode on the next
secure apps login, even if fingerprint login had been enabled. The
device user can use fingerprint login on subsequent logins to secure
apps.

You enable or disable theUse
fingerprint authentication when
supported option on the AppConnect
global policy.

The Secure Apps Manager prompts the device user to change the
secure apps passcode after the user next logs in.

This behavior is similar to changing any of these secure apps
passcode characteristics on the AppConnect global policy:

- passcode type
- minimum passcode length
- minimum number of complex characters
- passcode strength usage or level changes

NOTE: The device user can use a fingerprint to log in one last
time when youdisable the Use fingerprint
authentication when supported option. After logging
in, the Secure AppsManager notifies the device user
that the administrator disabled fingerprint login.

You change theBlock Fingerprint
option on the security policy.

The Secure Apps Manager prompts the device user to change the
secure apps passcode after the user next logs in.

NOTE: If your change is to block fingerprint, when the device
user next logs into secure apps, the user cannot use a
fingerprint to login. The Secure AppsManager notifies
the device user that the administrator disabled
fingerprint login.

TABLE 6. LESS COMMONDEVICE USER SCENARIOS RELATING TO FINGERPRINT LOGIN (CONT.)

Security versus convenience of passcode and fingerprint for AppConnect for
Android

AppConnect for Android security involves:

Securityversus convenienceof passcodeand fingerprint for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 48

l access to AppConnect apps.

l encrypting AppConnect-related data such as app configurations, certificates, and data that the app saves
on the device.

The following table lists possible passcode and fingerprint choices from most secure to least secure, and
discusses the level of device user convenience. It compares the choices you canmake onMobileIron Cloud
involving:

l Whether you require a device passcode .

l Whether you require an AppConnect passcode.

l When requiring an AppConnect passcode, whether you allow fingerprint login to AppConnect apps.

The security level is impacted by the following:

l An AppConnect passcode ensures that AppConnect app data is encrypted and secure if the device is
compromised (rooted). Without an AppConnect passcode, AppConnect app data is encrypted, but not
secure if the device is compromised.

l A device passcode adds a layer of security.

l Fingerprint login allows all users of the same device who have added fingerprints to access the device and
AppConnect apps. This access is a possible security risk.

NOTE: In all cases, stronger passcodes aremore secure thanweaker passcodes (suchas a 4-digit
number).

Passcode and
fingerprint
configuration on
MobileIron Cloud

Security of AppConnect apps Convenience for device user

Device passcode:
Required

AppConnect passcode:
Required

Fingerprint:
Not allowed

Highest Least convenient for accessing both the
device and AppConnect apps.

Device passcode:
Not required

AppConnect passcode:
Required

Fingerprint:
Not allowed

Very High Convenient for accessing the device but
inconvenient for accessing AppConnect
apps.

Device passcode: High Convenient for accessing both the

TABLE 7. SECURITY VERSUS DEVICE USER CONVENIENCE OF PASSCODE AND FINGERPRINTOPTIONS

Securityversus convenienceof passcodeand fingerprint for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 49

Passcode and
fingerprint
configuration on
MobileIron Cloud

Security of AppConnect apps Convenience for device user

Required

AppConnect passcode:
Required

Fingerprint:
Allowed

device and AppConnect apps.

Device passcode:
Not required

AppConnect passcode:
Required

Fingerprint:
Allowed

Lower Very convenient for accessing the
device, and convenient for accessing
AppConnect apps.

Device passcode:
Required

AppConnect passcode:
Not required

Fingerprint:
Not allowed

Low Convenient for accessing AppConnect
apps, but inconvenient for accessing the
device.

No passcodes required Lowest Most convenient for accessing both the
device and AppConnect apps.

However, unauthorized users also have
access.

TABLE 7. SECURITY VERSUS DEVICE USER CONVENIENCE OF PASSCODE AND FINGERPRINTOPTIONS (CONT.)

Related topics

l The AppConnect passcode

l Data encryption for secure apps for Android

Lock, unlock, and retire impact on AppConnect for Android
Locking or retiring an Android device impacts access to AppConnect apps and their associated data. Also,
unlocking the AppConnect container impacts access to AppConnect apps.

Lock impact

When you lock a device fromMobileIron Cloud, the device user is also locked out of AppConnect apps. The user
must reenter the secure apps passcode (or fingerprint) to access AppConnect apps. The Secure Apps Manager

Lock,unlock,and retire impactonAppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 50

prompts the user to reenter the passcode when the user launches:

l the Secure Apps Manager

l any AppConnect app

If the device also uses a device passcode, the user must first reenter the device passcode (or other identification,
such as a fingerprint).

Related topics

l ForMobileIron Cloud deployments: Locking a device in theMobileIron Cloud Administrator Guide

Unlock the AppConnect container impact

When you unlock a device fromMobileIron Cloud, the device passcode is removed. However, the AppConnect
passcode is not impacted. Unlocking the AppConnect container using the AppConnect Unlock(Cloud) command
removes the secure apps passcode. The Secure Apps Manager notifies the device user to create a new secure
apps passcode when the user launches:

l MobileIron Go

l Secure Apps Manager

l any AppConnect app

No data relating to AppConnect apps is removed when the AppConnect container is unlocked. Once the device
user creates a new secure apps passcode, the data becomes accessible again.

Issuing the AppConnect unlock command is useful in the following scenarios:

l You do not allow self-service AppConnect passcode recovery, and the device user has forgotten their
secure apps passcode.

l The device user has exceeded themaximum number of failed attempts for the secure apps passcode.

Related topics

l MobileIron Cloud deployments: "Unlocking a Device," "Unlocking Android devices," Unlocking
AppConnect for Android app," in theMobileIron Cloud Administrator Guide

Retire impact

Retiring a device unregisters the device fromMobileIron Cloud.

Retiring a device impacts AppConnect apps as follows:

l The device user cannot open any AppConnect app or the Secure Apps Manager.

l Data that the AppConnect apps saved to device storage is deleted.

Unlock theAppConnectcontainer impact

MobileIronAppConnectGuide forMobileIronCloud| 51

l In MobileIron Cloud deployments, the AppConnect container is removed from the device.

However, device users must manually uninstall the AppConnect apps and the Secure Apps Manager. On
Samsung KNOX devices, Secure Apps Manager is uninstalled automatically.

Retiring a device, therefore, retires the AppConnect apps on the device.

Related topics

l MobileIron Cloud deployments: "Retiring a device" in theMobileIron Cloud Administrator Guide

Copy/Paste for AppConnect for Android
You configure the copy/paste DLP policy for AppConnect for Android in the AppConnect Device configuration on
MobileIron. You can choose no restrictions for copy/paste, copy/paste only among AppConnect apps, or
copy/paste only within each AppConnect app.

Each row of the following table summarizes whether copy/paste is allowed for a set of apps depending on the
copy/paste setting:

Copy/Paste setting in AppConnect global policy

No restrictions Among AppConnect
apps

Within an AppConnect
app

Between an
AppConnect app and
an unsecured app

Allowed Not allowed Not allowed

Between different
AppConnect apps

Allowed Allowed Not allowed

Within each
AppConnect app

Allowed Allowed Allowed

Between different
unsecured apps

Allowed Allowed Allowed

Within each unsecured
app

Allowed Allowed Allowed

TABLE 8.APPCONNECTGLOBAL POLICY COPY/PASTEDLP SETTING FORANDROID

Copy/Paste for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 52

Comparison with AppConnect for iOS copy/paste policy

The copy/paste policy behavior differs between AppConnect for Android and iOS. The following table highlights
some differences.

AppConnect for Android AppConnect for iOS

Symmetrical
versus one-
way

Copy/paste restrictions are symmetrical.

For example, if you restrict copy/paste to
among AppConnect apps, you cannot copy
out of an AppConnect app into a unsecured
app, and you cannot copy out of an
unsecured app into an AppConnect app.

Copy/paste restrictions are one-way.

The iOS Copy/Paste To DLP setting prohibits
copying out of an AppConnect app, or prohibits
copying out of an AppConnect app into an
unsecured app. However, you can copy from an
unsecured app into an AppConnect app.

Restriction
levels

The copy/paste policy provides these
restriction levels:

l No copy/paste restrictions

l Allow copy/paste only among
AppConnect apps.

l Allow copy/paste only within an
AppConnect app.

The iOS Copy/Paste To DLP setting provides
these restriction levels:

l Do not allow copying from an
AppConnect app.

l Allow copying from an AppConnect app
to any other app.

l Allow copying from an AppConnect app
only to other AppConnect apps.

Default
setting in
AppConnect
global policy

The default copy/paste option is no
restrictions. This behavior is consistent with
the behavior of your AppConnect for Android
installed base.

The default option is to not allow the user to copy
data from AppConnect apps.

TABLE 9.COMPARISONWITHAPPCONNECT FOR IOSCOPY/PASTE POLICY

Copying from non-AppConnect apps to AppConnect apps

When theCopy/PasteDLP setting is eitherAmong AppConnect Apps orWithin an AppConnect app, you
can also allow device users to copy data from a non-AppConnect app to an AppConnect app. That is, the device
user can copy data into the AppConnect container, but cannot copy data out of the container.

To allow users to copy data from a non-AppConnect app to an AppConnect app, add the following key-value pair

l Key:MI_ALLOW_SECURE_COPY_INBOUND

l Value: true

You add the key-value pair in theAppConnect Custom Configuration for the app.

Interaction with Exchange setting

The Exchange setting for a device has a copy/paste option for Email+ for Android. This option allows or disables
the use of copy/paste commands in these apps. The option applies to both the AppConnect-enabled version and

ComparisonwithAppConnect for iOScopy/paste policy

MobileIronAppConnectGuide forMobileIronCloud| 53

the unsecured version of these apps.

If the Exchange setting disables copy/paste commands, then no copy/paste use is possible in these apps. In this
case, the copy/paste DLP setting in the AppConnect global policy has no impact on these apps.

If the Exchange setting allows copy/paste commands, the copy/paste DLP setting in the AppConnect global policy
determines the extent of copy/paste use in these apps, just as it does with other apps.

The following table summarizes the copy/paste behavior Email+, depending on the Exchange setting and the
AppConnect global policy setting:

Copy/Paste DLP setting on AppConnect global policy

No restrictions Among AppConnect
apps

Within an AppConnect
app

Exchange setting
disables copy/paste

Not allowed for Email+. Not allowed for Email+. Not allowed for sEmail+.

Exchange setting
allows copy/paste

AllowedEmail+. Allowed among
AppConnect apps and
Email+

Allowed among
unsecured apps and
Email+

Allowed within Email+

Allowed among unsecured
appsand Email+

TABLE 10. EXCHANGE POLICY ANDAPPCONNECTGLOBAL POLICY COPY/PASTE SETTING INTERACTION

Web-related DLP policies
The following describes the web-related DLP policies:

l WebDLP policy for browser launching

l DLP allowing links from non-AppConnect apps to open inWeb@Work

l WebDLP versus Non-AppConnect apps can open URLs inWeb@Work DLP

WebDLP policy for browser launching

You configure theWebDLP policy for browser launching in the AppConnect global policy. This WebDLP policy
specifies whether an unsecured browser can attempt to display a web page when a device user taps the page’s
URL in a secure app.

For example, consider a device user who is viewing an email in a secure email app, and the email body contains a
URL. The user taps on the URL to view the web page in a browser. The following table describes the behavior for
opening browsers from secure apps:

Web-relatedDLPpolicies

MobileIronAppConnectGuide forMobileIronCloud| 54

Web@Work installed Web@Work not installed

WebDLP policy:
allowed

The user is prompted to choose between
Web@Work and available unsecured
browsers to attempt to display the web
page.

Unsecured browser attempts to display
the web page.

WebDLP policy: not
allowed

Web@Work displays the web page. Web page does not display. An error
message is displayed that indicates that
a secure browser is required but not
installed.

TABLE 11.WEBDLP POLICY BEHAVIOR WITH AND WITHOUTWEB@WORK

NOTE: If the URL points to a server behind the enterprise’s firewall, an unsecuredbrowser’s attempt to
display the webpage fails.

DLP allowing links from non-AppConnect apps to open inWeb@Work

AppConnect supports a data loss prevention policy (DLP) that determines whether device users can choose to
view a web page inWeb@Work when they tap a link (URL) in an app that is not AppConnect-enabled. You specify
whether to give device users that choice on the AppConnect Device configuration for Android.

NOTE: This DLP also determineswhether device users canchoose AppConnect-enabledbrowsers
besidesWeb@Work.

Allowing links from non-AppConnect apps to open inWeb@Work benefits device users who use:

l Apps that are not AppConnect-enabled, especially email apps.

l Web@Work for viewing enterprise web pages.

Without this feature, links to enterprise web pages in email apps that are not AppConnect-enabled do not give
Web@Work as a choice for viewing the web page. To view the web page, device users have to copy the link’s
URL from the email intoWeb@Work. Now, if you allow it, the user can tap on the link and choose to view the
resulting web page inWeb@Work, which results in a simpler user experience.

WebDLP versus Non-AppConnect apps can open URLs inWeb@Work DLP

The AppConnect global policy has two similar sounding data loss prevention policies for Android devices:

l Web

l Non-AppConnect apps can open URLs in Web@Work

The following table compares them:

DLPallowing links fromnon-AppConnectapps toopen inWeb@Work

MobileIronAppConnectGuide forMobileIronCloud| 55

If you allowWeb... You can tap on a link in
an AppConnect-enabled
app...

and open the web page in
an unsecured browser.

Therefore, this option is
about data leaving the
AppConnect container.

If you allow
Non-AppConnect apps
can open URLs in
Web@Work....

You can tap on a link in
an app that is not
AppConnect-enabled....

and open the web page in
Web@Work.

Therefore, this option is
about data coming into
the AppConnect
container.

TABLE 12.WEBDLPVERSUS NON-APPCONNECT APPS CANOPENURLS INWEB@WORKDLP

You can allow or not allow these two options in any combination.

DLP policy for media player access
You configure the DLP policy for media player access on theMobileIron Cloud. You can choose whether to allow
AppConnect apps to streammedia tomedia players on the device.

You configure the setting in the AppConnect Device configuration for Android onMobileIron Cloud.

Consider these scenarios:

l An AppConnect email app has an email with a voice recording attached. The email app can play the
recording by using amedia player on the device.

l An AppConnect app contains video assets for executive communication and training.

If you allow this capability, AppConnect apps can stream the following file types tomedia players:

l MP3 audio files

l WAV audio files

l MP4 video files

Media file requirements

AppConnect apps optimizemedia file downloading, encryption, and decryption, while still keeping the data secure
in the AppConnect container. No encrypted copy of themedia file is temporarily stored on the device’s SD card.

This optimization supports streaming larger files, where the supported file size depends on:

l the device specifications

l the Android version on the device

l the apps running concurrently on the device

IMPORTANT: MobileIron recommends that secure apps developers perform tests to profile app
performance basedon the device, Android version, concurrently running apps, and
media file size.

DLPpolicy formediaplayer access

MobileIronAppConnectGuide forMobileIronCloud| 56

Device-initiated security controls for AppConnect for Android
You can protect corporate data on devices even when the devices are off-line. If the device is compromised
(rooted) or USB debugging is enabled, MobileIron Go can retire all secure apps on the device. Retiring secure apps
means that they become unauthorized (blocked), and their data is deleted (wiped).

The detection of these two security violations occurs on the device. Furthermore, the decision to retire secure apps
because of these violations also occurs on the device. Connectivity with MobileIron Cloud is not required for these
security controls.

You configure these actions in theCompromised Devices, Data Protection/Encryption Disabled, orCustom
Policy policies onMobileIron Cloud.

For information about configuring actions in policies, see "Policies" in theMobileIron Cloud Administrator Guide.

Interaction with the Exchange setting

These compliance actions retire all secure apps, which can include email clients. However, the device user can
still use lower priority email clients, such as the native Samsung email client, if the device’s Exchange setting
allows them.

Therefore, if you do not want to allow any email access when the device is compromised or USB debugging is
enabled, modify the Exchange setting:

1. In MobileIron Cloud, go toConfigurations.

2. Edit the Exchange setting that is applied to the devices of interest.

3. In the Android section, modify theExchange App Priority so that only AppConnect-enabled email clients
are selected.

4. Click Save

Secure File Manager features
The Secure File Manager allows a user to save, browse, andmanage files in the secure container. For example,
the user can browse saved email attachments or SharePoint documents. The user can also save documents from
any other AppConnect app.

The secure File Manager app also supports the following:

l Unzipping files from a secure app
When the device user taps a ZIP file in a secure app, such as when a ZIP file is an email attachment, the
File Manager app opens. The files in the ZIP file are stored in the folder sdcard/UnzippedFiles. If the device

Device-initiatedsecuritycontrols for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 57

user subsequently unzips a ZIP file containing files with the same name as previously stored files, the files
are overwritten.

l File download using the Android DownloadManager API
Some secure apps use the Android DownloadManager API to download files securely to the device. For
such downloads to be successful, the FileManager that MobileIron provides must also be installed on the
device. The FileManager ensures downloaded files remain in the secure container. Only secure apps in the
container can access the files.

l Opening HTML files

l Opening image files (file types supported by Android)

Secure folder access
AppConnect apps have read-only access to the device’s system folder. The system folder contains, for example,
ringtone files and font files. System folder access means that:

l An AppConnect app can allow a device user to select one of the system folder’s ringtones.

l An AppConnect app can access the system folder’s font files.

l The secure File Manager can display the system folder.

About allowing a secure app to ignore the auto-lock time
You can specify that a particular secure app is allowed to ignore the auto-lock time.

The auto-lock time specifies the length of a period of inactivity. After this period of inactivity, the device user is
prompted to reenter his secure apps passcode to continue accessing secure apps.You configure the auto-lock
time:

l MobileIron Cloud deployments: on the AppConnect Device configuration.

For some apps, staying on a screen is critical. For example, in a navigation app, the device user taps the screen
only infrequently, but the screenmust continue displaying. Therefore, the app is designed to ignore the Android
screen timeout setting, which turns off the screen after a period of time.

Such apps also require that when the auto-lock time expires, the app’s screen continues displaying. The normal
behavior of having the Secure Apps Manager prompt for the secure apps passcode is not compatible with the app’s
functionality.

By allowing an app to ignore the auto-lock time for these critical screens, you improve the app’s user experience.
The app’s critical screens are not interrupted by prompting the user to reenter his secure apps passcode.

Secure folder access

MobileIronAppConnectGuide forMobileIronCloud| 58

You specify that a secure app is allowed to ignore the configured auto-lock time by adding the following key-value
pair in the app’s AppConnect app configuration:

l Key: AC_IGNORE_AUTO_LOCK_ALLOWED

l Value: true.

App requirements to ignore the auto-lock time

Only apps that use particular Android APIs to keep a screen active can ignore the auto-lock time. The app
developer or app vendor will inform you if this feature is possible and important for the app.

NOTE: Most apps do not need to, and should not, ignore the auto-lock time. Even if anappdeveloper
requests that youallow the app to ignore the auto-lock time, the choice to do so is yours. Your
choice depends onwhether your requirements for forcing the user to reenter the secure apps
passcode outweigh your requirements for the app to have an uninterrupted screen.

What the device user sees when an app ignores the auto-lock time

Critical screens of the app are not interrupted by prompting the user to reenter his secure apps passcode.

Although the critical screen is not interrupted, note that the secure apps container is still locked when the auto-lock
time expires.

For example, consider these scenarios:

l The device user leaves the app by selecting the Home button.
If the auto-lock time had expired while the app was displayed, the device user is prompted for the secure
apps passcode when he relaunches the app or any other secure app.

l The device user changes from an app screen that requires continuous display to another app screen that
does not require it.
If the auto-lock time had expired while the first screen was displayed, the device user is prompted for the
secure apps passcode when he changes screens.

Situations that wipe Android AppConnect app data
When an AppConnect app is retired, it becomes unauthorized (blocked), and its data is deleted (wiped). The
following situations retire an AppConnect app:

l The device user uninstalls theMobileIron Go or the Secure Apps Manager on the device

l You retire the device.

l You quarantine the device due to a compliance action.

App requirements to ignore theauto-lock time

MobileIronAppConnectGuide forMobileIronCloud| 59

Accessible Android apps to preserve the user experience
AppConnect apps can share data only with other AppConnect apps.

However, some exceptions exist to this rule to:

l Preserve the device user experience.

l Enable the use of system services, such as making voice calls.

The exceptions are:

l Maps
Tapping ameeting location in an AppConnect email app launches amaps app.

l Phone calls
Tapping a phone number in any AppConnect app will make a phone call.

l SMS
An AppConnect app can allow the device user to send an SMS to a corporate contact.

l Browsers
Tapping a link in an AppConnect app launches a browser. However, you can limit the behavior to opening
the link inWeb@Work by using a data loss prevention policy.

Secure Apps Manager Android permissions
When the device user installs a version of the Secure Apps Manager prior to version 8.0, the device user is
presented a list of permissions that the Secure Apps Manager requires. The device user then chooses whether or
not to continue the installation.

Secure Apps Manager 8.0 through themost recently released version as supported by MobileIron behaves
differently. Specifically, on devices running Android 6.0 through themost recently released version as supported by
MobileIron, the device user is not presented a list of permissions when installing the Secure Apps Manager.
Instead, the device user is asked to grant certain permissions when the Secure Apps Manager runs. The
permissions are for accessing:

l SD card storage

l the camera

l the phone

l contacts

Note The Following:

l OnAndroid versions prior to Android 6.0, regardless of the Secure AppsManager version, the
device user is presented the list of permissions during installation.The device user then chooses
whether or not to continue the installation.

AccessibleAndroidapps topreserve the user experience

MobileIronAppConnectGuide forMobileIronCloud| 60

l On Samsung devices, regardless of the Secure AppsManager version, the device user is not
presentedwith a list of permissions at any time (installation time or run-time). The Secure Apps
Manager canaccess the capabilitieswithout asking the device user for permission.

The following table provides more information about each permission request:

Permission Reason needed Requested at these times Behavior if not granted

Storage To securely store
AppConnect-
related data on the
SD card.

When the device user first launches the
Secure Apps Manager

The device user cannot
login to secure apps.

Camera A secure app wants
to access the
camera.

When both of the following are true:
• A secure app requests access to the

camera
• The device user has not yet granted

access to the camera for secure
apps.

The secure app cannot
access the camera.

Phone A secure app wants
to access the
phone.

When both of the following are true:
• A secure app requests access to the

phone.
• The device user has not yet granted

access to the phone for secure apps.

The secure app cannot
access the phone.

Contacts A secure app wants
to access the
device’s contacts.

When both of the following are true:
• A secure app requests access to

contacts.
• The device user has not yet granted

access to contacts for secure apps.

The secure app cannot
access contacts.

TABLE 13. SECUREAPPSMANAGER PERMISSION REQUESTS

Disable analytics data collection for AppConnect for Android
MobileIron collects data to analyze the use of AppConnect for Android apps to help provide customer support,
perform bug fixes, improve product functionality and reliability, and fulfill obligations to our customers. For
AppConnect apps, MobileIron collects the AppConnect key-value data for the pairs set in MobileIron Cloud.

For a complete list of these key-value pairs, see AppConnect for Android key-value pairs.

You can disable this analytics data collection by adding the following key-value pair:

l Key: MI_AC_DISABLE_ANALYTICS

l Value: true

Disable analytics datacollection for AppConnect for Android

MobileIronAppConnectGuide forMobileIronCloud| 61

You add the key-value pair in theAppConnect Custom Configuration for the app. See Adding an AppConnect
Custom Configuration.

Analytics are collected only if the device is using Secure Apps Manager 8.3 through themost recently released
version as supported by MobileIron.

Disable analytics datacollection for AppConnect for Android

5

MobileIronAppConnectGuide forMobileIronCloud| 62

AppConnect for iOS

The following describe features for AppConnect for iOS:

l Open-In data loss prevention policy details

l Custom keyboard control

l Screen blurring

l Dictation with the native keyboard is not allowed for wrapped apps

l Heightened security for AppConnect apps using the Secure Enclave

l Situations that wipe AppConnect for iOS app data

l Device-initiated (local) compliance for iOS jailbreak detection

l Touch ID or Face ID for accessing secure apps

l Certificate authentication from AppConnect apps to enterprise services

Open-In data loss prevention policy details
The following provides details about the Open-In feature:

l Open In behavior in wrapped apps versus SDK apps

l iOS native email use and theOpen In DLP policy

l AirDrop use and theOpen In DLP policy

l App extension use and theOpen In DLP policy

l Whitelisting services integrated into iOS in the Open In DLP policy

l Overriding the Open In policy for an app

Open In behavior in wrapped apps versus SDK apps

You select an app’s Open In data loss prevention policy:

l MobileIron Cloud: on the AppConnect Device configuration.

WhenOpen In is allowed, an AppConnect app’s Open In behavior is the same as the behavior of a regular, non-
AppConnect app. However, if Open In is not allowed to some or all apps, the AppConnect app’s behavior depends
on the following:

l whether the AppConnect app requesting Open In is a wrapped app or an SDK app

l the iOS version on which a wrapped app is running

MobileIronAppConnectGuide forMobileIronCloud| 63

l the AppConnect for iOS SDK version of an SDK app

By default, Open In is allowed to all apps.

Open In Not allowed Open In is allowed to all apps or only to apps
in the whitelist

Wrapped apps

Wrapped apps
running on iOS
versions prior to
iOS 11

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
No target apps are displayed.

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
All apps or apps in the whitelist are displayed as
possible target apps.

Wrapped apps
running iOS 11
through themost
recently released
version as
supported by
MobileIron

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
iOS displays all apps that support the
document type as possible target
apps. Because of the AppConnect
library’s enforcement, if the user taps
on any of the apps, nothing happens.

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
iOS displays all apps that support the document
type as possible target apps. Because of the
AppConnect library’s enforcement, if the user taps
on an app that is not allowed, nothing happens

TABLE 14.OPEN IN BEHAVIOR INWRAPPED APPS VERSUS SDKAPPS

Open Inbehavior inwrappedapps versus SDKapps

MobileIronAppConnectGuide forMobileIronCloud| 64

Open In Not allowed Open In is allowed to all apps or only to apps
in the whitelist

SDK apps

Apps built with
AppConnect 3.5
for iOS through
themost recently
released version
as supported by
MobileIron

Open In policy enforced by: The
AppConnect library, contained in the
AppConnect app.

App is responsible for:
Disabling user interfaces, such a
menu items, that provide the Open In
capability.

What if the app initiates Open In
anyway?
iOS displays all apps that support the
document type as possible target
apps. Because of the AppConnect
library’s enforcement, if the user taps
on any of the apps, that target app
cannot open the file. In this case:

l Target app error handling
varies. For example, some
target apps display an error
pop-up.

l Error handling also varies for
the SDK app that initiated the
Open In. Some apps display an
error message.

Open In policy enforced by: The AppConnect
library, contained in the AppConnect app.

App is responsible for:
Enabling user interfaces, such as menu items, that
provide the Open In capability.

What happens when the app initiates Open
In?
iOS displays all apps that support the document
type, including the apps that are not allowed by the
Open In policy. Because of the AppConnect
library’s enforcement, if the user taps on an app
that is not allowed, that target app cannot open the
file. In this case:

l Target app error handling varies. For
example, some target apps display an error
pop-up.

l Error handling also varies for the SDK app
that initiated the Open In. Some apps
display an error message.

Special case for iOS native email app:
For apps using AppConnect 4.0 for iOS through
themost recently released version as supported
by MobileIron, if the user taps to launch the native
email app, but it is not in the whitelist, Email+ for
iOS is launched if it is installed on the device.

TABLE 14.OPEN IN BEHAVIOR INWRAPPED APPS VERSUS SDKAPPS (CONT.)

iOS native email use and theOpen In DLP policy

Apps have various ways to launch the iOS native email app, including:

l using the iOS Open Inmenu in which the native email app is an option

l specifically launching the iOS native email app

l displaying a standard native email interface inside the app

l requesting to launch any app that handles email

The first way, using the iOS Open Inmenu, is part of the handling described in Open In behavior in wrapped apps
versus SDK apps.

iOSnative emailuse and theOpen InDLPpolicy

MobileIronAppConnectGuide forMobileIronCloud| 65

The other ways of invoking the iOS native email app are also impacted by the Open In Data Loss Prevention (DLP)
policy. The impact depends on whether the AppConnect app uses:

l Open In and native email with an AppConnect version prior to AppConnect 4.0 for iOS

l Open In and native email with AppConnect 4.0 for iOS throughmost recently released version

If you want to include iOS native email in the Open In whitelist, seePutting iOS native email into the Open In
Whitelist .

Open In and native email with an AppConnect version prior to AppConnect 4.0 for iOS

For apps using AppConnect versions prior to AppConnect 4.0 for iOS, the Open In DLP policy does not impact
launching the iOS native email app from an AppConnect app. That is, launching the iOS native email app is always
allowed. However, one exception exists to this rule. Launching the native email app is not allowed when:

l the Open In policy specifies a whitelist, and

l the iOS native email app is not in the whitelist

Therefore, even when you set the Open In policy to, for example, not allowed, launching the iOS native email app is
allowed when the device user taps the app to:

l specifically launch the iOS native email app

l display a standard native email interface inside the app

l launch any app that handles email

Open In and native email with AppConnect 4.0 for iOS through most recently released
version

For apps using AppConnect 4.0 for iOS through themost recently released version as supported by MobileIron, the
Open In DLP policy impacts launching the iOS native email app from an AppConnect app. If Open In is allowed for
all apps, then iOS native email can be launched. However, the behavior for the other Open In policy settings is
described in the following table:

Open Inandnative emailwithanAppConnect versionprior toAppConnect 4.0 for iOS

MobileIronAppConnectGuide forMobileIronCloud| 66

Device user action Open In Not Allowed Open In is allowed
only to whitelisted
apps, and iOS native
email is NOT in the
whitelist

Open In is allowed
only to whitelisted
apps, and iOS native
email is in the
whitelist

Taps to specifically launch the
iOS native email app

iOS native email is not
launched.

iOS native email is not
launched.

iOS native email is
launched.

Taps to display a standard
native email interface inside
the app

iOS native email is not
launched.

iOS native email is not
launched.

iOS native email is
launched.

Taps to launch any app that
handles email

iOS native email is not
launched.

iOS native email is not
launched.

Email+ for iOS is
launched if it is installed
on the device.

iOS native email is
launched.

TABLE 15.OPEN INPOLICY AND IOS NATIVE EMAIL

For apps built or wrapped with AppConnect 4.1 through themost recently released version supported by
MobileIron, you can override the behavior for the scenario when the user taps to launch any app that handles email.
Specifically, if the Open In policy blocks launching the iOS native email app in this scenario, you can allow iOS
native email to launch. To allow iOS native email to launch, add the key MI_AC_DISABLE_SCHEME_BLOCKING
with the value true to the app’s AppConnect app configuration.

AppConnect apps can also override the Open In policy for this scenario, allowing the iOS native email app to
launch. Contact the application vendor or developer to find out if the app overrides the policy.

Putting iOS native email into the Open In Whitelist

To put the native iOS mail app is in the whitelist, put both of these bundle IDs in the whitelist:

l com.apple.UIKit.activity.Mail

l com.apple.mobilemail

IMPORTANT: However, include iOS native email in awhitelist for anAppConnect apponly if you
understand the potential impact of leaking secure data.

AirDrop use and theOpen In DLP policy

TheOpen In DLP policy impacts the use of AirDrop as follows:

l A wrapped AppConnect app’s use of AirDrop behaves according to the Open In DLP policy.

l An AppConnect app built with the AppConnect 3.1 for iOS SDK through themost recently supported
version behaves according to the Open In policy.

Putting iOSnative email into theOpen InWhitelist

MobileIronAppConnectGuide forMobileIronCloud| 67

App extension use and theOpen In DLP policy

For apps using AppConnect 4.0 for iOS through themost recently released version as supported by MobileIron, the
Open in data loss protection policy includes restricting access to the iOS extensions that apps provide.
Specifically:

Open In DLP for host
app (the app using the
extension)

Extension behavior

All apps allowed The host app can use any app’s extension for Open In.

Whitelist The host app can use only extensions of apps in the whitelist for Open In.

Whitelisting services integrated into iOS in the Open In DLP policy

When you whitelist apps for the Open In DLP setting, you provide the bundle ID of each whitelisted app in the
AppConnect Device configuration . Although the bundle ID of apps in the Apple App Store or your own in-house
apps are readily available, the bundle IDs for services integrated into iOS are not well known.

The following list gives the bundle IDs of some common services integrated into iOS. However, include them in
a whitelist for an AppConnect app only if you understand the potential impact of leaking secure data.

l com.apple.UIKit.activity.PostToFacebook

l com.apple.UIKit.activity.PostToTwitter

l com.apple.UIKit.activity.PostToWeibo

l com.apple.UIKit.activity.AssignToContact

l com.apple.UIKit.activity.AddToReadingList

l com.apple.UIKit.activity.Quicklook

l com.apple.UIKit.activity.Message

Overriding the Open In policy for an app

You specify the Open In behavior for an AppConnect app in the AppConnect Device configuration.

To override the Open In setting specified in the AppConnect Device configuration for a specific app, create or
modify an AppConnect app configuration for the app, and add this key-value pair to its App-specific
Configurations section:
Key: MI_AC_DISABLE_OPEN_IN_ENFORCEMENT
Value: YES
This key-value pair disables Open In enforcement in the AppConnect library of an AppConnect app, whichmeans
that Open In is allowed from the app to all apps.

AppextensionuseandtheOpen InDLPpolicy

MobileIronAppConnectGuide forMobileIronCloud| 68

NOTE: DisablingOpen In behavior, has the potential impact of leaking secure data.

Custom keyboard control
Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. This behavior has potential for harmful data loss.

To allow users to use custom keyboards, add the following key-value pair

l Key: MI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS

l Value: true

You add the key-value pair in theAppConnect Custom Configuration for the app.

When the key’s value is true, the AppConnect app is allowed to use custom keyboards. If the value is false, the
app is not allowed to use custom keyboards.

If you do not include the key-value pair for the app, the AppConnect app is allowed to use custom keyboards.
However, when the key is not present, an AppConnect app can override this behavior and not allow some or all
custom keyboards. Check the app’s documentation for its behavior regarding custom keyboards.

The following table summarizes whether an AppConnect app is allowed to use custom keyboards. The behavior
depends on:

l whether the app is a wrapped app or SDK app

l whether the release of AppConnect that the app uses supports the key MI_AC_IOS_ALLOW_CUSTOM_
KEYBOARDS.

l whether you provide the key-value pair MI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS

Key not provided Key provided and
value is true

Key provided and
value is false

Wrapped apps

Wrapped with
AppConnect 4.0

Custom keyboard use is
allowed, but the app can
override the behavior and not
allow some or all custom
keyboards.

Custom keyboard use is
allowed

Custom keyboard use is
not allowed

Wrapped with versions
of AppConnect prior to
AppConnect 4.0

Custom keyboard use is not
allowed

Key is not applicable.

Custom keyboard use is

Key is not applicable.

Custom keyboard use is

TABLE 16.WHETHER ANAPPCONNECT APP CANUSE CUSTOM KEYBOARDS

Customkeyboardcontrol

MobileIronAppConnectGuide forMobileIronCloud| 69

Key not provided Key provided and
value is true

Key provided and
value is false

not allowed not allowed

SDK apps

Built with AppConnect
4.0

Custom keyboard use is
allowed, but the app can
override the behavior and not
allow some or all custom
keyboards.

Custom keyboard use is
allowed.

Custom keyboard use
isnot allowed

Built with versions of
AppConnect prior to
AppConnect 4.0

The app determines whether
custom keyboard use is
allowed.

Key is not applicable.

The app determines
whether custom
keyboard use is
allowed.

Key is not applicable.

The app determines
whether custom
keyboard use is
allowed.

TABLE 16.WHETHER ANAPPCONNECT APP CANUSE CUSTOM KEYBOARDS (CONT.)

Screen blurring
For added security, an AppConnect app’s screen should be blurred whenever the app becomes inactive. This
behavior hides sensitive data.

Wrapped apps always blur the screen when the app becomes inactive. However, for SDK apps, the behavior
changes with AppConnect 4.0 for iOS. Prior to AppConnect 4.0 for iOS, the app itself chose whether to blur the
screen and implemented the behavior. For AppConnect 4.0 for iOS through themost recently released version as
supported by MobileIron, the AppConnect library controls blurring screens. However, the app has to give the
AppConnect library this control. Check your AppConnect app’s documentation to see whether it gives screen
blurring control to the AppConnect library.

If the app has given screen blurring control to the AppConnect library, you can disable screen blurring by setting a
key-value pair in your app’s AppConnect app configuration. The key is MI_AC_ENABLE_SCREEN_BLURRING
with the value false.

Dictation with the native keyboard is not allowed for wrapped
apps
Apps wrapped with AppConnect 4.0 for iOS block the use of dictation when using the native iOS keyboard. You
can override this behavior by setting a key-value pair on the app’s configuration. The key is calledMI_AC_WR_

Screenblurring

MobileIronAppConnectGuide forMobileIronCloud| 70

ALLOW_KEYBOARD_DICTATION. If you do not include the key, dictation is not allowed. If you set the value to
true, then wrapped AppConnect apps can use dictation with the native keyboard.

NOTE: Apps built with the AppConnect for iOS SDK, andappswrappedwithwrapper versions prior to
AppConnect 4.0 for iOS allow the use of dictationwhen using the native iOS keyboard. The key
MI_AC_WR_ALLOW_KEYBOARD_DICTATION has no impact on those apps.

Heightened security for AppConnect apps using the Secure
Enclave
For heightened security of especially sensitive data, such as encryption keys and passwords, you can configure
AppConnect apps to use the Apple hardware known as the Secure Enclave. By using the Secure Enclave, the app
reduces the sensitive data’s attack surface, because the sensitive data is stored in the Secure Enclave rather than
in plain-text in memory. When sensitive data is stored inmemory, it can be captured in amemory dump.

For an AppConnect app to use the Secure Enclave, the devicemust:

l have Apple’s Secure Enclave hardware.

NOTE: Devices that have biometric security have Secure Enclave hardware

l be running iOS 11 through themost recently released version as supported by MobileIron

To configure an AppConnect app to use the Apple Secure Enclave, you use the key namedMI_AC_CONTAINER_
TYPE in the app’s AppConnect app configuration.

The possible values for MI_AC_CONTAINER_TYPE are:

Value Description

ENCLAVE The Secure Enclave is used to store:
• Sensitive data as defined by the app. Check the app’s documentation to see if

the app uses the Secure Enclave.
• encryption keys used by the AppConnect library

LOCAL No data is stored in the Secure Enclave. This value is this default if you do not
include the key.

Related topics
Adding an AppConnect Custom Configuration

Situations that wipe AppConnect for iOS app data
When an iOS AppConnect app is retired, it becomes unauthorized (blocked), and its data is deleted (wiped). The
following situations retire an AppConnect app:

Heightenedsecurity for AppConnectapps using the Secure Enclave

MobileIronAppConnectGuide forMobileIronCloud| 71

l The device has not completed an AppConnect check-in in the number of days specified inWipe
AppConnect Data After in theAppConnect Device configuration for iOS in Cloud.

l You retire the device.

l You quarantine the device due to a compliance action.

l MobileIron Go is not present on the device, or present but not registered toMobileIron Cloud.

l The app has retired itself. This action can occur in some apps that behave as either AppConnect apps or
regular, unsecured apps.

Device-initiated (local) compliance for iOS jailbreak detection
MobileIron Cloud checks a device for compliance with its security policy each time the device checks in.
MobileIron Cloud also checks all devices for compliance at regular intervals to detect out-of-compliance devices
that have not checked in. When a device is out of compliance, MobileIron Cloud initiates the specified compliance
actions.

When an iOS device is jailbroken (compromised), some compliance actions can be device-initiated. Device-
initiated compliance (local compliance) for jailbreak detectionmeans:

l TheMobileIron client detects the violation.

l TheMobileIron client performs one or more of the following: alerts the user, blocks AppConnect apps, or
retires AppConnect apps (blocks access to the apps and wipes their data).

These actions do not depend on connectivity to MobileIron Cloud.

Compliance actions for jailbroken devices is configured in the Compromised Devices policy onMobileIron Cloud.
For more information, see "Policies" in theMobileIron Cloud Administrator Guide.

Touch ID or Face ID for accessing secure apps
The option to enable Touch ID or Face ID is available in theAppConnect Device configuration or theDefault iOS
AppConnect configuration.

SeeQuick start configuration AppConnect for iOS for information on editing an AppConnect device configuration
and the enabling the Touch ID option. Enabling the option automatically also enables Face ID. Secure apps
passcodemust be enabled to enable the Touch ID option.

Enabling the Touch ID option gives the device user the convenience of using Touch ID or Face ID rather than an
AppConnect passcode to access secure apps. If entering the Touch ID or Face ID fails, the user enters (falls back
to) the device passcode to access secure apps.

Device user experience with Touch ID or Face ID

The following is the device user experience for a newly registered user:

Device-initiated (local)compliance for iOS jailbreakdetection

MobileIronAppConnectGuide forMobileIronCloud| 72

1. After device users register with MobileIron Go, they are prompted to create an AppConnect passcode.

2. After creating the AppConnect passcode, MobileIron Go gives users the option to use Touch ID/Face ID to
access secure apps.

3. If users choose the Touch ID/Face ID option, they can use Touch ID or Face ID when accessing secure
apps after the auto-lock time has expired.

4. Device users can later change their choice about using Touch ID/Face ID inMobileIron Go inSettings >
Secure Apps > Authentication.

Security versus convenience of passcode and Touch ID/Face ID options

AppConnect security involves:

l access to AppConnect apps.

l encrypting AppConnect-related data such as app configurations and certificates.

l encrypting data that the app saves on the device.

The following table lists possible passcode and Touch ID/Face ID choices from most secure to least secure,
and discusses the level of device user convenience.

NOTE: In all cases, stronger passcodes aremore secure thanweaker passcodes (suchas a 4-digit
number).

Passcode and Touch
ID/Face ID
configuration on
MobileIron Cloud

Security of AppConnect apps Convenience for device user

Require both:

l a device
passcode

l an AppConnect
passcode

Highest Least convenient for accessing both the
device and AppConnect apps.

Require only a device
passcode

Very high

NOTE: Once the device is
unlocked, unauthorized users
canaccess AppConnect
apps.

Convenient for accessing AppConnect
apps, but inconvenient for accessing the
device.

However, the device user canmake
accessing the devicemore convenient
by setting up Touch ID or Face ID for
unlocking the device.

Require only an
AppConnect passcode

High

NOTE: Data that the app saves to

Convenient for accessing the device but
inconvenient for accessing AppConnect
apps.

TABLE 17. SECURITY VS DEVICE USER CONVENIENCE OF PASSCODE AND TOUCH ID/FACE IDOPTIONS

Securityversus convenienceof passcodeandTouch ID/Face IDoptions

MobileIronAppConnectGuide forMobileIronCloud| 73

Passcode and Touch
ID/Face ID
configuration on
MobileIron Cloud

Security of AppConnect apps Convenience for device user

the device is not encrypted
unless the appuses the
secure file I/O provided in the
AppConnect for iOS SDK.

Require both:

l a device
passcode

l Touch ID or Face
ID for
AppConnect apps

High

NOTE: Other device userswho have
added fingerprints or Face
IDs, suchas familymembers,
canalso access
AppConnect apps.

Very convenient for accessing both the
device and AppConnect apps.

No passcodes required Lowest

Note The Following:

l Unauthorized users canaccess
the device andAppConnect
apps.

l AppConnect-relateddata,
suchas appconfigurations and
certificates, is encryptedbut
the encryption key is not
protectedbyapasscode.

l Data that the app saves on the
device is encryptedbut the
encryption key is not protected
byapasscode.

Most convenient for accessing both the
device and AppConnect apps.

TABLE 17. SECURITY VS DEVICE USER CONVENIENCE OF PASSCODE AND TOUCH ID/FACE IDOPTIONS
(CONT.)

Certificate authentication from AppConnect apps to enterprise
services
An AppConnect app can send a certificate to identify and authenticate the app user to an enterprise service. The
AppConnect library, which is part of every AppConnect app, makes sure the connection uses the certificate. No
additional development is required for the app.

When an AppConnect app uses a certificate to authenticate the app user to an enterprise service using HTTPS:

Certificateauthentication fromAppConnectapps to enterprise services

MobileIronAppConnectGuide forMobileIronCloud| 74

l The authentication occurs without interaction from the app user.
The app user does not need to enter a user name and password to log into enterprise services, resulting in
a better user experience.

l Access to the enterprise service is more secure.

The AppConnect appmust use networkingmethods that this feature supports. Contact the application vendor or
developer to find out if the app supports certificate authentication to enterprise services.

Certificate authentication from AppConnect apps to enterprise services:

l is for HTTPS connections only.

l does not work if you are using AppTunnel with HTTP/S tunneling for the connection.

l does work if you are using AppTunnel with TCP tunneling for the connection.

NOTE: Authenticating users to enterprise servers using KerberosConstrainedDelegation (KCD)with
AppTunnel has beenavailable for some time. This feature does not use KCDor AppTunnel.

Impact on AppTunnel use

If an AppConnect app uses a certificate to authenticate the app user to an enterprise service:

l The app can use AppTunnel with TCP tunneling (provided with the Tunnel app) to access an enterprise
service.

l The app cannot use AppTunnel with HTTP/S tunneling for accessing the sameURL to which the
certificate authenticates.
The app can use AppTunnel for HTTP/S tunneling for accessing a different URL than the one that the
certificate authenticates to.

Set up certificate authentication from an AppConnect app

Setting up certificate authentication from an AppConnect app requires the following twomain steps:

1. ConfigureMobileIron Cloud with the certificate that the app will use to authenticate to the enterprise
service.
See Configuring a certificate onMobileIron Cloud.

2. Add two sets of key-value pairs to the AppConnect Custom Configuration.
See Configuring a certificate onMobileIron Cloud.

Configuring a certificate on MobileIron Cloud

Configure the certificate that the app will use to authenticate to the enterprise service onMobileIron Cloud.

ImpactonAppTunneluse

MobileIronAppConnectGuide forMobileIronCloud| 75

Procedure

1. Add a certificate authority inAdmin > Certificate Management > Certificate Authority.
A Connector installation is required if you are using an external certificate authority.

2. Create an Identity Certificate setting, inConfigurations > Add > Identity Certificate.
For Certificate Distribution, select Dynamically Generated and for Source, select the certificate you
configured inAdmin > Certificate Management > Certificate Authority. You will reference the Identity
Certificate configuration in the key-value pair in the app’s Custom AppConnect configuration.

Related topics

l "Certificate Management" in the MobileIron Cloud Administrator Guide.

l "Identity Certificate" in the MobileIron Cloud Administrator Guide.

Configuring the key-value pairs for the certificate and URL matching rule

To set up certificate authentication from an AppConnect app to an enterprise service, add two sets of key-value
pairs to the app's AppConnect Custom Configuration. The two key-value pairs in each set specify:

l a certificate

l a URLmatching rule

When the appmakes a web request to a URL that matches a URLmatching rule, the connection uses the
certificate.

Procedure

1. In MobileIron Cloud, App Catalog, edit the setting for the AppConnect app.

2. For the AppConnect app, go toApp Configurations > AppConnect Custom Configuration.

3. Edit an existing custom configuration or add a new AppConnect Custom Configuration.

Configuring the key-valuepairs for the certificateandURLmatching rule

MobileIronAppConnectGuide forMobileIronCloud| 76

4. In theAppConnect Certificate Configuration section add the following key value pairs.

Key Value

MI_AC_CLIENT_CERT_#

substituting digits of your choice for #
The key is case-sensitive.

Example
MI_AC_CLIENT_CERT_1
MI_AC_CLIENT_CERT_2
MI_AC_CLIENT_CERT_15

NOTE: You can havemanyMI_AC_CLIENT_CERT_#
keys, eachwith adifferent digit substitution.

Select the Certificate Enrollment
setting from the dropdown list.

MI_AC_CLIENT_CERT_#_RULE
Substituting the same digits for # that you used inMI_AC_
CLIENT_CERT_#.
The key is case-sensitive.

Example
MI_AC_CLIENT_CERT_15_RULE

Enter the URL that will use the
certificate for authentication.

Example
*.mycompany.com/sales
myserver.mycompany.com/hr/benefits

5. Click Save.

Related topics

l Adding an AppConnect Custom Configuration

l Details about MI_AC_CLIENT_CERT_#_RULE

Details about MI_AC_CLIENT_CERT_#_RULE

Rule format

The value for the key MI_AC_CLIENT_CERT_#_RULE is a URLmatching rule. The rule has one of these formats:

l <host >

l <host >/<path>

The <host > component specifies a host within a domain. It can include one or more wildcard characters *.

Example

l myserver.mycompany.com

l anotherserver.mycompany.com

Details aboutMI_AC_CLIENT_CERT_#_RULE

MobileIronAppConnectGuide forMobileIronCloud| 77

l *.mycompany.com

The <path > component specifies a path within the host. It cannot include the wildcard character *. It can contain
multiple <subpath> components.

Example

l sales

l sales/west

l sales/west/california
The <subpath> components are sales, west, and california.

Matching logic

When the appmakes a URL request, the AppConnect library within the app compares the URL request with the
values of theMI_AC_CLIENT_CERT_#_RULE keys. If the rule matches the URL request, the connection uses
the certificate.

A match occurs if all of the following are true:

l the rule’s <host>matches the URL request’s <host>.

l Any <subpath> in the rule matches the URL request’s <subpath>, in the same order.
More <subpath> components can be in the URL request than are in the rule.

NOTE: Thematching logic ignores anyport number or query parameters in the URL request.

Example

URL Request Match? Comments

https://myserver.mycompany.com Yes Exact match

https://myserver.mycompany.com/sales Yes Matches <host>

https://myserver.mycompany.com:8080 Yes Matches -- port is ignored

https://myserver.mycompany.com:sales?
range=quarter

Yes Matches -- query parameters are
ignored

https://anotherserver.mycompany.com No <host> does not match

http://anotherserver.mycompany.com No HTTP, not HTTPS

TABLE 18.MATCHING RULE EXAMPLE:MY.SERVER.MYCOMPANY.COM

Details aboutMI_AC_CLIENT_CERT_#_RULE

MobileIronAppConnectGuide forMobileIronCloud| 78

URL Request Match? Comments

https://myserver.mycompany.com/sales Yes <host> and <subpath>match.

https://myserver.mycompany.com/sales/west Yes <host> and <subpath>match

https://anotherserver.mycompany.com/sales Yes <host> and <subpath>match

https://myserver.mycompany.com/salesmeeting No Entire <subpath>must match.

https://myserver.mycompany.com No Missing required <subpath>

https://myserver.mycompany.com/s No Entire <subpath>must match.

TABLE 19.MATCHING RULE EXAMPLE: *.MYCOMPANY.COM/SALES

If more than oneMI_AC_CLIENT_CERT_#_RULE valuematches the URL request, the rule with themost number
of non-wildcard characters is chosen.

For example, consider four MI_AC_CLIENT_CERT_#_RULE keys with the following values:

Key Value

MI_AC_CLIENT_CERT_1_RULE *.mycompany.com

MI_AC_CLIENT_CERT_2_RULE *.mycompany.com/sales/west

MI_AC_CLIENT_CERT_3_RULE myserver.mycompany.com/sales

MI_AC_CLIENT_CERT_4_RULE myserver.mycompany.com/sales/west

TABLE 20. EXAMPLE OF SIMILARMI_AC_CLIENT_CERT_#_RULE VALUES

If the app requests URL https://myserver.mycompany.com/sales/west, the request matches all the values, but
only onematch is chosen. The chosenmatch is myserver.mycompany.com/sales/west, and the connection uses
the corresponding certificate in MI_AC_CLIENT_CERT_4.

Details aboutMI_AC_CLIENT_CERT_#_RULE

6

MobileIronAppConnectGuide forMobileIronCloud| 79

Configuring AppTunnel for AppConnect apps

l Adding an AppTunnel configuration

l Configuring per-app idle session timeout for AppTunnel with TCP tunneling

l Certificate authentication using AppConnect with TCP tunneling for Android AppConnect apps

l Configuring certificate authentication using AppTunnel with TCP tunneling for Android AppConnect apps

l AppTunnel and TLS protocol versions in Android AppConnect apps

l Impact to tunneling when using a global HTTP proxy

Adding an AppTunnel configuration
AppTunnel secures the data that moves between your secure AppConnect apps and your corporate data sources.
A Standalone Sentry deployment is required to set up AppTunnel. Setting up AppTunnel for an AppConnect app is
a two-step process.

1. Configure aCustom HTTP orCustom TCP AppTunnel service on a Standalone Sentry configured for
AppTunnel.

2. Add an AppTunnel configuration for the app.

Before you begin

l Ensure that you have a Standalone Sentry configured to support AppTunnel. The required steps include:
o Setting up the Standalone Sentry connectivity settings, which include the Sentry host name or IP

address, and the port numberMobileIron Cloud uses to access the Sentry.
o Enabling the Standalone Sentry for AppTunnel.
o Configuring the Standalone Sentry for device authentication, which is how the device authenticates to

the Standalone Sentry. This authentication includes setting up certificates if you require them.
See "Standalone Sentry for AppTunnel," in theMobileIron Sentry Guide for MobileIron Cloud for
information on how to set upMobileIron Sentry for AppTunnel.

l Configure aCustom HTTP orCustom TCP AppTunnel service on Standalone Sentry.
You create the AppTunnel service in MobileIron Cloud, inAdmin > Infrastructure > Sentry, in a Sentry
profile.
For information about creating a AppTunnel service, see "Configuring Standalone Sentry for AppTunnel" in
theMobileIron Sentry Guide for MobileIron Cloud.

MobileIronAppConnectGuide forMobileIronCloud| 80

l Add the AppConnect app to theMobileIron Cloud.
o For Android, seeQuick start configuration AppConnect for Android.
o For iOS, seeQuick start configuration AppConnect for iOS

Procedure

1. In MobileIron Cloud, go toApps > App Catalog.

2. Click the name of the AppConnect app to edit.

3. Click App Configurations.

4. For AppTunnel, click + to add a new AppTunnel configuration.

5. Use the guidelines in the following table to enter the configuration.

Item Description

Name Enter a descriptive name for the configuration.

AppTunnel

Sentry
Profile

Select a Sentry profile configured for AppTunnel from the drop-down list.

Enable
Split
Tunneling
using
MobileIron
Tunnel

iOS only. Requires MobileIron Go 5.4.0 for iOS andMobileIron Tunnel 4.1.0 for iOS.

Before enabling the option, ensure that MobileIron Tunnel is deployed and the Tunnel VPN
configuration is applied to the AppConnect app. For information about deploying Tunnel
and applying the Tunnel VPN configuration to amanaged app, see "Main tasks for
configurationMobileIron Tunnel for iOS (Cloud)" in theMobileIron Tunnel for iOS Guide.

Select the option if the AppConnect app will transition to usingWKWebView or the app
currently uses WKWebView and any of the following is also true:

l AppTunnel rules are configured to tunnel app data.

l EnableMobileIron Access is selected.

Enabling the option allows the configured AppTunnel rules to bemanaged through
MobileIron Tunnel rather than through AppTunnel.

For information about the UIWebView API deprecation, see UIWebView Deprecation and
AppConnect Compatibility.

NOTE: Rules configured in the Tunnel VPN configuration impact whether app
data to the enterprise resource is tunneled. Consider the following case:

l YouhaveanAppTunnel rule set up to tunnel app data to an enterprise resource.

l Tunnel VPN is configured to disconnect if the enterpriseWi-Fi is available.
In the above case, data from the app to the enterprise resource will not
be tunneled if the device switches to the enterprise Wi-Fi network.

AddinganAppTunnelconfiguration

https://help.mobileiron.com/s/article-detail-page?Id=kA134000000QxD8CAK
https://help.mobileiron.com/s/article-detail-page?Id=kA134000000QxD8CAK

MobileIronAppConnectGuide forMobileIronCloud| 81

Item Description

AppTunnel Rules

Choose
service

Select a service name from the drop-down list.

This is the Custom HTTP or Custom TCP service you created in the Sentry profile.

URL
Wildcard

Enter one of the following:

l an app server’s hostname
Example: finance.yourcompany.com

l a hostnamewith wildcards. The wildcard character is *.
Example: *.yourcompanyname.com

If the AppConnect app requests access to this hostname, Sentry tunnels the app data.
The Sentry profile and service fields that you specify determine the target app server.

Port (Optional) Enter a port numbe for the backend enterprise resource to which the traffic is
tunneled.
The app data is tunneled only if the app’s request matches the hostname in the URL
Wildcard field and this port number.

+ Click to configure additional service and URLwildcards.
Multiple wildcards are evaluated in the order in which they appear. You can reorder the
sequence by dragging a row up or down.

6. Select a distribution option.

7. Click Save.

Related topics

l “Configuring Standalone Sentry for AppTunnel” in theMobileIron Sentry Guide for MobileIron Cloud

Configuring per-app idle session timeout for AppTunnel with
TCP tunneling
For an AppConnect app using AppTunnel with TCP tunneling, you can control the idle session timeout for the TCP
connection between the app and the enterprise server. This timeout is useful if the enterprise server takes more
than 60 seconds to respond to a request from the app. The default idle session timeout is 60 seconds.

To specify a idle session timeout for an AppConnect app, provide a key-value pair in the app’s AppConnect app
configuration that specifies the idle session timeout.

Configuringper-app idle session timeout for AppTunnelwith TCP tunneling

MobileIronAppConnectGuide forMobileIronCloud| 82

Key Value

MI_AC_TCP_IDLE_TIMEOUT_MS An integer greater than 0.

The value is the number of milliseconds in which the enterprise
server must respond to a request when using AppTunnel with
TCP tunneling.

The Standalone Sentry handling the AppTunnel times out if
this value is exceeded.

Default value: 60000

TABLE 21. IDLE SESSION TIMEOUT KEY-VALUE PAIR

Certificate authentication using AppConnect with TCP
tunneling for Android AppConnect apps
Android AppConnect apps support certificate authentication using AppTunnel with TCP tunneling. An AppConnect
app can send a certificate to identify and authenticate the app user to an enterprise server. Depending on the server
implementation, this authentication occurs without interaction from the device user beyond entering the
AppConnect passcode. That is, the device user does not need to enter a user name and password to log into
enterprise services. Therefore, this feature provides a higher level of security and an improved user experience.

App and enterprise server requirements

Apps using certificate authentication with AppTunnel with TCP tunnelingmust initiate a connection that does not
use Secure Socket Layer (SSL) to the enterprise server. For example, the app can initiate the connection with a
HTTP request, but not with an HTTPS request.

Contact the application vendor or developer to find out whether the appmeets these requirements.

IMPORTANT: The connection that this feature makes to the enterprise server is secure; it uses SSL.

The enterprise server must use client certificate authentication with Secure Sockets Layer (SSL).

Configuring certificate authentication using AppTunnel with
TCP tunneling for Android AppConnect apps
Configuring certificate authentication with AppTunnel using TCP tunneling for Android AppConnect apps requires
the following:

l AppTunnel TCP services on the Standalone Sentry that require certificate authentication.

l The user certificate for the app to present to the enterprise server.

CertificateauthenticationusingAppConnectwith TCP tunneling for AndroidAppConnectapps

MobileIronAppConnectGuide forMobileIronCloud| 83

This certificate can be specifically for the enterprise server only, or a default user certificate if you do not
require a specific certificate for a service. One other option is to use the same certificate that the app
presents to the Standalone Sentry.
The certificate is either an identity certificate or a group certificate.

l Specifying the TCP service and the associated certificate in the app's app configuration onMobileIron
Cloud.

The following sample configuration summarizes the configuration in Standalone Sentry and the AppConnect app
configuration for a Finance app and Helpdesk app:

FIGURE 10. SAMPLE CONFIGURATION FOR CERTIFICATE AUTHENTICATIONWITH TCP TUNNELING

The Finance app and the Helpdesk app:

l Authenticate to Standalone Sentry using the certificate defined by the AppTunnelCert Certificate
Enrollment setting.
This Certificate Enrollment setting is specified as the Identity Certificate in the AppTunnel rules for the
AppConnect app configuration for each app.

l Use AppTunnel with TCP tunneling to access the TCP_FINANCE service and TCP_HELPDESK service,
respectively.

ConfiguringcertificateauthenticationusingAppTunnelwith TCP tunneling for AndroidAppConnectapps

MobileIronAppConnectGuide forMobileIronCloud| 84

l Use certificate authentication with AppTunnel with TCP tunneling.
In each app’s AppConnect app configuration, the value of ES_CERT_AUTH_SERVICES lists the service
that uses certificate authentication.

The two apps use different certificates to authenticate to their respective enterprise servers. The Finance app uses
a specific certificate, defined in the FinanceCert Certificate Enrollment setting. The Helpdesk app uses a a default
certificate, defined in the DefaultEnterpriseCert Certificate Enrollment setting, to authenticate to its enterprise
server. Other apps that access other enterprise services also can use this certificate.

The following diagram illustrates the use of the certificates:

FIGURE 11.CERTIFICATE USAGE INCERTIFICATE AUTHENTICATIONWITH TCP TUNNELING

Before you begin

l Configure the TCP AppTunnel service in Standalone Sentry profile.
For information about creating a AppTunnel service, see "Configuring Standalone Sentry for AppTunnel"
and "AppTunnel Service" in theMobileIron Sentry Guide for MobileIron Cloud.

l Configure the certificate to authenticate to the enterprise server.
Add aCertificate Authority and create an Identity Certificate setting in MobileIron Cloud.
o Add the Certificate Authority inAdmin > Certificate Authority.
o Create an Identity Certificate setting inConfiguration > Add > Identity Certificate.

See the "Identity Certificate" in theMobileIron Cloud Administrator Guide.

ConfiguringcertificateauthenticationusingAppTunnelwith TCP tunneling for AndroidAppConnectapps

MobileIronAppConnectGuide forMobileIronCloud| 85

l Added an AppTunnel configuration app's app configuration.
See Adding an AppTunnel configuration.

Procedure

1. OnMobileIron Cloud, go to the App Catalog.

2. Click the Android AppConnect app to edit its configurations.

3. Go to the App Configurations tab.

4. For AppConnect Custom Configurations, click +.

5. Enter the key-value pairs as described in the following table:

Key Value

AppConnect Custom Configuration

ES_CERT_AUTH_SERVICES Enter th AppTunnel services that the app uses.
Typically, apps use only one services. However,
usingmutliple services is supported. Separate
each service witha semi-colon. The service name
must match the service names created in the
Sentry profile.

Example

TCP_HELPDESK

TCP_HELPDESK;TCP_WIKI;TCP_FINANCE

AppConnect Certificate Configuration

TABLE 22.CERTIFICATE KEY-VALUE PAIRS

ConfiguringcertificateauthenticationusingAppTunnelwith TCP tunneling for AndroidAppConnectapps

MobileIronAppConnectGuide forMobileIronCloud| 86

Key Value

<service_name>_CERT

where <service_name> is one of the AppTunnel
services that the app uses, which you listed in
Configuring certificate authentication using
AppTunnel with TCP tunneling for Android
AppConnect apps.

Example:

TCP_HELPDESK_CERT

NOTE: The key is case sensitive. Make sure
that the <service_name>exactly
matches, including case, the
AppTunnel service name.

The Certificate Enrollment setting for a certificate
used specifically for this AppTunnel service.

The configured Certificate Enrollment settings
appear in the value field’s dropdown list.

Note The Following:
• If you do not add a

<service_name>_CERT key for a service
that uses certificate authentication, the
certificate specified for the key ES_
DEFAULT_CERT is used for that service.

• If you do not add theES_DEFAULT_CERT
key, the certificate that authenticates the user
to the Standalone Sentry is used.

ES_DEFAULT_CERT

NOTE: The key is case sensitive.

The Certificate Enrollment setting for a default
certificate used for services that do not require a
specific certificate.

The configured Certificate Enrollment appear in
the value field’s dropdown list.

TABLE 22.CERTIFICATE KEY-VALUE PAIRS (CONT.)

AppTunnel and TLS protocol versions in Android AppConnect
apps
An AppConnect for Android app uses a TLS protocol version to communicate with:
• the Standalone Sentry for network requests using AppTunnel with HTTP/S tunneling or TCP tunneling
• enterprise servers that use certificate authentication using AppTunnel with TCP tunneling

TLSv1.2 is more secure. Therefore, MobileIron recommends that you configure your Standalone Sentry and
applicable enterprise servers to accept TLSv1.2.

The following table shows the TLS protocol version the app uses, which depends on:
• the version of the AppConnect wrapper
• whether the app is configured for AppTunnel with HTTP/S tunneling or AppTunnel with TCP tunneling
• whether the app is configured with the applicable key-value pair.

IMPORTANT: In all cases, make sure your Standalone Sentry andapplicable enterprise servers accept
one of the TLS protocol versions that the AppConnect wrapper requests.

AppTunnelandTLSprotocolversions inAndroidAppConnectapps

MobileIronAppConnectGuide forMobileIronCloud| 87

TABLE 23. TLS PROTOCOL VERSIONS USED BYAPPCONNECTWRAPPER FOR TCP TUNNELING

Wrapper version Default TLS
protocol

Applicable key-value pair in the app's
AppConnect app configuration

8.0 through 8.4

HTTP/S Tunneling

TLSv1.2 falling back
to TLSv1.0 if
required by server

None

8.0 through 8.4

TCP Tunneling

(Generation 2 wrapper only)

TLSv1.0 MI_AC_USE_TLS1.2

Defaults to false

Include this key with the value set to true to make
the AppConnect wrapper in the app use TLSv1.2
instead of TLSv1.0.

Defaults to false

Include this key with the value set to true to make
the AppConnect wrapper in the app use TLSv1.2
instead of TLSv1.0.

8.5 through the most recently
released version as
supported by MobileIron

HTTP/S Tunneling and TCP
Tunneling

TLSv1.2 MI_AC_ENABLE_TLS_FALLBACK KVP

Defaults to false

Include this key with the value set to true if you
want the AppConnect wrapper in the app to
fallback to TLSv1.0 if the TLSv1.2 request is not
accepted by the server.

NOTE: The AppConnect wrapper is the consumer of the key-value pair; the AppConnect app itself
ignores it.

Related topics

l To add the key-value pairs, see Adding an AppConnect Custom Configuration

l “Incoming SSL configuration” in theMobileIron Sentry Guide for MobileIron Cloud

l AppTunnel with TCP tunneling support for Android AppConnect apps

l Certificate authentication using AppConnect with TCP tunneling for Android AppConnect apps

Impact to tunneling when using a global HTTP proxy
A global HTTP proxy policy ensures that HTTP traffic is redirected to a proxy server that you specify. Configuring a
global HTTP proxy policy for devices includes specifying the URL for the proxy auto-configuration (PAC) file.
Details are available in “Working with global HTTP proxy policies” in theMobileIron Core DeviceManagement
Guide for iOS andmacOS Devices.

Impact to tunnelingwhenusingaglobalHTTPproxy

MobileIronAppConnectGuide forMobileIronCloud| 88

Consider the case in which you have defined an AppTunnel rule in an AppConnect’s AppConnect app configuration
(orWeb@Work setting or Docs@Work setting) that includes the URL to the PAC file. That is, the AppTunnel rule
does one of the following:

l Uses a wildcard character in the AppTunnel rule’s URL Wildcard field such that the PAC file URL
matches the rule

l Explicitly names the PAC file URL in the AppTunnel rule’s URL Wildcard field

The impact of this configuration to tunneling varies depending on the AppConnect app’s AppConnect version, as
shown in the following table:

AppConnect for iOS
SDK or Wrapper
version used in the
app

Impact to tunneling of defining an AppTunnel rule that includes the URL to
the PAC file

3.0 and prior • The request to the URL for the PAC file is tunneled.
• Other URL requests are tunneled according to the AppTunnel rules.

3.1.0, 3.1.1, 3.1.2 Tunneling to the URL for the PAC file is not supported. A tunneling attempt to this
URL results in no network access for the app, whether tunneled or not.

3.1.3 through themost
recently released
version as supported by
MobileIron

To support tunneling in these apps, configure a key-value pair in the app’s
AppConnect app configuration (orWeb@Work setting or Docs@Work setting) as
follows:
• key name: global_http_proxy_url
• value: the URL of the PAC file, which you also enter in the Proxy PAC URL field

of the global HTTP proxy policy.
Example: http://pac.myproxy.mycompany.com

With this key-value pair:
• the URL request to the PAC file is not tunneled.
• other URL requests are tunneled as specified by the AppTunnel rules.

TABLE 24. IMPACT TO TUNNELINGWHENUSING AGLOBALHTTP PROXY

Impact to tunnelingwhenusingaglobalHTTPproxy

7

MobileIronAppConnectGuide forMobileIronCloud| 89

AppConnect Key-value Pairs

SomeAppConnect features are configured using key-value pairs.

The key-value pairs are summarized in the following tables, along with references to the appropriate documentation
with the details.

l AppConnect for Android key-value pairs

l AppConnect for iOS key-value pairs

AppConnect for Android key-value pairs
The following table summarizes the AppConnect for Android key-value pairs used to configure various AppConnect
features. The key-value pairs are configured in the AppConnect Custom Configuration for an AppConnect app. For
information about add an AppConnect Custom Configuration, see Adding an AppConnect Custom Configuration.

Key name Description Reference

MI_ALLOW_SECURE_
COPY_INBOUND

When true, data can be copied from a
non-AppConnect app to an AppConnect
app even though the Copy/Paste data
loss prevention setting is Among
AppConnect Apps orWithin an
AppConnect app.

Copy/Paste for AppConnect for
Android

AC_IGNORE_AUTO_LOCK_
ALLOWED

When true, an AppConnect app ignores
the auto-lock time.

About allowing a secure app to ignore
the auto-lock time

MI_AC_TCP_IDLE_
TIMEOUT_MS

Specifies the idle session timeout for the
TCP connection between an AppConnect
app and an enterprise server when using
AppTunnel with TCP tunneling.

Configuring per-app idle session
timeout for AppTunnel with TCP
tunneling

MI_AC_DISABLE_
ANALYTICS

When true, analytics about AppConnect
apps are not collected.

Disable analytics data collection for
AppConnect for Android

MI_AC_USE_TLS1.2 When true, the AppConnect wrapper
uses TLSv1.2 for network requests using
AppTunnel with TCP tunneling.

Applicable only to apps wrapped with
AppConnect wrapper versions 8.0 through
8.4

AppTunnel and TLS protocol versions
in Android AppConnect apps

TABLE 25.APPCONNECT FORANDROID KEY-VALUE PAIRS

MobileIronAppConnectGuide forMobileIronCloud| 90

Key name Description Reference

MI_AC_ENABLE_TLS_
FALLBACK

When true, the AppConnect wrapper falls
back to using TLSv1.0 if TLSv1.2 is not
accepted for network requests using
AppTunnel.

Applicable only to apps wrapped with
AppConnect wrapper versions 8.5 through
themost recently released version as
supported by MobileIron.

AppTunnel and TLS protocol versions
in Android AppConnect apps

ES_CERT_AUTH_
SERVICES

Specifies the list of AppTunnel services
that use certificate authentication using
AppTunnel with TCP tunneling.

Configuring certificate authentication
using AppTunnel with TCP tunneling
for Android AppConnect apps

<service_name>_CERT Specifies the certificate enrollment setting
for the certificate for authenticating to the
enterprise server when using AppTunnel
with TCP tunneling.

ES_DEFAULT_CERT Specifies the certificate enrollment setting
for the default certificate for authenticating
to the enterprise server when using
AppTunnel with TCP tunneling.

AC_PUBLIC_KEY Specifies the certificate setting containing
the public certificate that matches the
enterprise private key used to sign apps
wrapped with the AppConnect wrapping
tool.

See "TheMobileIron AppConnect for
AndroidWrapping Tool" in the
MobileIron AppConnect for Android
App Developers Guide

TABLE 25.APPCONNECT FORANDROID KEY-VALUE PAIRS (CONT.)

Related topics

AppConnect for iOS key-value pairs

AppConnect for iOS key-value pairs
The following table summarizes the AppConnect for iOS key-value pairs used to configure various AppConnect
features.

AppConnect for iOS key-valuepairs

MobileIronAppConnectGuide forMobileIronCloud| 91

Key name Description Reference

MI_AC_DISABLE_
OPEN_IN_
ENFORCEMENT

WhenYes, Open In is allowed to all apps. Open-In data loss
prevention policy
details

MI_AC_DISABLE_
SCHEME_BLOCKING

When true, Open In is allowed to the iOS native email app when
the user taps the AppConnect app to launch an email app..

Open-In data loss
prevention policy
details

MI_AC_LOG_LEVEL Specifies the log level for the app: error, info, verbose, or
debug.

Logging for
AppConnect apps for
iOS

MI_AC_LOG_
LEVEL_CODE

Specifies the string that the device user enters to activate the
verbose or debug log level.

MI_AC_ENABLE_
LOGGING_TO_FILE

WhenYes, an AppConnect app's logs are logged to files on the
device.

MI_AC_WR_
ENABLE_LOG_
CAPTURE

WhenYes,when emailing AppConnect-related log files
from MobileIron Go, the logs of a wrapped app are emailed along
with the logs of the AppConnect wrapper and the AppConnect
librar

MI_AC_IOS_
ALLOW_CUSTOM_
KEYBOARDS

When true, the AppConnect app is allowed to use customer
keyboards.

Custom keyboard
control

MI_AC_WR_ALLOW_
KEYBOARD_
DICTATION

When true,a wrapped app can use dictation with the iOS native
keyboard.

Dictation with the
native keyboard is not
allowed for wrapped
apps

MI_AC_ENABLE_
SCREEN_BLURRING

When false, screen blurring is disabled if the AppConnect app
has given screen blurring control to the AppConnect library.

Screen blurring

MI_AC_CLIENT_
CERT_#

Used in setting up certificate authentication from an
AppConnect app to an enterprise service.

Certificate
authentication from
AppConnect apps to
enterprise services

TABLE 26.APPCONNECT FOR IOS KEY-VALUE PAIRS

AppConnect for iOS key-valuepairs

MobileIronAppConnectGuide forMobileIronCloud| 92

Key name Description Reference

MI_AC_CLIENT_
CERT_#_RULE

Used in setting up certificate authentication from an
AppConnect app to an enterprise service.

Certificate
authentication from
AppConnect apps to
enterprise services

MI_AC_
CONTAINER_TYPE

When set toENCLAVE, sensitive data, such as encryption
keys, is stored in the Apple Secure Enclave on the device.

Heightened security for
AppConnect apps
using the Secure
Enclave

MI_AC_USE_
ORIGINAL_
COOKIES_FOR_
DOMAINS

Someweb pages inject custom cookies into web requests. For
example, when an end user taps on a link in a web page, the
page's JavaScript injects a custom cookie. If a user makes
such a request from aweb page displayed in an AppConnect
app, by default AppConnect does not include the injected
cookies in the web request, which can cause the request to fail.
AppConnect includes the custom cookies in the request if you
include the following key in the app's app-specific configuration:
MI_AC_USE_ORIGINAL_COOKIES_FOR_DOMAINS. The value of the
key is a comma-separated string listing the domains for which
the custom cookies should be included. Make sure no spaces
are included in the value.

For example:

www.somewebsite.com,somename.someotherwebsite.com

Supported with apps built or wrapped with AppConnect 4.2.1 for
iOS through themost recently released version as supported by
MobileIron.

TABLE 26.APPCONNECT FOR IOS KEY-VALUE PAIRS (CONT.)

Related topics

AppConnect for Android key-value pairs

AppConnect for iOS key-valuepairs

8

MobileIronAppConnectGuide forMobileIronCloud| 93

Troubleshooting AppConnect

l Troubleshooting AppConnect setup

l Logging for AppConnect apps for iOS

Troubleshooting AppConnect setup
You can verify configurations for AppConnect app by checking the configuration applied to the device.

Procedure

1. Go to Devices > Devices.

2. Select a device that should be AppConnect ready.

3. Check theConfigurations tab for the expected device configuration.

4. Check theAppConnect Apps tab to ensure that expected apps have been installed as AppConnect apps.

5. Check the app's custom configurations.

Logging for AppConnect apps for iOS
l Overview of logging for AppConnect apps for iOS

l Log levels

l How the log level appears in messages

l Log file details

l Enable logging for an AppConnect app

l Log level configuration impact on the device

l Activating verbose or debug logging on the device

l Emailing log files fromMobileIron Go

Overview of logging for AppConnect apps for iOS

You can collect detailed log data for AppConnect for iOS apps. You specify the AppConnect apps that should log
detailed data. The AppConnect library contained in each specified app also logs detailed data. The log data
provides information to helpMobileIron Technical Support troubleshoot issues with the apps.

Depending on your configuration, the data is logged to:

MobileIronAppConnectGuide forMobileIronCloud| 94

l the device’s console.

l the device’s console and files on the device.

Log levels

You choose one of four log levels for an AppConnect app. The two highest levels can log sensitive data. To prohibit
unauthorized users from accessing sensitive data, the two highest levels require the device user to enter a debug
code that you specify.

Exactly what sensitive data is logged depends on the app, but can include, for example:

l Device user data, including document names and contents, contact lists, notes, and bookmarks

l Encryption keys, passwords, certificates, signing identities, and cookies

l Complete URLs and URL POST data

l Data that reveals the contents of encrypted data

The following table describes the log levels from lowest (least verbose) to highest (most verbose):

Log level Description Contains
sensitive data?

Requires the
user to enter the
debug code?

Error Provides error, warning, and status messages.

This level is the default. It is always turned on.

Error messages are for events that block access to part
or all of the app.

Example: Corrupt or missing data

Warningmessages are for events that are suspicious,
but not quite failures like errors.

Example: Unexpected data that is ignored

Status messages indicatemajor changes in the state of
the app.

Example: User successfully logged in

No No

Info Provides error, warning, and status messages, plus
more information.

Info messages indicateminor changes in the state of
the app.

Example: AppConnect app check-in times

No No

Verbose Provides error, warning, status, and infomessages,
plus more, possibly sensitive, information.

Yes Yes

TABLE 27.APPCONNECT LOG LEVELS

Log levels

MobileIronAppConnectGuide forMobileIronCloud| 95

Log level Description Contains
sensitive data?

Requires the
user to enter the
debug code?

Verbosemessages providemore extensive information,
possibly including sensitive details.

Example: Server URLs

Debug Provides error, warning, status, info, and verbose
messages, plus further information, which is possibly
sensitive.

Debugmessages have themost information, possibly
including sensitive details.

Example: URL request details

Yes Yes

TABLE 27.APPCONNECT LOG LEVELS (CONT.)

How the log level appears in messages

When you set the log level for an app, messages logged by the following components are impacted:

l the AppConnect app

l theMobileIron AppConnect library contained in the AppConnect apps

l the AppConnect wrapper (only applicable for wrapped AppConnect apps)

Themessages logged by these components include the log level as shown in the following table:

How the log levelappears inmessages

MobileIronAppConnectGuide forMobileIronCloud| 96

Component App name in log
message

How the log level appears in messages

An AppConnect
app

The app’s name [Error]

[Warning]

[Status]

[Info]

[Verbose]

[Debug]

NOTE: The value error for theMI_AC_LOG_LEVEL key in an
app’s AppConnect appconfiguration, can result in
messageswith [Error], [Warning], and [Status].

AppConnect
library contained
in an
AppConnect app

The app’s name [AppConnect:Error]

[AppConnect:Warning]

[AppConnect:Status]

[AppConnect:Info]

[AppConnect:Verbose]

[AppConnect:Debug]

NOTE: The value error for theMI_AC_LOG_LEVEL key in an
app’s AppConnect appconfiguration, can result in
messageswith [AppConnect:Error],
[AppConnect:Warning], and [AppConnect:Status].

The AppConnect
wrapper (only
applicable for
wrapped
AppConnect
apps)

The app’s name [AppConnectWrapper:Error]

[AppConnectWrapper:Warning]

[AppConnectWrapper:Status]

[AppConnectWrapper:Info]

[AppConnectWrapper:Verbose]

[AppConnectWrapper:Debug]

NOTE: The value error for theMI_AC_LOG_LEVEL key in an
app’s AppConnect appconfiguration, can result in
messageswith [AppConnectWrapper:Error],
[AppConnectWrapper:Warning], and
[AppConnectWrapper:Status].

TABLE 28.HOW THE LOG LEVEL APPEARS INMESSAGES

Log file details

The following details are available in the log files for each app:

Log file details

MobileIronAppConnectGuide forMobileIronCloud| 97

l The log files for each app are saved to the following directory:
Apps/<app name>/Library/Application Support/AppConnectLogs

l The log file for each app is named appconnect.log.

l The log file is at most 1MB.

l When appconnect.log exceeds 1MB:

1. It is renamed to appconnect.log.<timestamp>.
Example: appconnect.log.2015-05-28 15:13:21

2. Logging begins in a new file named appconnect.log.

3. If 20 log files already exist, the oldest file is deleted.

Enable logging for an AppConnect app

To enable the log level and debug code for an app, and to specify that you want to log to files in addition to the
device console, add the following key-value pairs in the AppConnect app configuration for the app. The key is case
sensitive.

Key Value

MI_AC_LOG_LEVEL Specifies the log level for the app. Enter one of the following:

l error

l info

l verbose

l debug.

MI_AC_LOG_LEVEL_CODE Add this key-value pair if you entered verbose or debug.

Specifies the string that the device user enters to activate the
verbose or debug log level.

Enter a string for the value. The device user will enter this string to
activate the verbose or debug log level. You canmake up any
string. For example, enter 37!8D. For themost security, use a code
that is difficult to guess. The string is case-sensitive.

MI_AC_ENABLE_LOGGING_TO_FILE The AppConnect app's logs are logged to files on the device.

Enter Yes.

TABLE 29.APPCONNECT FOR IOS KEY-VALUE PAIRS

Log level configuration impact on the device

Error level logging is always on, regardless of whether you have configured theMI_AC_LOG_LEVEL key-value
pair, and it requires no actions from the device user. Info level logging also does not require device user interaction.
However, verbose or debug level logging do not begin until the device user activates debugmode inMobileIron Go.

Enable logging for anAppConnectapp

MobileIronAppConnectGuide forMobileIronCloud| 98

The status details for an AppConnect app include a DebugMode switch only when you have configured both of the
following in the app’s AppConnect app configuration:

l a log level of verbose or debug

l a debug code

In this case, the status details for an AppConnect app shows the DebugMode switch:

NOTE: The keysMI_AC_LOG_LEVEL andMI_AC_LOG_LEVEL_CODEare not included in the configuration
count onanapp’s detailed status display.

Activating verbose or debug logging on the device

The following describes how to activate verbose or debug logging on the device.

Procedure

1. OpenMobileIron Go on the device.

2. TapSettings.

3. TapCheck For Updates.

4. TapSecure Apps.

5. Tap the app for which you want verbose or debug level logging.

6. Slide the toggle forDebug Mode.

Activatingverbose or debug loggingonthedevice

MobileIronAppConnectGuide forMobileIronCloud| 99

7. Enter the debug code.

8. TapNext.

Verbose or debug level logging is activated for 24 hours, after which it is automatically deactivated the next time
that the device user launches or switches to the app. However, the device user can deactivate it any time by
tappingDebug Mode again.

Emailing log files from MobileIron Go

MobileIron Go displays the option to send logs on the app’s status details screen, available in MobileIron Go at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs. However, the option is disabled if the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, if you included the following key-value pair for the app in its AppConnect app configuration:
• MI_AC_ENABLE_LOGGING_TO_FILE set toYes

For wrapped apps, you can also include the key MI_AC_WR_ENABLE_LOG_CAPTURE set toYes. This key
causes the app’s logs to be included in the log files along with the logs from the AppConnect wrapper and
AppConnect library.

NOTE: Once you have collected the logs from the device user, remove theMI_AC_LOG_LEVEL, MI_
AC_LOG_LEVEL_CODE, andMI_AC_ENABLE_LOGGING_TO_FILE key-value pairs from the
AppConnect appconfiguration. This best practice ensures the appdoes not continue logging
sensitive data unnecessarily.

Emailing log files fromMobileIronGo

9

MobileIronAppConnectGuide forMobileIronCloud| 100

Secure Apps on Android Devices - User
Perspective

From a device user perspective, AppConnect apps are called secure apps. You configure whether a device uses
secure apps, and you determine which secure apps are downloaded and installed on the device. From the device
user’s perspective, a secure app:

l keeps its data secure.
A secure app can share its data and files only with other secure apps.

l requires the device user to log in with a secure apps passcode, if you require one.
Logging in one time with the secure apps passcode allows the device user to access all the secure apps.

l overlays its icon with a special badge that indicates it is a secure app.

MobileIron Goworks with the Secure Apps Manager app to download, install, andmanage the secure apps. The
Secure Apps Manager is downloaded and installed along with the secure apps.

The device user does the following tasks relating to secure apps:

1. Downloading and installing the secure apps

2. Creating the secure apps passcode

3. Choosing amore complex AppConnect passcode

Also related to secure apps, the device user sees:

l Secure apps notifications

l Secure apps status bar icons

l Camera, gallery, andmedia player warningmessages

Downloading and installing the secure apps
To download and install the secure apps on Android devices, the device user:
1. Starts MobileIron Go.

If the device user does not seeSecure Apps onMobileIron Go, you have not configured the device to use
secure apps.

2. Follows the instructions to install secure apps, including the Secure Apps Manager.
3. Continues to Creating the secure apps passcode.

MobileIronAppConnectGuide forMobileIronCloud| 101

Creating the secure apps passcode
After the device user downloads and installs all his secure apps, he creates a passcode for the secure apps if you
require one. Logging in one time provides access to all the secure apps.

NOTE: The secure apps passcode is not the same passcode as the device password, if the device has
one. The device user canchoose the same values for both the secure apps passcode and the
device password, or choose adifferent value for eachof them.

To create the secure apps passcode, the device user:
1. Completes the steps in Downloading and installing the secure apps.
2. Follows the instructions on thePasscode Setup screen, entering a new secure apps passcode, and then

reentering it.
The device user must adhere to the passcode requirements that are stated on the screen.

After creating the secure apps passcode, a lock icon appears in the status bar.

Related topics

Device User impact of fingerprint login for AppConnect for Android

Choosing amore complex AppConnect passcode
Secure Apps Manager allows the device user to create amore complex AppConnect passcode than you require.
This capability gives device users more flexibility in their passcode choice while still meeting your minimum
security requirements.

Specifically, the feature works as follows. In the AppConnect global policy, you specify whether the type of the
AppConnect passcodemust be numeric or alphanumeric. Secure Apps Manager allows the device user to enter
non-numeric characters when you specify the type as numeric.

The following table shows Secure Apps Manager behavior depending on the specified AppConnect passcode type
andminimum length specified in the AppConnect global policy:

AppConnect
passcode type

AppConnect
passcode length

Secure Apps Manager behavior

Numeric 4 Numeric keypad with the optionCreate more complex
passcode.

When the user taps the option, an alphanumeric keyboard
displays.

Numeric Anything except 4 Alphanumeric keyboard

Alphanumeric Any Alphanumeric keyboard

TABLE 30. SECUREAPPSMANAGER BEHAVIOR WHEN PROMPTING FORAPPCONNECT PASSCODE

Creating the secureapps passcode

MobileIronAppConnectGuide forMobileIronCloud| 102

Note The Following:

l Because using a length of 4with type numeric is themost commonuse of numeric passcodes, it
is the only case when Secure AppsManager displays a numeric keypad.

l Consider the case when the device user switches from the numeric keypad to the alphanumeric
keyboard to create the AppConnect passcode. Even if the createdpasscode contains only
digits, when the device user needs to enter the passcode again, Secure AppsManagerwill
present the alphanumeric keyboard.

Secure apps notifications
Throughout the steps for setting up secure apps on a device, and after the steps are completed, the device user
receives notifications about the status of MobileIron Go and secure apps. For example, a notification indicates
whether the device user has logged in with the secure apps passcode.

When the device user powers on the device, a notification indicates that the user has not logged in with his secure
apps passcode, and that the user has no email connection. The device user must log in to access secure apps.

To log in, the device user:

1. Opens any secure app or the Secure Apps Manager.

2. Enters his secure apps passcode.

Some secure apps, such as the email app, are active even when the device user is not using them. For example,
the email app syncs email and calendar items. Until the device user logs in with his secure apps passcode, these
apps cannot do their jobs.

Secure apps status bar icons
A secure apps icon appears in the status bar of the device.

When the device user has entered his secure apps passcode, the icon looks like a lock that is unlocked, because
the user has unlocked the AppConnect container and can access AppConnect apps:

When logged out of secure apps, the icon looks like a lock that is locked, because the user is locked out of the
AppConnect container. To unlock the container and access AppConnect apps, the user must enter his secure apps
passcode.

Secureapps notifications

MobileIronAppConnectGuide forMobileIronCloud| 103

For example, the device user is logged out when he has not used a secure app for fiveminutes.

The secure apps icon turns into a warning icon in some situations:

The warning icon appears when the device user needs to reenter his secure apps passcode, such as after powering
on the device.

Camera, gallery, andmedia player warningmessages
You can allow or prohibit secure apps on a device to do the following:

l access camera photos from the app

l access gallery images from the app

l streammedia from the app to amedia player

If a capability is prohibited, if an app attempts to use the capability, a message displays indicating that the
administrator has disabled the capability.

If you allow accessing camera photos from secure apps, when an app accesses the camera, the app displays a
warning. The warning indicates that the photo will not be secured, and that a photo from an unsecured camera app
may compromise secure data.

If you allow accessing gallery images from secure apps, when an app accesses an image, the app displays a
warning. The warning indicates that the image will not be secured and that an image from an unsecured appmay
compromise secure data.

If you allow media streaming from secure apps, when an app is about to streammedia, the app displays a warning.
The warning indicates that media will be streamed outside the secure container.

The warnings also provide the option to turn off future warnings.

Camera,gallery,andmediaplayer warningmessages

10

MobileIronAppConnectGuide forMobileIronCloud| 104

Secure apps on iOS Devices - User
Perspective

From a device user perspective, AppConnect apps are called secure apps. Secure apps on iOS devices allow the
device user to securely access sensitive work documents and data on the device. The device user perspective
includes the following:

l Secure apps passcodemanagement
Device users use a secure apps passcode to access secure apps. They useMobileIron Go tomanage
their secure apps passcode.

l Touch ID or Face ID with fallback to device passcode -- device user perspective
Device users sometimes use Touch ID or Face ID to access secure apps. Most customers use Touch ID
or Face ID with fallback to device passcode.

l Touch ID or Face ID with fallback to AppConnect passcode -- device user perspective
Some customers with restrictions on requiring device passcodes want to allow device users to access
secure apps with Touch ID or Face ID. These customers use Touch ID or Face ID with fallback to
AppConnect passcode.

MobileIron Go app also provides displays to help you troubleshoot secure apps and AppTunnel. End users typically
do not use these displays.

Secure apps passcodemanagement
Typically, you configure AppConnect to require the device user to use a secure apps passcode to use secure apps.
The device user creates and uses a secure apps passcode as follows:

l Creating a secure apps passcode

l Creating amore complex secure apps passcode

l Logging in with the secure apps passcode

l Logging out or resetting passcode for secure apps

l Secure apps passcodemanagement

l Resetting the secure apps passcode - administrator initiated

l Secure apps passcodemanagement

MobileIronAppConnectGuide forMobileIronCloud| 105

Creating a secure apps passcode

When you have configured a device so that a secure apps passcode is required, MobileIron Go prompts the device
user to create a secure apps passcode the first time the user launches any secure app.

Device users can also create a secure apps password in MobileIron Gowithout first having to launch a secure app.

Procedure

1. LaunchMobileIron Go.

2. Go to Settings > Secure Apps > Authentication.
FIGURE 12. LOG IN FOR SECURE APPS PASSCODE

3. Tap Log In.

Creatingasecureapps passcode

MobileIronAppConnectGuide forMobileIronCloud| 106

FIGURE 13. ENTER NEW PASSCODE

4. Enter a passcode according to the specified instructions.

5. TapDone.
FIGURE 14. RE-ENTER THE NEW PASSCODE

6. TapDone andDone again.

Creatingasecureapps passcode

MobileIronAppConnectGuide forMobileIronCloud| 107

Creating amore complex secure apps passcode

MobileIron Go chooses which keyboard to display for entering a secure apps passcode based on the passcode
requirements in the AppConnect global policy. For example, on an iPhone, when the AppConnect global policy
requires a numeric passcode, MobileIron Go displays a numeric keypad. However, MobileIron Go gives the device
user the option to enter amore complex secure apps passcode. Some users may want to choose to exceed the
secure apps passcode requirements because:

l they value stronger security against guessing and brute force attacks

l they do not mind the reduced convenience of entering amore complex passcode.

If the secure apps passcode requirements in the AppConnect global policy are 4 numeric digits, MobileIron Go
displays the following:

FIGURE 15.NUMERIC PASSCODE REQUIREMENT

MobileIron Go presents a QWERTY keyboard when you tapCreate more complex passcode.

Creatingamore complex secureapps passcode

MobileIronAppConnectGuide forMobileIronCloud| 108

FIGURE 16.ALPHANUMERIC PASSCODE REQUIREMENT

Use this screen to create a secure apps passcode that is more complex than required by the AppConnect global
policy.

The device user has the option to create amore complex passcode when:

l Creating the secure apps passcode for the first time.

l Changing the secure apps passcode.

l After tapping Forgot Passcode and reentering their user name and password for MobileIron Cloud.

l After exceeding themaximum number of failed passcode attempts and reentering their user name and
password for MobileIron Cloud.

NOTE: The last two options involve self-service secure apps passcode recovery, which is available only if
you select Allow iOS users to recover their passcode on the AppConnect global policy.

Logging in with the secure apps passcode

After a period of time in which the device user uses no secure apps, MobileIron Go automatically logs the device
user out of secure apps. When the user once again launches a secure app or taps Log In in MobileIron Go,
MobileIron Go prompts the user to log in with the secure apps passcode:

Logging inwith the secureapps passcode

MobileIronAppConnectGuide forMobileIronCloud| 109

FIGURE 17. LOGGINGWITH SECURE APPS PASSCODE

The device user does the following:
1. Enters the secure apps passcode.
2. Taps Done.

The device user can now continue with the secure app.

Logging out or resetting passcode for secure apps

The device user can log out of secure apps or reset the secure passcode. Logging out is useful, for example, if the
user is lending themobile device to a family member for a few minutes.

NOTE: The user is automatically loggedout after a periodof inactivity.

To log out of secure apps or reset the secure apps passcode, in MobileIron Go go to Settings > Secure Apps >
Authentication.

Loggingoutor resettingpasscode for secureapps

MobileIronAppConnectGuide forMobileIronCloud| 110

FIGURE 18. SECURE APPS LOGOUTOR CHANGE PASSCODE

MobileIron Go prompts the device user for the secure apps passcode the next time the user launches a secure app
or taps Log In in MobileIron Go.

Resetting the secure apps passcode - administrator initiated

You can change the secure apps passcode requirements onMobileIron Cloud by modifying the iOS AppConnect
Configuration. WhenMobileIron Go checks in with Cloud, MobileIron Go prompts the device user to create a new
password.

FIGURE 19. RESET PASSCODE PROMPT

TapOK and follow the prompts to reset the passcode.

When the device user exceeds the maximum number of attempts

Themaximum number of attempts to correctly enter the secure apps passcode is configurable. If it is greater than
5, after the device user makes five attempts to correctly enter the secure apps passcode, MobileIron Go displays

Resetting the secureapps passcode -administrator initiated

MobileIronAppConnectGuide forMobileIronCloud| 111

the following:

FIGURE 20. SECURE APPS IS DISABLED

After themaximum number of failed attempts, the device user must enter their Cloud credentials and then create a
new AppConnect passcode. If themaximum is greater than 5, after the 5th attempt, the user can attempt to reenter
the secure apps passcode only after waiting progressively longer time periods. Specifically, after the 5th, 6th, 7th,
8th, and 9th attempts, the user must wait 1, 5, 15, 60, and 60minutes respectively.

Touch ID or Face ID with fallback to device passcode -- device
user perspective
You can allow the device user to use Touch ID/Face ID instead of a secure apps passcode to access secure apps.
Two options are available:

l Touch ID or Face ID with fallback to device passcode

l Touch ID or Face ID with fallback to AppConnect passcode

Most customers use Touch ID or Face ID with fallback to device passcode. With this option, the device user can
do the following tasks usingMobileIron Go:

l Choosing Touch ID or Face ID with fallback to device passcode to access secure apps

l Changing from secure apps passcode to Touch ID/Face ID to access secure apps

l Changing from Touch ID/Face ID to secure apps passcode to access secure apps

Touch IDor Face IDwith fallback todevicepasscode -- device user perspective

MobileIronAppConnectGuide forMobileIronCloud| 112

See also: Touch ID or Face ID for accessing secure apps for the administrative perspective.

NOTE: Screenshots in this chapter showonly Touch ID, not Face ID, but Face ID behavior is similar.

Choosing Touch ID or Face IDwith fallback to device passcode to access secure
apps

The device user is prompted to choose whether to use Touch ID or Face ID to access secure apps when:

l On the AppConnect global policy, you have selectedUse Touch ID or Face ID when supported and for
When using Touch ID or Face ID, fall back to you have selectedDevice passcode.

l The device user has enabled the device passcode and at least one of Touch ID or Face ID.

l The device user has registered a device and then either
o Accesses secure apps for the first time or
o Taps Log In (to secure apps) on theMobileIron Go home screen

NOTE: MobileIronGo does not present this choice ondevices onwhich the user has not enabledboth
Touch ID/Face ID and the device passcode, or the device does not support Touch ID/Face ID.
For those devices, MobileIronGo prompts the device user to enter a new secure apps passcode.

The device user chooses Touch ID/Face ID

1. MobileIron Go prompts the device user to choose whether to use Touch ID/Face ID to access secure
apps.

2. If the device user taps Yes, he is prompted for his fingerprint or Face ID.
FIGURE 21. FINGERPRINTOR FACEID

3. The device user enters the Touch ID or Face ID and is logged into secure apps.

The device user will use Touch ID for all further authentications to secure apps, unless the device user changes the
authenticationmethod usingSettings > Secure Apps > Authentication in MobileIron Go.

The device user chooses passcode

1. MobileIron Go prompts the device user to choose whether to use Touch ID or Face ID to access secure
apps.

2. If the device user taps No, he is prompted to create a secure apps passcode.

Choosing Touch IDor Face IDwith fallback todevicepasscode toaccess secureapps

MobileIronAppConnectGuide forMobileIronCloud| 113

3. The device user enters a new secure apps passcode.

4. The device user reenters the new passcode.

The device user will use the secure apps passcode for all further authentication to secure apps, unless the device
user changes the authenticationmethod usingSettings > Secure Apps > Authentication in MobileIron Go.

Thedevice user chooses passcode

MobileIronAppConnectGuide forMobileIronCloud| 114

Changing from secure apps passcode to Touch ID/Face ID to access secure apps

The device user can change the authenticationmethod for accessing secure apps to Touch ID/Face ID when both
of the following are true:

l You have selectedUse Touch ID or Face ID when supported on the AppConnect global policy.

l The device user has enabled the device passcode and at least one of Touch ID or Face ID.

NOTE: Screenshots in this chapter showonly Touch ID, not Face ID, but Face ID behavior is similar.

The device user does the following inMobileIron Go:

1. The device user navigates toSettings > Secure Apps > Authentication.

2. The device user taps Enable Touch ID.

Changing fromsecureapps passcode to Touch ID/Face ID toaccess secureapps

MobileIronAppConnectGuide forMobileIronCloud| 115

3. The device user enters the secure apps passcode to confirm the change to using Touch ID/Face ID, and
taps Done.

4. The device user enters the Touch ID or Face ID.

The device user will use Touch ID or Face ID for all further authentications to secure apps, unless the device user
changes the authenticationmethod usingSettings > Secure Apps > Authentication in MobileIron Go.

Changing from Touch ID/Face ID to secure apps passcode to access secure apps

The device user can change the authenticationmethod for accessing secure apps to the secure apps passcode
using the following steps in MobileIron Go:

Changing fromTouch ID/Face ID to secureapps passcode toaccess secureapps

MobileIronAppConnectGuide forMobileIronCloud| 116

1. The device user navigates toSettings > Secure Apps > Authentication.

2. The device user taps Disable Touch ID.

3. The device user enters the Touch ID or Face ID to confirm the change to using a secure apps passcode.

Changing fromTouch ID/Face ID to secureapps passcode toaccess secureapps

MobileIronAppConnectGuide forMobileIronCloud| 117

4. The device user enters a new secure apps passcode and clicks Done.

5. The device user reenters the new passcode and clicks Done.

The device user will use the secure apps passcode for all further authentication to secure apps, unless the device
user changes the authenticationmethod usingSettings > Secure Apps > Authentication in MobileIron Go.

Changing fromTouch ID/Face ID to secureapps passcode toaccess secureapps

MobileIronAppConnectGuide forMobileIronCloud| 118

Touch ID or Face ID with fallback to AppConnect passcode --
device user perspective
You can allow the device user to use Touch ID/Face ID instead of a secure apps passcode to access secure apps.
Two options are available:

l Touch ID or Face ID with fallback to device passcode

l Touch ID or Face ID with fallback to AppConnect passcode

Although not the common choice, some customers use Touch ID or Face ID with fallback to AppConnect
passcode when they have a compelling reason to not require a strong device passcode for device users.

NOTE: Screenshots in this chapter showonly Touch ID, not Face ID, but Face ID behavior is similar.

The overall device user experience for a newly registered user is:
1. The device user creates an AppConnect passcode

After the device user registers with MobileIron Go, MobileIron Go prompts the device user to create an
AppConnect passcode.

2. The device user chooses whether to use Touch ID/Face ID.
After creating the AppConnect passcode, MobileIron Go gives the user the option to use Touch ID or Face ID to
access secure apps

3. The device user uses Touch ID/Face ID when the auto-lock time expires
When the auto-lock time has expired, and the device user can use Touch ID or Face ID when re-accessing
secure apps.

4. The device user changes Touch ID/Face ID choice
The device user can later useMobileIron Go settings to change his choice about using Touch ID/Face ID.

See also: Touch ID or Face ID for accessing secure apps for the administrative perspective.

The device user creates an AppConnect passcode

MobileIron Go prompts the device user to create an AppConnect passcode when the device user has registered a
device and then either:
• Accesses secure apps for the first time or
• Taps Log In (to secure apps) on theMobileIron Go home screen

Touch IDor Face IDwith fallback toAppConnectpasscode -- device user perspective

MobileIronAppConnectGuide forMobileIronCloud| 119

The device user chooses whether to use Touch ID/Face ID

NOTE: Screenshots in this chapter showonly Touch ID, not Face ID, but Face ID behavior is similar.

After creating the AppConnect passcode, MobileIron Go gives the device user the choice to use Touch ID or Face
ID with fallback to the AppConnect passcode, or to use only the AppConnect passcode for accessing secure apps.
However, MobileIron Go gives this choice only if the device user has already done the following in the device’s
Settings > Touch ID & Passcode:
• Turned on the device passcode.
• Enabled Touch ID on the device, and created a fingerprint.

If the device user has taken these actions, MobileIron Go displays the following:

Thedevice user chooseswhether to use Touch ID/Face ID

MobileIronAppConnectGuide forMobileIronCloud| 120

If the device user taps
• Yes, he will use Touch ID/Face ID when re-accessing secure apps after the auto-lock time expires. In all other

cases for accessing secure apps he will enter the AppConnect passcode. These other cases include, for
example, the first time an AppConnect app is launched or when the user logs out of secure apps inMobileIron
Go.

• No, he will use the AppConnect passcode for all further authentications to secure apps.

The device user uses Touch ID/Face IDwhen the auto-lock time expires

NOTE: Screenshots in this chapter showonly Touch ID, not Face ID, but Face ID behavior is similar.

When the auto-lock time has expired, and the device user attempts to re-access secure apps, MobileIron Go
displays the following:

The device user enters the Touch ID or Face ID to access secure apps. If entering the Touch ID or Face ID fails,
the device user is prompted to try again, and given the option to use (fallback to) the secure apps passcode:

Thedevice user uses Touch ID/Face IDwhentheauto-lock timeexpires

MobileIronAppConnectGuide forMobileIronCloud| 121

NOTE: Tapping eitherCancel or Use Secure Apps passcode causesMobileIronGo to prompt the
device user for the secure apps passcode.

The device user changes Touch ID/Face ID choice

NOTE: Screenshots in this chapter showonly Touch ID, not Face ID, but Face ID behavior is similar.

The device user can change the choice to use Touch ID usingSettings > Secure Apps > Authentication in
MobileIron Go.

For example, if the device user is using Touch ID or Face ID, the screen displays the following:

If the device user taps Disable Touch ID, MobileIron Gowill prompt for the secure apps passcode for all further
access to secure apps.

To enable Touch ID/Face ID later, the device user can again navigate toSettings > Secure Apps >
Authentication and tapEnable Touch ID.

Thedevice user changes Touch ID/Face IDchoice

MobileIronAppConnectGuide forMobileIronCloud| 122

Thedevice user changes Touch ID/Face IDchoice

	Contents
	AppConnect Overview
	What are AppConnect-enabled apps?
	AppConnect apps from MobileIron
	Third-party and in-house AppConnect apps

	AppTunnel overview
	HTTP/S tunneling
	TCP tunneling (also known as Advanced AppTunnel)

	AppTunnel with TCP tunneling support for Android AppConnect apps
	Types of apps that can use AppTunnel with TCP tunneling
	When to use AppTunnel with HTTP/S tunneling versus TCP tunneling

	The AppConnect passcode
	AppConnect apps and authentication to enterprise app servers
	Authentication using Kerberos Constrained Delegation
	Certificate authentication for Android AppConnect apps
	Certificate authentication for iOS AppConnect apps
	Authentication through MobileIron Access

	App-specific configuration for AppConnect apps
	Compliance actions
	AppConnect for Android overview
	Wrapping modes
	The MobileIron client app, the Secure Apps Manager, and the AppConnect wrapper
	Supported Android device processors
	Supported Android operating systems
	Samsung Knox container (Knox Workspace) and AppConnect apps
	AppConnect for Android component support and compatibility
	Data loss prevention for secure apps for Android
	Data encryption for secure apps for Android
	Special badging for secure apps for Android
	AppConnect for Android apps
	Types of AppConnect Apps
	AppConnect apps that MobileIron provides for Android
	Docs@Work
	Email+
	Web@Work
	File Manager

	Other documentation about MobileIron-provided AppConnect apps

	When an Android device user can use AppConnect for Android

	AppConnect for iOS overview
	Component support and compatibility
	Wrapping support for mobile development platforms
	Data loss prevention for secure apps for iOS
	Data encryption for secure apps for iOS
	AppConnect-related data
	App-specific data

	MobileIron Go for iOS and AppConnect apps
	App check-in and MobileIron Go
	The AppConnect passcode auto-lock time and MobileIron Go

	Dual-mode apps
	AppConnect apps that MobileIron provides for iOS
	When an iOS device user can use AppConnect for iOS

	Quick start configuration AppConnect for Android
	Adding AppConnect apps to MobileIron Cloud
	Adding an AppConnect Custom Configuration
	Adding an AppConnect Devices configuration
	Android AppConnect Devices field description

	Quick start configuration AppConnect for iOS
	Adding AppConnect apps to MobileIron Cloud
	Adding an AppConnect Custom Configuration
	Editing AppConnect Devices configuration
	iOS AppConnect Devices field description

	AppConnect for Android
	Hybrid web app support
	Fingerprint login for AppConnect apps for Android
	Required product versions for fingerprint login for AppConnect for Android
	Requirements for fingerprint login for AppConnect for Android
	Configuring fingerprint login for AppConnect for Android (Cloud)
	Device User impact of fingerprint login for AppConnect for Android
	Device user experience at registration
	Device user experience if already registered
	Device user options for enabling or disabling fingerprint login

	Less common device user scenarios for fingerprint login for AppConnect for An...
	Security versus convenience of passcode and fingerprint for AppConnect for An...

	Lock, unlock, and retire impact on AppConnect for Android
	Lock impact
	Unlock the AppConnect container impact
	Retire impact

	Copy/Paste for AppConnect for Android
	Comparison with AppConnect for iOS copy/paste policy
	Copying from non-AppConnect apps to AppConnect apps
	Interaction with Exchange setting

	Web-related DLP policies
	Web DLP policy for browser launching
	DLP allowing links from non-AppConnect apps to open in Web@Work
	Web DLP versus Non-AppConnect apps can open URLs in Web@Work DLP

	DLP policy for media player access
	Media file requirements

	Device-initiated security controls for AppConnect for Android
	Interaction with the Exchange setting

	Secure File Manager features
	Secure folder access
	About allowing a secure app to ignore the auto-lock time
	App requirements to ignore the auto-lock time
	What the device user sees when an app ignores the auto-lock time

	Situations that wipe Android AppConnect app data
	Accessible Android apps to preserve the user experience
	Secure Apps Manager Android permissions
	Disable analytics data collection for AppConnect for Android

	AppConnect for iOS
	Open-In data loss prevention policy details
	Open In behavior in wrapped apps versus SDK apps
	iOS native email use and the Open In DLP policy
	Open In and native email with an AppConnect version prior to AppConnect 4.0 f...
	Open In and native email with AppConnect 4.0 for iOS through most recently re...
	Putting iOS native email into the Open In Whitelist

	AirDrop use and the Open In DLP policy
	App extension use and the Open In DLP policy
	Whitelisting services integrated into iOS in the Open In DLP policy
	Overriding the Open In policy for an app

	Custom keyboard control
	Screen blurring
	Dictation with the native keyboard is not allowed for wrapped apps
	Heightened security for AppConnect apps using the Secure Enclave
	Situations that wipe AppConnect for iOS app data
	Device-initiated (local) compliance for iOS jailbreak detection
	Touch ID or Face ID for accessing secure apps
	Device user experience with Touch ID or Face ID
	Security versus convenience of passcode and Touch ID/Face ID options

	Certificate authentication from AppConnect apps to enterprise services
	Impact on AppTunnel use
	Set up certificate authentication from an AppConnect app
	Configuring a certificate on MobileIron Cloud
	Configuring the key-value pairs for the certificate and URL matching rule

	Details about MI_AC_CLIENT_CERT_#_RULE

	Configuring AppTunnel for AppConnect apps
	Adding an AppTunnel configuration
	Configuring per-app idle session timeout for AppTunnel with TCP tunneling
	Certificate authentication using AppConnect with TCP tunneling for Android Ap...
	App and enterprise server requirements

	Configuring certificate authentication using AppTunnel with TCP tunneling for...
	AppTunnel and TLS protocol versions in Android AppConnect apps
	Impact to tunneling when using a global HTTP proxy

	AppConnect Key-value Pairs
	AppConnect for Android key-value pairs
	AppConnect for iOS key-value pairs

	Troubleshooting AppConnect
	Troubleshooting AppConnect setup
	Logging for AppConnect apps for iOS
	Overview of logging for AppConnect apps for iOS
	Log levels
	How the log level appears in messages
	Log file details
	Enable logging for an AppConnect app
	Log level configuration impact on the device
	Activating verbose or debug logging on the device
	Emailing log files from MobileIron Go

	Secure Apps on Android Devices - User Perspective
	Downloading and installing the secure apps
	Creating the secure apps passcode
	Choosing a more complex AppConnect passcode
	Secure apps notifications
	Secure apps status bar icons
	Camera, gallery, and media player warning messages

	Secure apps on iOS Devices - User Perspective
	Secure apps passcode management
	Creating a secure apps passcode
	Creating a more complex secure apps passcode
	Logging in with the secure apps passcode
	Logging out or resetting passcode for secure apps
	Resetting the secure apps passcode - administrator initiated
	When the device user exceeds the maximum number of attempts

	Touch ID or Face ID with fallback to device passcode -- device user perspective
	Choosing Touch ID or Face ID with fallback to device passcode to access secur...
	The device user chooses Touch ID/Face ID
	The device user chooses passcode

	Changing from secure apps passcode to Touch ID/Face ID to access secure apps
	Changing from Touch ID/Face ID to secure apps passcode to access secure apps

	Touch ID or Face ID with fallback to AppConnect passcode -- device user persp...
	The device user creates an AppConnect passcode
	The device user chooses whether to use Touch ID/Face ID
	The device user uses Touch ID/Face ID when the auto-lock time expires
	The device user changes Touch ID/Face ID choice

