
MobileIron AppConnect 4.6.0 for iOS Cordova
Plugin Developers Guide

August 5, 2020

For complete product documentation see:
MobileIron AppConnect for iOS Product Documentation HomePage

Proprietary and Confidential | Do Not Distribute

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 2

Copyright © 2014 - 2020MobileIron, Inc. All Rights Reserved.

Any reproduction or redistribution of part or all of thesematerials is strictly prohibited. Information in this publication
is subject to change without notice. MobileIron, Inc. does not warrant the use of this publication. For some phone
images, a third-party database and image library, Copyright © 2007-2009 Aeleeta's Art and Design Studio, is used.
This database and image library cannot be distributed separate from theMobileIron product.

“MobileIron,” theMobileIron logos and other trade names, trademarks or servicemarks of MobileIron, Inc.
appearing in this documentation are the property of MobileIron, Inc. This documentation contains additional trade
names, trademarks and servicemarks of others, which are the property of their respective owners. We do not
intend our use or display of other companies’ trade names, trademarks or servicemarks to imply a relationship
with, or endorsement or sponsorship of us by, these other companies.

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 3

Contents
Contents 3

Introducing the MobileIron AppConnect for iOS Cordova Plugin 13

AppConnect for iOS overview 13

Where to get the AppConnect for iOS Cordova Plugin 14

Secure app features 14

AppConnect for iOS Cordova Plugin advantages 15

64-bit and 32-bit app support 15

MobileIron AppConnect components 15

Using a secure app 17

App responsibilities 17

TheMobileIron client app and AppConnect library responsibilities 17

Cordova Plugin variants 17

AppConnect Cordova Plugin contents 18

AppConnect for iOS architecture 18

TheMobileIron client app and AppConnect apps 20

App checkin and theMobileIron client app 20

The AppConnect passcode auto-lock time and theMobileIron client app 21

Product versions required 21

Securing andmanaging the app using the AppConnect library 22

Authorization 23

AppConnect passcode and Touch ID/Face ID policy 23

Configuration specific to the app 24

AppTunnel 24

Supported APIs 25

AppTunnel with TCP tunneling 25

Certificate authentication to enterprise services 25

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 4

Supported networkingmethods 25

Unsupported networkingmethods 26

Data loss prevention policies 26

Custom keyboard control 27

Data protection 27

Getting started with the AppConnect for iOS Cordova Plugin 28

Upgrade tasks 28

Getting started tasks 28

Before you begin 29

Getting started task list 29

Run the AppConnect Cordova Plugin installation script 29

Declare the AppConnect URL schemes as allowed 29

Add AppConnect-related entries to your Info.plist 30

Enable screen blurring 31

Allow Face ID 31

Update Xcode project settings 31

Initialize the AppConnect library 31

Wait for the AppConnect library to be ready 32

Specify app permissions and configuration in a plist file 32

Code changes if youmanually recreate the iOS platform directory 35

Troubleshooting 36

App crashes due to not waiting for AppConnect ready event 36

Problem 36

Solution 36

AppConnect for iOS Cordova Plugin API 37

AppConnect for iOS Cordova Plugin overview 37

Dual-mode app capabilities 37

The AppConnectCordova JavaScript interface 38

Event handling overview 38

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 5

AppConnect Cordova Plugin events 39

Event handling acknowledgments 40

AppConnect ready API details 40

The 'appConnect.isReady' event 40

The isReady() method 40

Event handler for 'appConnect.isReady' event 41

Authorization API details 41

The ACAuthState enumeration 42

The authState() and authMessage() methods 42

The authState() method 42

The authMessage() method 42

Calling authState() and authMessage() when your app launches 42

Method return values after updates to authorization status 43

The 'appconnect.authStateChangedTo' event 43

Event handler for 'appConnect.authStateChangedTo' event 43

The authStateApplied() method 44

The displayMessage() method 44

App-specific configuration API details 45

The config() method 45

Calling config() when your app launches 45

config() return value after updates to app-specific configuration 45

The 'appconnect.configChangedTo' event 46

Event handler for 'appConnect.configChangedTo' event 46

The configApplied() method 46

Pasteboard policy API details 47

The ACPasteboardPolicy enumeration 47

Requirements for successful secure copy to pasteboard 48

The pasteboardPolicy() method 48

Calling pasteboardPolicy() when your app launches 48

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 6

pasteboardPolicy() return value after updates to pasteboard policy 49

The 'appconnect.pasteboardPolicyChangedTo' event 49

Event handler for 'appConnect.pasteboardPolicyChangedTo' event 49

The pasteboardPolicyApplied() method 50

Open In policy API details 50

Overview of Open In handling 51

The ACOpenInPolicy enumeration 52

The openInPolicy() and openInWhitelist() methods 52

OpenInPolicy() method 52

OpenInWhitelist() method 52

Calling OpenInPolicy() andOpenInWhitelist() when your app launches 52

Method return values after updates to Open In policy 53

The 'appconnect.openInPolicyChangedTo' event 53

Event handler for 'appConnect.openInPolicyChangedTo' event 53

The openInPolicyApplied() method 54

Info.plist key related to the Open In policy 54

Print policy API details 55

The ACPrintPolicy enumeration 55

The printPolicy() method 55

Calling printPolicy() when your app launches 55

printPolicy() return value after updates to print policy 55

The 'appconnect.printPolicyChangedTo' event 56

Event handler for 'appConnect.printPolicyChangedTo' event 56

The AppConnectCordova.printPolicyApplied() method 56

Getting the AppConnect library version 57

Caching tunneled URL responses 57

iOS active state change events due to AppConnect control switches 58

Situations that trigger the state change notifications 58

Upload progress for AppTunnel data 59

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 7

59

The 'appconnect.uploadProgressDidChange' event 59

Developing third-party dual-mode apps 61

What is a dual-mode app? 61

Dual-mode app states 61

High-level dual-mode app behavior 62

When the app launches for the first time 62

When an app subsequently launches 63

User requests to switch to Non-AppConnect Mode 63

User requests to switch to AppConnect Mode 64

Data loss prevention policy handling 64

Dual-mode API details 64

The ACManagedPolicy enumeration 64

ThemanagedPolicy() method 65

The 'appconnect.managedPolicyChangedTo' event 65

Event handler for 'appConnect.managedPolicyChangedTo' event 65

The stopmethod 66

The retire method 66

API call sequence when the app launches for the first time 66

API call sequence when the app subsequently launches 67

API call sequence when user requests Non-AppConnect Mode 67

API call sequence when user requests AppConnect Mode 68

Best practices using the AppConnect for iOS Cordova Plugin 69

Display authorization status in the home screen 69

Allow the user to enter credentials manually 69

Limit the size of configuration data from theMobileIron server 70

Consider limitations when using the iOS simulator 70

Enable the AppConnect library to blur screens when the app becomes inactive 71

Do not put secure data in the app bundle 71

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 8

Indicate to the user that the app is initializing 71

Disallow custom keyboard use 71

Provide documentation about your app to theMobileIron server administrator 72

Testing for third-party app developers 74

Third-party AppConnect app testing overview 74

Set upMobileIron Core 75

Login to the Admin Portal 75

Enable AppConnect onMobileIron Core 75

Configure the AppConnect global policy 75

Create an AppConnect container policy 76

Set up your end-user device 76

Set upMobile@Work on an iOS device 76

Install your app on the device 77

Set up the AppConnect passcode on the device 77

Test authorization status handling 77

Change the status to authorized or unauthorized 77

Change the status to retired 78

Reauthorize a retired app 79

Test data loss prevention policy handling 79

Test AppConnect configuration change handling 82

Create an AppConnect app configuration 82

Update the AppConnect app configuration 83

Test using AppTunnel 84

Enable AppTunnel onMobileIron Core 84

Use an existing certificate 85

Generate a certificate 85

Create a certificate authority for using an AppTunnel with HTTP/S tunneling 85

Create a local certificate enrollment setting 86

Configure the Sentry with an AppTunnel service 87

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 9

Configure the AppTunnel service in the AppConnect app configuration 88

Test the app documentation 89

Testing for in-house app developers 90

In-house AppConnect app testing overview 90

Set upMobileIron Core 91

Login to the Admin Portal 91

Enable AppConnect onMobileIron Core 91

Create a label for testing your app 91

Upload your app toMobileIron Core if you use AppConnect.plist 92

Verify your AppConnect.plist settings 92

Configure the AppConnect global policy 93

Create an AppConnect container policy, if necessary 93

Set up your end-user device 94

Set upMobile@Work on an iOS device 94

Install your app on the device 94

Set up the AppConnect passcode on the device 94

Test authorization status handling 94

Change the status to authorized or unauthorized 95

Change the status to retired 96

Reauthorize a retired app 96

Test data loss prevention policy handling 97

Test AppConnect configuration change handling 100

Create an AppConnect app configuration 100

Update the AppConnect app configuration 101

Test using AppTunnel 102

Enable AppTunnel onMobileIron Core 102

Use an existing certificate 103

Generate a certificate 103

Create a certificate authority for using an AppTunnel with HTTP/S tunneling 103

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 10

Create a local certificate enrollment setting 104

Configure the Sentry with an AppTunnel service 105

Configure the AppTunnel service in the AppConnect app configuration 106

Test the app documentation 107

AppConnect for iOS Cordova Plugin revision history 108

AppConnect 4.6.0 for iOS Cordova Plugin revision history 108

New features summary 109

Resolved issues 109

AppConnect 4.5.3 for iOS Cordova Plugin revision history 109

Resolved issues 109

AppConnect 4.5.2 for iOS Cordova Plugin revision history 109

AppConnect 4.5.1 for iOS Cordova Plugin revision history 109

AppConnect 4.5.0 for iOS Cordova Plugin revision history 110

Resolved issues 110

Known issues 110

AppConnect 4.4.2 for iOS Cordova Plugin revision history 110

Resolved issues 110

Known issues 110

AppConnect 4.4.1 for iOS Cordova Plugin revision history 111

Resolved issues 111

Known issues 111

AppConnect 4.4.0 for iOS Cordova Plugin revision history 111

New features summary 111

Resolved issues 111

Limitations 112

AppConnect 4.3.1 for iOS Cordova Plugin revision history 112

New features 112

Resolved issues 112

AppConnect 4.3 for iOS Cordova Plugin revision history 113

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 11

New features 113

AppConnect 4.2.1 for iOS Cordova Plugin revision history 113

New features 113

AppConnect 4.2 for iOS Cordova Plugin revision history 113

Resolved issues 114

Known issues 114

AppConnect 4.1.1 for iOS Cordova Plugin revision history 114

Resolved issues 114

Known issues 114

AppConnect 4.1 for iOS Cordova Plugin revision history 114

New features 114

Certificate pinning support 114

Lock AppConnect apps when screen is off 115

Overriding the Open In Policy for OpenURLwith themailto: scheme 115

AppConnect 4.0 for iOS Cordova Plugin revision history 115

New features 115

iOS 8 no longer supported 116

Drag and Drop data loss prevention policy support 116

Native email control using the Open In DLP policy 116

App extension control using the Open In DLP policy 116

Custom keyboard use controlled by MobileIron server 116

Screen blurring 117

Requirement for Face ID usage Info.plist entry 117

Support for sending AppConnect logs fromMobile@Work 117

Automatic policy status updates sent to MobileIron server 118

Support for storing AppConnect library encryption keys in the Secure Enclave 118

Resolved issues 118

Known issues 119

Limitations 119

Contents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 12

AppConnect 3.5 for iOS Cordova Plugin revision history 119

New features 119

iOS 11 compatibility 119

Open In changes 119

Resolved issues 119

Limitations 120

AppConnect 3.1.3 for iOS Cordova Plugin revision history 120

Resolved issues 120

AppConnect 3.1.2 for iOS Cordova Plugin revision history 120

Resolved issues 120

AppConnect 3.1.1 for iOS Cordova Plugin revision history 121

Resolved issues 121

AppConnect 3.1 for iOS Cordova Plugin revision history 121

New features 121

Update to OpenSSL 1.0.2h 121

Open In policy now enforced by AppConnect library 121

Resolved issues 121

Known issues 121

Limitations 121

AppConnect 3.0 for iOS Cordova Plugin revision history 122

Releases prior to AppConnect 3.0 for iOS Cordova Plugin revision history 122

Contents

1

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 13

Introducing the MobileIron AppConnect for
iOS Cordova Plugin

l AppConnect for iOS overview

l Product versions required

l Securing andmanaging the app using the AppConnect library

AppConnect for iOS overview
MobileIron AppConnect secures andmanages enterprise apps onmobile devices. These secure enterprise apps
are calledAppConnect apps or secure apps.

You can create an AppConnect app for iOS the following ways:

l Wrapping the app
TheMobileIron AppConnect wrapping technology creates a secure app without any further app
development. You can wrap Cordova (or PhoneGap) apps.
See theAppConnect for iOS AppWrapping Developers Guide

l Using the AppConnect for iOS Cordova Plugin (also called the AppConnect Cordova Plugin)
A Cordova (or PhoneGap) app developer uses the plugin to create a secure Cordova app, or turn an
existing Cordova app into a secure app.
The AppConnect Cordova Plugin is described in this document.

l Using the AppConnect for iOS SDK (software development kit)
An app developer uses the SDK to create a secure app, or turn an existing app into a secure app. The
AppConnect for iOS SDK is for iOS native development.
See theAppConnect for iOS SDK Developers Guide.

l Using the AppConnect for iOS Xamarin C# binding
An app developer using the Xamarin development platform can use C# APIs to create a secure app, or turn
an existing app into a secure app.
See theAppConnect for iOS SDK Developers Guide

IMPORTANT: Before using the AppConnect Cordova Plugin, determine whether wrapping the app
meets your needs. SeeChoosingWrapping or SDK Development to Create AppConnect
for iOS Apps.

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 14

Note The Following:

l If yourAppConnect app is to be distributed from theAppleAppStore, due toAppleAppStore requirements,
your app is required towork as a regular app in addition toworking as anAppConnect app.
SeeDeveloping third-party dual-modeapps.

l If your app uses anolder version of theAppConnect CordovaPlugin, MobileIron recommends that you always
rebuild your appwith the current version of the plugin. Using the current version ensures the app contains all
new features, improvements, and resolved issues.

l AnApple Developer Enterprise Program account is required to distribute in-house apps. See
Apple Developer Enterprise Program.

Where to get the AppConnect for iOSCordova Plugin

Get the latest AppConnect for iOS Cordova Plugin at https://help.mobileiron.com/s/software.

AppConnect for iOS documentation is available at MobileIron AppConnect for iOS Product Documentation.

Legal notices are also available on https://support.mobileiron.com/copyrights/ACe.

Secure app features

Secure enterprise apps that are built using the AppConnect Cordova Plugin can:

l Receive app-specific configuration information from theMobileIron server.
This capability means that device users do not have tomanually enter configuration details that the app
requires. By automating this process for the device users, each user has a better experience when
installing and setting up apps. Also, the enterprise has fewer support calls, and the app is secured from
misuse due to configuration. This feature is also useful for apps which do not want to allow the device
users to provide certain configuration settings for security reasons.

l Tunnel network connections to servers behind an enterprise’s firewall.
This capability means that device users do not have to separately set up VPN access on their devices to
use the app.

l Authenticate an app user to an enterprise service.
This capability means that AppConnect app users do not have to enter login credentials to access
enterprise resources.

l Handle data loss prevention.
TheMobileIron server administrator decides whether an app can copy content to the iOS pasteboard, use
the document interaction feature (Open In andOpen From), use drag and drop, or print. The app uses this
information to limit its functionality to prevent data loss through these features. The AppConnect library
enforces the pasteboard, Open In, Open From, and drag and drop policies. The app enforces the print
policy.

Where toget theAppConnect for iOSCordovaPlugin

https://developer.apple.com/programs/enterprise/
https://help.mobileiron.com/s/software
https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS
https://support.mobileiron.com/copyrights/ACe

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 15

l Control custom keyboard use by your app.
TheMobileIron server administrator can choose whether an app can use custom keyboards, and the
AppConnect library enforces the choice.. If the administrator does not configure this choice, your app can
choose to reject custom keyboard use.

l Blur the app’s screens when the app is not in the foreground.
By default, the AppConnect library enforces this behavior, which can be overridden by theMobileIron
server administrator.

AppConnect for iOSCordova Plugin advantages

With the AppConnect for iOS Cordova Plugin:

l You can focus on application logic.
The plugin handles low-level, complex work such as authentication to access AppConnect apps,
certificate authentication to enterprise resources, tunneling, AppConnect passcode handling, data
encryption, and getting app-specific settings and configuration from theMobileIron server.

l You use a set of simple APIs to develop a secure enterprise app.
The app does not have to interact directly with web service interfaces to get the information it needs to
behave as a secure enterprise app. Using the APIs, the app gets notified of any changes that the
administrator makes on theMobileIron server to controls and configuration.

l You can create one app, with one code base, that can behave as a secure app or a regular app. This
behavior is required for secure apps that are distributed from the Apple App Store.
For more information, see Developing third-party dual-mode apps.

64-bit and 32-bit app support

Using the AppConnect for iOS Cordova Plugin, you can build an app as a 64-bit app or as a 32-bit app.

MobileIron AppConnect components

The following table describes theMobileIron components that work with he apps that you build with the
AppConnect for iOS Cordova Plugin.

AppConnect for iOSCordovaPluginadvantages

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 16

MobileIron
component

Description

MobileIron Core TheMobileIron on-premise server which provides security andmanagement for an
enterprise’s devices, and for the apps and data on those devices. An administrator
configures the security andmanagement features using a web portal.

MobileIron Connected
Cloud

MobileIron’s cloud offering that has the same functionality as MobileIron Core.

MobileIron Cloud MobileIron’s cloud offering that provides similar functionality as MobileIron Core.
However, it does not support all the AppConnect features that MobileIron Core
supports.

Standalone Sentry TheMobileIron server which provides secure network traffic tunneling from your app
to enterprise servers.

TheMobile@Work for
iOS app

A MobileIron app that runs on an iOS device. It interacts with MobileIron Core or
Connected Cloud to get current security andmanagement information for the device.
It interacts with the AppConnect library to communicate necessary information to
your app.

TheMobileIron Go app A MobileIron app that runs on an iOS device. It interacts with MobileIron Cloud to get
current security andmanagement information for the device. It interacts with the
AppConnect library to communicate necessary information to your app.

TheMobileIron
AppStation app

A MobileIron client app that runs on an iOS device. It interacts with MobileIron Cloud.
It can be used on the device instead of MobileIron Gowhen theMobileIron Cloud
tenant supports Mobile Apps Management (MAM) but not Mobile Device
Management (MDM). It interacts with the AppConnect library to communicate
necessary information to your app.

The AppConnect library TheMobileIron library that your app uses to get AppConnect information. The
AppConnect library is part of the AppConnect framework that your app includes.

TABLE 1.MOBILEIRONCOMPONENTS THATWORK WITH IOSCORDOVAPLUGIN

Note The Following:

l MobileIronCore, MobileIronConnectedCloud, andMobileIronCloudare eachalso referred to
as aMobileIron server.

l Mobile@Work, MobileIronGo, andMobileIron AppStation are eachalso referred to as a
MobileIron client app.

IMPORTANT: Some AppConnect features dependon the version ofMobileIronCore, MobileIronCloud,
Standalone Sentry, and theMobileIron client app.

MobileIronAppConnectcomponents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 17

Using a secure app

A device user can use a secure enterprise app only if:

l The device user has been authenticated through theMobileIron server.
The user must use theMobileIron client app to register the device with theMobileIron server. Registration
authenticates the device user.

l TheMobileIron server administrator has authorized the device user to use the app.

l The device user has entered a secure apps passcode or Touch ID/Face ID.
TheMobileIron server administrator configures whether a secure apps passcode, also called the
AppConnect passcode, is required, and configures its complexity rules. The administrator also configures
whether using Touch ID/Face ID, if available on the device, is allowed instead of the AppConnect
passcode.

The AppConnect passcode is not the same as the passcode used to unlock the device.

App responsibilities

Your app is responsible for:

l enforcing the authorization settings

l handling the data loss prevention settings

l using the app-specific configuration

TheMobileIron client app and AppConnect library responsibilities

TheMobileIron client app app and the AppConnect library are responsible for:

l authenticating the user to theMobileIron server

l authenticating to enterprise services using certificates

l tunneling network connections

l AppConnect passcode and Touch ID/Face ID handling

l protecting AppConnect-related data, such as configurations and certificates

Cordova Plugin variants

Due to Apple deprecating the UIWebView class, the AppConnect for iOS SDK is available in two variants: one
with UIWebView andWKWebView support, and another another withWKWebView support, but no UIWebView
support. The AppConnect SDK without UIWebView support is provided for apps that will be submitted to the App
Store. The Cordova plugin included with each variant of the SDK provides the same support as the SDK variant.

Usingasecureapp

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 18

AppConnect Cordova Plugin contents

The AppConnect Cordova Plugin is available in the AppConnect for iOS SDK ZIP file. The ZIP file is called
AppConnectiOSSDK_V<version>_<build>.zip, where:

l <version> is the version number of the SDK.

l <build> is the build number of the SDK.

The AppConnect for iOS ZIP file contains a plugins/cordova folder which contains:

l AppConnectCordovaPlugin_V<version number_xxx>.zip
This ZIP file contains all the plugin files, which include:

Contents Description

src/ios folder Contains the AppConnect library files. The AppConnect library provides your app
management and security capabilities. The AppConnect library facilitates communication
between your app and theMobileIron client app, which communicates with theMobileIron
server.

www folder Contains AppConnectCordova.js. This file contains the JavaScript interfaces that your app
uses to interact with the AppConnect library.

plugin.xml Defines the AppConnect Cordova Plugin.

Notices.pdf Contains license information

TABLE 2.CORDOVAPLUGINCONTENTS

l A Documentation folder containing this document.
Check for updates to this document as described inWhere to get the AppConnect for iOS Cordova Plugin.

l install_ac_cordova_plugin.sh, which is the script you use to install the AppConnect Cordova Plugin.

l A Samples folder containing the TestAppConnect example
This sample Cordova app demonstrates how an app uses the AppConnect Cordova Plugin. It displays its
authorization status, its app configuration, and its data loss prevention policies. Note that it only displays
the data loss prevention policies and authorization status, but does not enforce them.

Another plugins/cordova folder is available in the SDK_without_UIWebView folder, which contains the SDK
variant that does not support UIWebView.

AppConnect for iOS architecture

You app, using the AppConnect Cordova Plugin, interacts with theMobileIron client app. TheMobileIron client app
is Mobile@Work for iOS, MobileIron Go for iOS, or MobileIron AppStation for iOS. Mobile@Work interacts with
Core andMobileIron Go interacts with MobileIron Cloud. AppStation is used in certain use cases instead of
MobileIron Go to interact with MobileIron Cloud when aMobileIron Cloud tenant is set up for Mobile Apps
Management (MAM) but not Mobile DeviceManagement (MDM). The AppConnect library also interacts with
Standalone Sentry for AppTunnel support.

AppConnectCordovaPlugincontents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 19

The following diagram illustrates these interactions between an AppConnect app, the AppConnect library, the
MobileIron server, theMobileIron client and the Standalone Sentry. The diagram uses MobileIron Core for the
server andMobile@Work for the client.

FIGURE 1.APPCONNECT FOR IOS ARCHITECTURE

Note The Following:

AppConnect for iOSarchitecture

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 20

l Each secure enterprise appcommunicateswith an instance of the AppConnect library.

l The AppConnect library communicateswith theMobileIron client app.

l The appuses the AppConnect Cordova JavaScript API to get management and security-
related information, suchaswhether the administrator has authorized the app to run on the
device.

l TheMobileIron client appcommunicateswith theMobileIron server to get management and
security-related information.

l TheMobileIron server whichprovides security andmanagement for an enterprise’s devices, and
for the apps anddata on those devices. Anadministrator configures the security and
management features using awebportal.

l The AppConnect library interactswith a Standalone Sentry if it is tunneling network connections
to anenterprise server behind the firewall.

TheMobileIron client app and AppConnect apps

TheMobileIron client app supports AppConnect apps, including the following tasks:

l It communicates with theMobileIron server to get management and security-related information and
passes the information to the AppConnect apps.
TheMobileIron client app periodically does an app checkinwith theMobileIron server to get this
information. The administrator configures the app checkin interval on theMobileIron server. It is the
maximum time between app checkins while an AppConnect app is running.

l It enforces the AppConnect passcode or Touch ID/Face ID.
TheMobileIron client app prompts the device user to create an AppConnect passcode or Touch ID/Face
ID when first launching any AppConnect app. You configure an auto-lock timeout in the AppConnect global
policy. After this period of inactivity, TheMobileIron client app prompts the device user to reenter his
AppConnect passcode or Touch ID/Face ID.

When you run your AppConnect app, theMobileIron client app sometimes automatically launches to support app
checkin and the AppConnect passcode or Touch ID/Face ID. Understanding theMobileIron client app’s expected
behavior can help you when you test your AppConnect app.

App checkin and the MobileIron client app

On each app checkin, theMobileIron client app gets AppConnect policy updates for all the AppConnect apps that
have already run on the device. These updates include changes to data loss prevention policies, password
settings, app configurations, and AppTunnel settings.

For example, for Mobile@Work, these updates are due to changes onMobileIron Core to:

l the AppConnect global policy for the device.

l AppConnect container policies for each of the AppConnect apps that have run on the device.

l AppConnect app configurations for each of the AppConnect apps that have run on the device.

l the current authorization status for each of the AppConnect apps that have run on the device.

TheMobileIronclientappandAppConnectapps

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 21

TheMobileIron client app does an app checkin in the following situations:

l The device user launches an AppConnect app for the first time.
In this situation, theMobileIron client app finds out about the app for the first time, and adds it to the set of
AppConnect apps for which it gets updates.

l The app checkin interval expires while an AppConnect app is running.

l The app checkin interval expired while no AppConnect apps were running and then the device user
launches an AppConnect app.

In each of these situations, theMobileIron client app launches, and the device user sees the theMobileIron client
app appmomentarily. Once theMobileIron client app has completed the app checkin, the device user automatically
returns to the AppConnect app.

The AppConnect passcode auto-lock time and the MobileIron client app

TheMobileIron client app launches to prompt the device user for the AppConnect passcode or Touch ID/Face ID in
the following situations:

l The auto-lock (inactivity) timeout expires while the device is running an AppConnect app and the
AppConnect passcode, or Touch ID/Face ID, is the login mechanism.

NOTE: If the device user is interactingwith the app, the auto-lock time does not expire. This case
occurs onlywhen the device user has not touched the device for the duration of the
timeout interval.

l The device user used theMobileIron client app to log out of AppConnect apps, and then launches an
AppConnect app.

l TheMobileIron server administrator has changed the complexity rules of the AppConnect passcode, and
an app checkin occurs.

In each of these situations, theMobileIron client app launches, and presents the device user with a screen for
entering his AppConnect passcode or Touch ID/Face ID. After the device user enters the passcode or Touch
ID/Face ID, the device user automatically returns to the AppConnect app.

Product versions required
To develop and deploy an app that uses the AppConnect for iOS Cordova Plugin, you need certain products.
MobileIron supports a set of product versions, and a larger set of product versions are compatiblewith apps built
with this version of the AppConnect Cordova Plugin.

l Supported product versions: The functionality of the product and version with currently supported
releases was systematically tested as part of the current release and, therefore, will be supported.

l Compatible product versions: The functionality of the product and version with currently supported
releases has not been systematically tested as part of the current release, and therefore not supported.

TheAppConnectpasscodeauto-lock timeandtheMobileIronclientapp

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 22

Based on previous testing (if applicable), the product and version is expected to function with currently
supported releases.

The following table summarizes supported and compatible product versions. This information is current at the time
of this release. For MobileIron product versions released after this release, see that product version's release notes
for themost current support and compatibility information.

Product Supported versions Compatible versions

iOS 11.0.0 - 13.5.1 9.0 and lower are not supported

Cordova release and Cordova
iOS native platform

7.0.0
with Cordova iOS native platform
4.4.0

Releases after 7.0.0 with Cordova
iOS native platform 4.4.0

MobileIron Core and
Connected Cloud

10.5.0.0, 10.6.0.0 , 10.7.0.0 10.3.0.0 - 10.4.0.0

Standalone Sentry 9.7.3, 9.8.1 9.5.0 - 9.6.0

Mobile@Work for iOS 12.3.0, 12.2.2 12.0.0 - 12.1.0

MobileIron Cloud 70 Not applicable

MobileIron Go 5.4.0 4.0.0 - 5.4.0

MobileIron AppStation 1.3.0 Not applicable

TABLE 3. SUPPORT AND COMPATIBILITY

IMPORTANT: Some AppConnect features dependon the version ofMobileIronCore, MobileIron Cloud,
Standalone Sentry, and theMobileIron client app.

Securing andmanaging the app using the AppConnect library
A MobileIron server administrator configures how mobile device users can use secure enterprise applications. The
administrator sets the following app-related settings that impact your app’s behavior:
• Authorization
• AppConnect passcode and Touch ID/Face ID policy
• Configuration specific to the app
• AppTunnel
• Certificate authentication to enterprise services
• Custom keyboard control
• Data loss prevention policies

Additionally, the AppConnect library uses encryption to protect AppConnect-related data, as descrobed in Data
protection. However, this protection requires no additional MobileIron server configuration besides requiring an
AppConnect passcode or device passcode.

Securingandmanaging theappusing theAppConnect library

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 23

The following steps show the flow of information from theMobileIron server to your app:
1. TheMobileIron server administrator decides which app-related settings to apply to a device or set of devices.
2. TheMobileIron server sends the information to theMobileIron client app.
3. TheMobileIron client app passes the information to the AppConnect library, which is part of the AppConnect

Cordova Plugin. TheMobileIron client app and the AppConnect library enforce the AppConnect passcode
policy. The AppConnect library enforces tunneling.

4. Using the AppConnect for iOS Cordova Plugin APIs, your app can find out the current settings and receive
events about changes.

Your app is responsible for:
• enforcing authorization
• handling the data loss prevention policies
• using the configuration specific to the app.

Authorization

TheMobileIron server administrator determines:
• whether or not each device user is authorized to use each secure enterprise app.

If the user is not authorized, the app should not allow the user to access any secure data or functionality. If the
app handles only secure data and functionality, then the app does nothingmore than display amessage that
the user is not authorized to use the app.

• the situations that cause an authorized device user to become unauthorized.
These situations include, for example, when the device OS is compromised. TheMobileIron client app reports
device information to theMobileIron server. The server then determines whether to change the user to
unauthorized based on security policies on the server.
When a user becomes unauthorized, the app should stop allowing the user access to any secure data or
functionality.

• the situations that retire the app.
Retiring an appmeans that the user is not authorized to use it, and the app removes all secure data associated
with the app.

When an app is retired, you remove all its secure data. When a user is unauthorized but the app is not retired, you
do not allow the user to access the data, but you do not have to remove it. The reason is that an unauthorized user
can become authorized again, and therefore the secure data should become available again.

Your app uses the AppConnect for iOS Cordova Plugin to get the user’s authorization status for using the app and
to be notified of changes. For more information, see Authorization API details.

AppConnect passcode and Touch ID/Face ID policy

TheMobileIron server administrator determines:
• whether the AppConnect passcode or Touch ID/Face ID is required, which requires the device user to enter a

passcode or Touch ID/Face ID to access any secure enterprise apps.
• the complexity of the AppConnect passcode.
• the auto-lock time for the AppConnect passcode or Touch ID/Face ID.

The AppConnect library and theMobileIron client app enforce an AppConnect passcode as follows:

Authorization

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 24

• TheMobileIron server notifies theMobileIron client app when the server administrator has enabled an
AppConnect passcode or Touch ID/Face ID. TheMobileIron client app prompts the user to set the passcode
the next time that the device user launches or switches to a secure enterprise app.

• TheMobileIron client app prompts the user to enter the passcode or Touch ID/Face ID when the user
subsequently launches or switches to a secure enterprise app but the inactivity timeout has expired.

• TheMobileIron client app prompts the user to enter the passcode or Touch ID/Face ID when the auto-lock time
expires while the user is running a secure enterprise app.

• TheMobileIron client app prompts the user to set the passcode the next time the device user launches or
switches to a secure enterprise app after theMobileIron server has notified theMobileIron client app that the
passcode’s complexity rules have changed.

Your app does not handle the AppConnect passcode or Touch ID/Face ID at all. The AppConnect library and the
MobileIron client app enforce the passcode or Touch ID/Face ID, and auto-lock time.

Configuration specific to the app

Sometimes an app requires app-specific configuration. Some examples are:
• the address of a server that the app interacts with
• whether particular features of the app are enabled for the user
• user-related information from LDAP, such as the user’s ID and password
• certificates for authenticating the user to the server that the app interacts with

You determine the app-specific configuration that your app requires. Each configurable item is a key-value pair.
Each key and value is a string. A MobileIron server administrator specifies the key-value pairs for each app on the
MobileIron server. The administrator applies the appropriate set of key-value pairs to a set of devices. Sometimes
more than one set of key-value pairs exists on the server for an app if different users require different
configurations. For example, the administrator can assign a different server address to users in Europe than to
users in the United States.

NOTE: When the value is a certificate, the value contains the base64-encodedcontents of the
certificate, which is a SCEP or PKCS-12certificate. If the certificate is password encoded, the
MobileIron server automatically sends another key-value pair. The key’s name is the string <name
of key for certificate>_MI_CERT_PW. The value is the certificate’s password.

Your app uses the AppConnect for iOS Cordova Plugin to get the configuration and to be notified of changes. Then
your app applies the configuration according to its requirements. For more information, see App-specific
configuration API details .

AppTunnel

UsingMobileIron’s AppTunnel feature, a secure enterprise app can securely tunnel HTTP and HTTPS network
connections from the app to servers behind an organization’s firewall. A Standalone Sentry is necessary to support
AppTunne with HTTP/S tunneling. TheMobileIron server administrator handles all AppTunnel configuration on the
server. Once the administrator has configured tunneling for the app on the server, the AppConnect library, the
MobileIron client app, and a Standalone Sentry handle tunneling for the app.

Configuration specific to theapp

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 25

Your app typically does not take any special actions related to tunneling. Although your app uses a server address
that results in tunneling, your app does not know that tunneling is occurring. Typically, theMobileIron server
administrator uses AppConnect’s app-specific configuration to specify the enterprise server URL that the app
uses. See Configuration specific to the app.

If your app requires locally cached URL responses, it must take a special action. See Caching tunneled URL
responses.

Supported APIs

AppTunnel with HTTP/S tunneling supports typical JavaScript network APIs, such as XMLHttpRequest or jQuery
calls. More generally, AppTunnel with HTTP/S tunneling supports any network API that Cordova binds to the
Objective-C APIs NSURLConnection or NSURLSession (although NSURLSession in a background session is not
supported). If you use a Cordova plugin that uses other Objective-C APIs, includingWKWebView, or accesses
sockets directly, AppTunnel with HTTP/S tunneling is not supported.

AppTunnel with TCP tunneling

AppTunnel can tunnel TCP traffic between an app and a server behind the company’s firewall. AppTunnel with
TCP tunneling does not require an app to be an AppConnect app; both AppConnect apps and standard apps can
use AppTunnel with TCP tunneling.TheMobileIron server administrator configures Advanced AppTunnel, including
installingMobileIron Tunnel (an iOS app) on the device. Your app takes no actions related to using AppTunnel with
TCP tunneling.

Certificate authentication to enterprise services

Without any development, an AppConnect app can send a certificate to identify and authenticate the app user to an
enterprise service when the app uses an HTTPS connection. TheMobileIron server administrator configures on the
server which certificate for the app to use, and which connections use it. The AppConnect library, which is part of
every AppConnect app, makes sure the connection uses the certificate.

Your app takes no action at all.

Supported networking methods

Certificate authentication to enterprise services is supported only if your app uses one of the following to access
the enterprise service:
• NSURLConnection
• NSURLSession

Certificate authentication to enterprise services does not support using NSURLSession in a background session.

• Networking libraries that use NSURLConnection or NSURLSession.
• UIWebView

SupportedAPIs

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 26

Unsupported networking methods

Certificate authentication to enterprise services using other networkingmethods is not supported. For example, the
following are not supported:
• accessing sockets directly
• WKWebView and other APIs that access sockets directly

For example, these APIs are not supported: CFNetwork, ASIHTTPRequest, and Apple's reachability APIs that
detect network and host connectivity.

Data loss prevention policies

An app can leak data if it uses iOS features such as copying to the iOS pasteboard, document interaction (Open
In), drag and drop, and print capabilities. A MobileIron server administrator specifies on the server whether each
app is allowed to use each of these features.

Specifically:
• the print policy indicates whether the app is allowed to use: AirPrint, any future iOS printing feature, any current

or future third-party libraries or apps that provide printing capabilities.
Your app enforces the print policy by enabling or disabling printing capabilities based on the print policy.

• The pasteboard policy specifies whether your app is allowed to copy content to the iOS pasteboard. If copying
content is allowed, the policy specifies whether all apps, or only AppConnect apps, can paste the copied
content from the pasteboard.
The AppConnect library enforces the pasteboard policy. Your app disables or enables any special user
interfaces that allow copying.

• TheOpen In policy specifies the apps, including the extensions that apps provide, with which your app can
share documents. The policy specifies no apps, all apps, all AppConnect apps, or a set of apps. A set of apps
is called the whitelist. Whether your app can share documents with the native iOS mail app is also controlled by
the Open In policy.
The AppConnect library enforces the Open In policy. Your app disables or enables any special user interfaces
that give the user the option to useOpen In.

• TheOpen From policy specifies the apps, including the extensions that apps provide, from which your app can
receive documents when the other app uses the Open In iOS feature. The policy specifies no apps, all apps, all
AppConnect apps, or a set of apps. A set of apps is called the whitelist. The AppConnect library enforces this
policy. Your app provides no code to support this policy.

• The drag and drop policy specifies whether AppConnect apps can drag content to all other apps, to only other
AppConnect apps, or not at all. The AppConnect library enforces this policy. Your app provides no code to
support this policy.

The administrator applies the appropriate policies to a set of devices. Sometimes more than one set of policies
exists on theMobileIron server for an app if different users require different policies.

Your app uses the AppConnect for iOS Cordova Plugin to get the data loss prevention policies and to be notified of
changes. Then your app handles the policies according to its requirements.

For more information, see:
• Pasteboard policy API details
• Open In policy API details

Unsupportednetworkingmethods

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 27

• Print policy API details

Custom keyboard control

Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. To stop this potentially harmful data loss, the
MobileIron server administrator configures whether custom keyboards are allowed for an app by setting a key-value
pair in the app’s configuration. The key is calledMI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS. The key-value
pair is consumed by the AppConnect library; your app does not receive it.

When the key is present, the AppConnect library controls custom keyboard use according to the key’s value. If the
value is true, the AppConnect library allows the AppConnect app to use custom keyboards. If the value is false, the
AppConnect library does not allow custom keyboard use.

If the server administrator does not include the key-value pair for your app, the AppConnect library does not allow
the app to use custom keyboards.

Related topics
Disallow custom keyboard use

Data protection

TheMobileIron client app and the AppConnect library work together to use encryption to protect AppConnect-
related data, such as configurations and certificates, on the device.

The encryption key is not stored on the device. It is either:
• Derived from the device user’s AppConnect passcode.
• Protected by the device passcode if the administrator does not require an AppConnect passcode.
• Protected by the device passcode if the device user uses Touch ID/Face ID to access AppConnect apps.

If no AppConnect passcode or device passcode exists, the data is encrypted, but the encryption key is not
protected by either passcode.

Your app does not handle data protection for AppConnect-related data.TheMobileIron client app and the
AppConnect library provide this data protection.

Customkeyboardcontrol

2

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 28

Getting started with the AppConnect for iOS
Cordova Plugin

• Upgrade tasks
• Getting started tasks
• Troubleshooting

Upgrade tasks
To upgrade an app that uses a prior version of the AppConnect for iOS Cordova Plugin to use version 4.3.0, use the
appropriate task list in the following table.

Cordova plugin version from
which you are upgrading

Upgrade task list

Version 4.0 through 4.2.1 • Update the AppConnect for iOS Cordova Plugin in your app with the new
plugin

• Declare the alt-appconnectURL scheme in your app’s Info.plist as
another allowed URL scheme.
See Declare the AppConnect URL schemes as allowed.

Prior to Version 4.0 • Update the AppConnect for iOS Cordova Plugin in your app with the new
plugin

• Declare the alt-appconnectURL scheme in your app’s Info.plist as
another allowed URL scheme.
See Declare the AppConnect URL schemes as allowed.

• Add AppConnect-related entries to your Info.plist.
• Update Xcode project settings
• If you blocked custom keyboard usage in your app, remove that code.

The AppConnect library handles whether custom keyboards are allowed.
For details, see Custom keyboard use controlled by MobileIron server.

TABLE 4. UPGRADE TASK LIST

Getting started tasks
Use these tasks to begin development of Cordova AppConnect apps.

Once you have completed these tasks, your app is ready to use the Cordova plugin to, for example, enforce
MobileIron server settings and apply app-specific configurations from theMobileIron server.

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 29

Before you begin
• Get the latest version of the AppConnect for iOS Cordova Plugin from https://help.mobileiron.com/s/software.
• Be sure you have the required product versions for working with apps built with the AppConnect for iOS

Cordova plugin.
See Product versions required .

Getting started task list

Do the following tasks to add the AppConnect for iOS Cordova Plugin to your app:
1. Run the AppConnect Cordova Plugin installation script
2. Declare the AppConnect URL schemes as allowed
3. Add AppConnect-related entries to your Info.plist
4. Update Xcode project settings
5. Initialize the AppConnect library
6. Wait for the AppConnect library to be ready

Optionally, you can create an AppConnect.plist file. See Specify app permissions and configuration in a plist file.

Run the AppConnect Cordova Plugin installation script

The AppConnect Cordova Plugin installation script is called install_ac_cordova_plugin.sh. The script does the
following:
• Installs the AppConnect Cordova Plugin into your Cordova app.
• Creates the iOS platform directory for your app if it was not already created.
• Modifies main.m in the iOS platform directory to include code that the AppConnect Cordova Plugin requires.

If you delete the iOS platform directory and re-create it without using the script, follow the instructions in Code
changes if youmanually recreate the iOS platform directory.

To run install_ac_cordova_plugin.sh:
1. Put the AppConnectCordovaPlugin_<version number>.zip and install_ac_cordova_plugin_sh files in a

convenient directory.
2. Change to the top-level directory of your app’s Cordova project.

This directory contains the subdirectories plugins, www, hooks, and platforms, and contains the project’s
config.xml file.

3. Run the script.
For example, if the plugin zip file and the script are also in the top-level directory:
$./install_ac_cordova_plugin.sh -p AppConnectCordovaPlugin_V2_0_0_0.zip
The -p option is the relative or absolute path of the plugin zip file.

Declare the AppConnect URL schemes as allowed

Declare the appconnect and the alt-appconnectURL schemes in your app’s Info.plist as allowed URL schemes.
Your app’s instance of the AppConnect library:

Before youbegin

https://help.mobileiron.com/s/software

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 30

l uses the appconnect URL scheme to communicate with Mobile@Work or MobileIron Go.

l uses the alt-appconnect URL scheme to communicate with MobileIron AppStation.

To allow the appconnect and alt-appconnect URL schemes, add a key called LSApplicationQueriesSchemes
as shown in this example from HelloAppConnect’s HelloAppConnect-Info.plist:

FIGURE 2.APPCONNECTURL SCHEME VIEWED INXCODE

Do the following steps (based on Xcode 7.1):
1. Open the app’s .xcodeproj file in Xcode.
2. Select your app’s Info.plist file.
3. Select Editor > Add Item in themenu.
4. For the Key, enter LSApplicationQueriesSchemes.
5. For the Type, select Array.
6. Select the new key.
7. Select Editor -> Add Item.
8. Set the value of the Item to appconnect.
9. Select the new key again.
10. elect Editor -> Add Item.
11. Set the value of the Item to alt-appconnect.

Add AppConnect-related entries to your Info.plist
• Enable screen blurring
• Allow Face ID

AddAppConnect-relatedentries to your Info.plist

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 31

Enable screen blurring

The AppConnect library can automatically blur your app’s screen whenever it is not active, and unblur it when the
screen becomes active again. This security measure protects the app’s data from being captured in screenshots.

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a Boolean.
Set the value to YES.

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, theMobileIron server administrators
can disable screen blurring by setting a key-value pair on the server for your app’s configuration. The server key is
MI_AC_ENABLE_SCREEN_BLURRINGwith the value false.

NOTE: If youalready implemented screenblurring in your app, remove that code anduse theMI_AC_
PROVIDE_SCREEN_BLURplist key. Using the plist key ensures that all AppConnect apps behave
consistently.

Allow Face ID

IncludePrivacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose of
Face ID use. For example, add the valueAppConnect. If youmanually add this key, its name is
NSFaceIDUsageDescription.

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through themost recently released version as supported by MobileIron.

Update Xcode project settings

Running the AppConnect Cordova Plugin installation script created an Xcode project for your app.

In the Xcode project, do the following:
1. Add aRun Script section to theBuild Phases settings of your Xcode project’s target.
2. Add post_embed_actions.sh, located in the top-level of the extracted AppConnect SDK directory, to the scripts

to run.
This script removes extra architectures from the AppConnect app’s binary.

IMPORTANT: Removing desktoparchitectures is requiredbefore submitting your app to the
Apple App Store.

3. Make sureEnable Bitcode is set toNo inBuild Options in theBuild Settings of the Xcode project’s target.

Initialize the AppConnect library

To initialize the AppConnect library for your app to use, call the followingmethod when your app receives the
Cordova 'deviceready' event:
AppConnectCordova.initialize();

After this step, the AppConnect library is initializing. However, the app cannot yet use the other AppConnect
Cordova Plugin interfaces.

Enable screenblurring

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 32

Wait for the AppConnect library to be ready

The AppConnect Cordova Plugin generates the 'appconnect.isReady' event when the AppConnect library
initialization has completed.

Do the following:
1. Add an event handler for the 'appconnect.isReady' event as part of your app’s initialization. For example:

document.addEventListener('appconnect.isReady', this.onAppConnectIsReady, false);

2. Indicate in the user interface that the app is initializing if the app requires the AppConnectCordova JavaScript
interfaces to determine what to do. For example, use an activity indicator (spinner).
One reason this indication is important involves when to display sensitive data. Do not show any sensitive data
until the AppConnect library is ready, because until that time, the app cannot determine whether it is authorized.
Only an authorized app should show sensitive data.

3. In the event handler for the 'appconnect.isReady' event:
- Remove the activity indicator after the app receives the 'appconnect.isReady' event.
- Access other AppConnectCordova JavaScript interfaces such as authState(), authMessage(), and

config() and take actions appropriate for your app.

Before accessing AppConnectCordova JavaScript interfaces other than initialize(), always check the
isReady() method. Doing so allows you to use the samemethods when the app first launches and throughout
execution.

4. Handle events that the AppConnect Cordova Plugin generates.
These events indicate changes to the authorization status, data loss prevention policies, and app-specific
configuration. For details, see AppConnect for iOS Cordova Plugin API.

Specify app permissions and configuration in a plist file

If your app is an in-house app, you can specify default values for:
• the data loss prevention policies, such as the Open In policy
• the key-value pairs for your app-specific configuration

Specifically, you can provide a special plist file called AppConnect.plist as part of your in-house app that:
• specifies whether your app should be allowed by default to copy to the iOS pasteboard, use document

interaction (Open In), and print.
• specifies app-specific configuration keys and default values.

These default values are used by theMobileIron server to make it easier for the server administrator to set up your
app with the correct data loss prevention policies and app-specific configurations. Your app never reads the
AppConnect.plist.

When you include the AppConnect.plist in your app:
1. When an administrator uploads your in-house app to theMobileIron server, the server uses this plist file to

automatically create server policies that contain your specified data loss prevention policies and app-specific
configuration.

2. The administrator can then edit these policies.
For example:

Wait for theAppConnect library tobe ready

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 33

- If one of your app-specific configuration keys requires a URL of an enterprise server, the administrator
provides that value.

- If the administrator requires stricter data loss prevention policies than your app’s default values, the
administrator changes the values.

3. The administrator then applies these policies to the appropriate set of devices.
4. When your app runs, it receives the data loss prevention policies and app-specific configuration by using the

AppConnect for iOS Cordova Plugin APIs, described in AppConnect for iOS Cordova Plugin API.
For example, to handle app-specific configurations, you use the AppConnectCordova.config() method to get
the key-value pairs.

If the administrator later changes the data loss prevention policies or app-specific configuration, your app receives
the updates by using the AppConnect for iOS Cordova Plugin APIs.

You can create an AppConnect.plist file using the Xcode project in your app’s ios platform directory. For example:
$HOME/Hello/platforms/ios/HelloWorld/HelloWorld.xcodeproj

An example of an AppConnect.plist file as viewed in Xcode looks like the following:

FIGURE 3.APPCONNECT.PLIST VIEWED IN XCODE

To set up an AppConnect.plist file using Xcode:
1. Open the .xcodeproj file in Xcode.
2. Right-click on the project name, such as HelloWorld, in the left pane.
3. Select New File.
4. Select Resource.
5. Select Property List.
6. Click Next.
7. Save as AppConnect.plist.
8. In the Root key of AppConnect.plist, place a key called bundleid with the type String, and set the value to the

bundle ID of your app.
9. In the Root key of AppConnect.plist, create two keys called policy and config, each with the type Dictionary.
10. In the policy dictionary, create keys called openin, openinwhitelist, openfrom,

openfromwhitelist,pasteboard, and print, each with the type String.
11. Set these keys’ values as given in the following table:

Specifyapppermissions andconfiguration inaplist file

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 34

Key Possible values and meanings

openin • allow
Document interaction is allowed with all other apps.

• disable
Document interaction is not allowed.

• whitelist
Only documents in the openinwhitelist list can open documents from your
app.

• appconnect
Document interaction is allowed with all other AppConnect apps.

NOTE: This value results in the app receiving awhitelist in the Open In
policyAPI. The whitelist contains the list of all currently authorized
AppConnect apps. Youdo not enter an openinwhitelist key in the
plist. See Open In policyAPI details .

openinwhitelist Semicolon separated list of the bundle IDs of the apps with which document
interaction is allowed. This key is necessary when the openin key has the value
whitelist.

openfrom • allow
The app is allowed to receive documents from all other apps when they use
Open In.

• disable
The app is not allowed to receive documents from any other apps when they
useOpen In.

• whitelist
The app is allowed to receive documents only from apps listed in the
openfromwhitelist .

• appconnect
The app is allowed to receive documents only from other AppConnect apps.

Specifyapppermissions andconfiguration inaplist file

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 35

Key Possible values and meanings

openfromwhitelist Semi-colon separated list of the bundle IDs of the apps from which the app is
allowed to receive documents. This key is necessary when the openfrom key has
the value whitelist.

pasteboard • allow
Pasteboard interaction is allowed with all other apps. That is, this option allows
the device user to be able to copy content from your app to the iOS pasteboard.
Then, any app can copy from the content from the pasteboard.

• disable
Pasteboard interaction is not allowed.

• appconnect
Pasteboard interaction is allowed only with other AppConnect apps. That is,
this option allows the device user to be able to copy content from your app to
the iOS pasteboard. Then, only other AppConnect apps can copy the content
from the pasteboard.

print • allow
Printing is allowed.

• disable
Printing is not allowed.

12. In the config dictionary, create keys as required for your app.
13. Optionally, add values for the keys. The values must be String types.

The value $USERID$ in the example tells Core to substitute the device user’s user ID for the value. Other possible
variables are $EMAIL$ and $PASSWORD$. Depending on the Core configuration, custom variables called $USER_
CUSTOM1$ through $USER_CUSTOM4$ are sometimes available.

Code changes if youmanually recreate the iOS platform directory

The AppConnect Cordova Plugin installation script creates the iOS platform directory for your app if it was not
already created. It alsomodifies main.m in the iOS platform directory to include code that the AppConnect Cordova
Plugin requires.

If you delete the iOS platform directory and re-create it without using the script, edit main.m as follows:
1. Add the following line to the import statements:

#import "AppConnect/AppConnect.h"
2. Change the third argument of the call to UIApplicationMain() to

kACUIApplicationClassName.
The third argument, the principalClassName argument, is the UIApplication class or subclass for the app. The
modified statement in the sample app is:

int retVal = UIApplicationMain(argc, argv, kACUIApplicationClassName,
@"AppDelegate");

Codechanges if youmanually recreate the iOSplatformdirectory

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 36

Troubleshooting

App crashes due to not waiting for AppConnect ready event

Problem

Your app crashes due to the following uncaught exception:
Function <function name> called before AppConnect is ready.

For example:
Function authState() called before AppConnect is ready.

The AppConnect library throws this exception if the app calls any of the following AppConnect Cordova Plugin
methods before the AppConnect library is ready:
• AppConnectCordova.managedPolicy()
• AppConnectCordova.authState()
• AppConnectCordova.authMessage()
• AppConnectCordova.pasteboardPolicy()
• AppConnectCordova.openInPolicy()
• AppConnectCordova.openInWhitelist()
• AppConnectCordova.printPolicy()
• AppConnectCordova.config()

Solution

Refactor your code tomake sure you check AppConnectCordova.isReady() before calling the listedmethods. If
AppConnectCordova.isReady() returns true, you can access themethods. If AppConnectCordova.isReady()
returns false, wait for the AppConnect Cordova Plugin to generate the 'appconnect.isReady' event before
calling themethods.

See AppConnect ready API details .

Troubleshooting

3

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 37

AppConnect for iOS Cordova Plugin API

l AppConnect for iOS Cordova Plugin overview

l AppConnect ready API details

l Authorization API details

l App-specific configuration API details

l Pasteboard policy API details

l Open In policy API details

l Print policy API details

l Getting the AppConnect library version

l Caching tunneled URL responses

l iOS active state change events due to AppConnect control switches

AppConnect for iOS Cordova Plugin overview
The AppConnect for iOS Cordova Plugin provides these capabilities to your app:
• Initializing the AppConnect library
• Getting the user’s authorization status, and receiving events about changes
• Getting app-specific configuration, and receiving events about changes
• Getting data loss prevention policies, and receiving events about changes
• Getting the version of the AppConnect library
• Allowing cached responses for URL requests that use AppTunnel with HTTP/S tunneling.
• Getting notifications of iOS active state changes due to certain control switches to and from theMobileIron

client app.

The AppConnect Cordova Plugin JavaScript interface is defined in AppConnectCordova.js. It defines
enumerations andmethods for interacting with the plugin. An app also interacts with the plugin by handling events
that the plugin generates.

Dual-mode app capabilities

If your AppConnect app is distributed from the Apple App Store, due to Apple App Store requirements, your app is
required to work as either:
• an AppConnect app for enterprise users
• a regular app for general consumers

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 38

Such an app is called a dual-mode app. Using one code base and APIs in the AppConnect for iOS Cordova Plugin,
the app determines which way to behave. Depending on the app, the functionality available as a regular app can
differ significantly from the functionality available as an AppConnect app.

AppConnect apps distributed from the Apple App Store must be dual-mode apps. If you are a third-party
app developer, you typically build apps for Apple App Store distribution. If you are an in-house app developer, your
apps are typically distributed from theMobileIron server.

For more information, see Developing third-party dual-mode apps.

The AppConnectCordova JavaScript interface

The AppConnectCordova.js file defines the AppConnect Cordova Plugin Javascript interface. This interface
includes themethod that you use to initialize the AppConnect library. For details, see Initialize the AppConnect
library.

The AppConnectCordova interface also declares themethods that your app uses to interact with the AppConnect
library. However, the app cannot interact with the AppConnect library until the AppConnect library has completed
its initialization. For details about checking when the AppConnect library is ready, see:
• Wait for the AppConnect library to be ready
• AppConnect ready API details

For details of each of the AppConnectCordova interface’s methods, see:
• AppConnect ready API details
• Authorization API details
• App-specific configuration API details
• Pasteboard policy API details
• Open In policy API details
• Print policy API details
• Getting the AppConnect library version
• Caching tunneled URL responses

NOTE: The AppConnectCordova interface also providesmethods specifically for dual-mode apps.
Thesemethods are described inDeveloping third-party dual-mode apps.

Event handling overview

The AppConnect Cordova Plugin generates events when it has new information to report to your app. Your app
adds event listeners to its document object for these events, and provides event handlers.

Your app handles events about changes to:
• the ready status of the AppConnect library
• the user’s authorization status
• app-specific configuration
• data loss prevention policies
• upload progress for data tunneled with AppTunnel

TheAppConnectCordovaJavaScript interface

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 39

In the event handlers, your app:
1. Makes appropriate changes to its logic, display, and data.
2. In most cases, calls amethod of the AppConnectCordova interface to inform the AppConnect library about its

success or failure in making the changes.

AppConnect Cordova Plugin events

Add event listeners to the document object for these events:

Event name Description

'appconnect.isReady' The AppConnect library has finished initializing. Your app can
now access the properties andmethods of the AppConnect
Cordova Plugin.

Handling this event is required.

'appconnect.authStateChangedTo' The authentication state has changed.

Handling this event is required.

'appconnect.configChangedTo' The app-specific configuration settings have changed.

Handling this event is optional. Handle it only if your app uses
app-specific configuration.

'appconnect.openInPolicyChangedTo' TheOpen In policy has changed.

Handling this event is optional. Handle it only if your app uses
the Open In feature.

'appconnect.pasteboardPolicyChangedTo' The pasteboard policy has changed.

Handling this event is optional. Handle it only if your app
copies content to the pasteboard.

'appconnect.printPolicyChangedTo' The print policy has changed.

Handling this event is optional. Handle it only if your app is
able to print.

'appconnect.uploadProgressDidChange' Upload progress for AppTunnel data has changed.

Handling this event is optional. Handle it if your app supports
tunneling data with AppTunnel.

For details about handling each event, see:
• AppConnect ready API details
• Authorization API details
• App-specific configuration API details
• Pasteboard policy API details
• Open In policy API details
• Print policy API details

AppConnectCordovaPluginevents

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 40

Event handling acknowledgments

Your appmust inform the AppConnect library of your app’s success or failure in applying changes it receives in
events. Depending on the type of event, your app calls one of the followingmethods of the AppConnectCordova
interface:

AppConnectCordova.authStateApplied()
AppConnectCordova.configApplied()
AppConnectCordova.openInPolicyApplied()
AppConnectCordova.pasteboardPolicyApplied()
AppConnectCordova.printPolicyApplied()

NOTE: No event acknowledgment methodexists for 'appconnect.isReady'.

Each event acknowledgment method takes two parameters:
• an AppConnectCordova.ACPolicyState enumeration value:

AppConnectCordova.prototype.ACPolicyState = {
UNSUPPORTED: 0, // The policy is not supported by this application
APPLIED: 1, // The policy was applied successfully
ERROR: 2 // An error occurred applying the policy

}

Typically, you pass either APPLIED or ERROR. If you do not call the acknowledgment method for one of the
optional events, the AppConnect Cordova Plugin behaves as if your app had called themethod with
UNSUPPORTED.

• a string value, which is amessage explaining the AppConnectCordova.ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the update. The string is reported in the
MobileIron server log files.

NOTE: Two other optional parameters are also in the function definition, but you should not pass these
parameters.

AppConnect ready API details

The 'appConnect.isReady' event

The AppConnect library begins its initialization when your app calls AppConnectCordova.initialize(). The
AppConnect Cordova Plugin generates the 'appconnect.isReady' event when the AppConnect library has
completed its initialization.

The isReady() method

The AppConnectCordova JavaScript interface provides an isReady() method:
AppConnectCordova.isReady()

This method indicates whether the AppConnect Cordova Plugin is ready for the app to access its other methods.

Return value: true or false

Event handlingacknowledgments

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 41

IMPORTANT: The appcanaccess the othermethods only if AppConnectCordova.isReady() returns true. If
AppConnectCordova.isReady() returns false, an attempt to access anothermethod
causes the AppConnect library to throwanexception, and the appwill crash.

When your app calls AppConnectCordova.initialize(), the AppConnect library begins its initialization, which
concludes with the AppConnect Cordova Plugin generating the 'appconnect.isReady' event. The return value of
AppConnectCordova.isReady() is false until that time. Then it will return true. The value remains true for the
life of the app.

Event handler for 'appConnect.isReady' event

You are required to add an event listener to your document object for the 'appconnect.isReady' event. For
example:
document.addEventListener('appconnect.isReady', this.onAppConnectIsReady, false);

The AppConnect Cordova Plugin generates the 'appconnect.isReady' event one time when the AppConnect
library initialization is complete. The app starts the initialization by calling AppConnectCordova.initialize().

In your event handler:
• Update the app with the current authorization status, data loss prevention policies, and configuration key-value

pairs.
The information is available by calling these AppConnectCordovamethods:
- AppConnectCordova.authState()
- AppConnectCordova.authMessage()
- AppConnectCordova.pasteboardPolicy()
- AppConnectCordova.openInPolicy()
- AppConnectCordova.openInWhitelist()
- AppConnectCordova.printPolicy()
- AppConnectCordova.config()

• Remove the user interface indication that informed the user that the app was initializing.

NOTE: Always update the app’s policies andconfiguration status in the event handler for the
'appconnect.isReady' event. The AppConnect Cordova Plugin generates this event when the
app is launched, after the AppConnect library finishes its initialization. The AppConnect Cordova
Plugin generates other events, suchas the events for authorization, data loss prevention policies,
andconfiguration, only if the status has changed. Therefore, you canalways expect all these
events on the first launchof the app. However, subsequent launches often result in the
AppConnect Cordova Plugin generating only the 'appconnect.isReady' event.

Authorization API details
The AppConnect Cordova Plugin provides an enumeration, an event, andmethods that allow an app to handle the
device user’s authorization status for using the app. For an overview of this feature, see Authorization .

Event handler for 'appConnect.isReady'event

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 42

The ACAuthState enumeration

The ACAuthState enumeration provides the possible authorization statuses for the device user to use the
application:

AppConnectCordova.prototype.ACAuthState = {
UNAUTHORIZED: 0, // The user is not authorized to access sensitive

// data or views in this app.

AUTHORIZED: 1, // This is the only state in which the user is
// authorized to access sensitive data or views.

RETIRED: 2 // The app must erase all sensitive data,
// including any stored authentication
// credential.

}

The authState() and authMessage() methods

The authState() method

The followingmethod returns the current authorization status of the device user for using the app:
AppConnectCordova.authState()

Return value: An AppConnectCordova.ACAuthState enumeration value.

The authMessage() method

The followingmethod returns a string value that indicates the reason for the current authorization status:

AppConnectCordova.authMessage()

Return value: A string explaining the current authorization status

Calling authState() and authMessage() when your app launches

When your app launches:
1. Upon receiving the Cordova 'deviceready' event, call themethod AppConnectCordova.initialize().
2. Wait for the AppConnectCordova event 'appconnect.isReady' before calling the

AppConnectCordova.authState() or the AppConnectCordova.authMessage() methods.
3. While waiting, indicate in the user interface that the app is initializing if the app requires AppConnectCordova

methods such as AppConnectCordova.authState() to determine what to do. For example, use an activity
indicator (spinner).
One reason this indication is important involves when to display sensitive data. Do not show any sensitive data
until the AppConnect Cordova Plugin is ready, because until that time, the app cannot determine whether it is
authorized. Only an authorized app should show sensitive data.

In the event handler for the 'appconnect.isReady' event, check the return value of the
AppConnectCordova.authState() method. Do the following:

TheACAuthState enumeration

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 43

1. Remove the indication that the app is initializing.
2. If the status is not the AppConnectCordova.ACAuthState value AUTHORIZED:

- Do not allow the user to see or access sensitive data.
- Display the string returned by the AppConnectCordova.authMessage() method.

3. If the status is the AppConnectCordova.ACAuthState value AUTHORIZED, allow the user to see and access
sensitive data. Typically, the app does not display the AppConnectCordova.authMessage() string when the
status is AUTHORIZED.

Method return values after updates to authorization status

On any updates to authorization status or message while the app is running, the AppConnect Cordova Plugin
generates the 'appconnect.authStateChangedTo' event. Subsequent calls to the
AppConnectCordova.authState() and AppConnectCordova.authMessage() methods return the updated
authorization status andmessage.

The 'appconnect.authStateChangedTo' event

The AppConnect Cordova Plugin generates the 'appconnect.authStateChangedTo' event when the
authorization state or authorizationmessage changes after the plugin initialization is completed.

The event object passed to the event handler contains:

Event object properties Description

newAuthState An AppConnectCordova.ACAuthState enumeration value

authMessage A string explaining the new authorization status

Event handler for 'appConnect.authStateChangedTo' event

When a change has occurred to the user’s authorization status, the AppConnect Cordova Plugin:
1. Stores the new AppConnectCordova.ACAuthState value so that subsequent calls to the

AppConnectCordova.authState() method returns the updated authorization status.
2. Stores the new string value explaining the new authorization status so that subsequent calls to the

AppConnectCordova.authMessage() method return the updated authorizationmessage.
3. Generates the 'appconnect.authStateChangedTo' event.

You are required to add an event listener to your document object for the 'appconnect.authStateChangedTo'
event. For example:

document.addEventListener('appconnect.authStateChangedTo',
this.onAppConnectAuthStateChangedTo, false);

Your app handles the new status as follows:

Method returnvalues after updates toauthorization status

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 44

New status App actions

UNAUTHORIZED • Exits any sensitive part of the application.
• Stops allowing the user to access sensitive data and views.
• Displays themessage received in the event that explains the authorization

status change.
• Calls the AppConnectCordova.authStateApplied() method.

AUTHORIZED • Allows the user to access sensitive data and views.
• Calls the AppConnectCordova.authStateApplied() method.

RETIRED • Exits any sensitive part of the application.
• Deletes all sensitive data, including any stored authentication credentials,

data in files, keychain items, pasteboard data, and any other persistent
storage.

• Displays themessage received in the event that explains the authorization
status change.

• Calls the AppConnectCordova.authStateApplied() method.

NOTE: The AppConnect Cordova Plugin cangenerate the event whenonly the explanatory string, but
not the authorization status, has changed. When the status is UNAUTHORIZED or RETIRED, the
message typically contains a new reason for the status. Display the newmessage.

The authStateApplied() method

After your event handler processes the information provided in the 'appconnect.authStateChangedTo' event, it
must call this acknowledgment method:
AppConnectCordova.authStateApplied(policyState, message)

Your app passes the following parameters to this method:
• the AppConnectCordova.ACPolicyState value that represents the success or failure of handling the new

authorization status.
Pass the value APPLIED if the app successfully handled the new status. Otherwise, pass the value ERROR.
Passing the value UNSUPPORTED is not allowed, because every appmust handle authorization status changes.

• a string explaining the AppConnectCordova.ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the new authorization status. The string
is reported in theMobileIron server log files.

The displayMessage() method

The AppConnect Cordova Plugin provides amethod that causes the theMobileIron client app to display the current
authorization status message:
AppConnectCordova.displayMessage(message)

In most cases, your production app does not use this method. Your production app is responsible for displaying the
message that it receives in the event handler for an authorization status change. Your app controls exactly when
and how to display the string.

TheauthStateApplied()method

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 45

However, you can temporarily use this method when your app is under development. For example, when the status
changes to UNAUTHORIZED, your appmust exit all sensitive views. This requirement canmake displaying the
message difficult, depending on the application. In this case, use the AppConnectCordova.displayMessage()
method until you are able to fully develop your app.

App-specific configuration API details
The AppConnect Cordova Plugin provides an enumeration, an event, andmethods that allow an app to receive
app-specific configuration from theMobileIron server. For an overview of this feature, see Configuration specific to
the app.

The config() method

The followingmethod returns the current key-value pairs for the app-specific configuration:
AppConnectCordova.config()

Return value: A JavaScript object of key-value pairs. Each key and value is a string corresponding to the key and
value configured on theMobileIron server. For example:

[
{"serverURL", "enterpriseServer.finance.com"},
{"userID", "jdoe@myenterprise.com"},
{"appAdvancedFeaturesEnabled", "true"}

]

If no key-value pairs are configured on theMobileIron server, the return value is an empty object: []

Calling config() when your app launches

When your app launches:
1. Upon receiving the Cordova 'deviceready' event, call themethod AppConnectCordova.initialize().
2. Wait for the AppConnectCordova event 'appconnect.isReady' before calling the

AppConnectCordova.config() method.
3. In the event handler for the 'appconnect.isReady' event, call the AppConnectCordova.config() method. It

returns the key-value pairs, if any, that are configured on theMobileIron server for the app. Apply the
configuration according to your application’s requirements and logic.

config() return value after updates to app-specific configuration

On any updates to the app-specific configuration while the app is running, the AppConnect Cordova Plugin
generates the 'appconnect.configChangedTo' event. Subsequent calls to the AppConnectCordova.config()
return the updated key-value pairs.

App-specific configurationAPI details

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 46

The 'appconnect.configChangedTo' event

The AppConnect Cordova Plugin generates the 'appconnect.configChangedTo' event when the app-specific
configuration changes after the plugin initialization is completed.

The event object passed to the event handler contains:

Event object
properties

Description

newConfig A JavaScript object of key-value pairs. Each key and value is a string corresponding
to the key and value configured on theMobileIron server.

For example:

[
{"serverURL", "enterpriseServer.finance.com"},
{"userID", "jdoe@myenterprise.com"},
{"appAdvancedFeaturesEnabled", "true"}

]

If no key-value pairs are configured on theMobileIron server, the return value is an
empty object: []

Event handler for 'appConnect.configChangedTo' event

When a change has occurred to the app-specific configuration on theMobileIron server, the AppConnect Cordova
Plugin:
1. Stores the updated JavaScript object of key-value pairs so that subsequent calls to the

AppConnectCordova.config() method return the updated key-value pairs.
2. Generates the 'appconnect.configChangedTo' event.

You can optionally add an event listener to your document object for the 'appconnect.configChangedTo' event.
For example:

document.addEventListener('appconnect.configChangedTo',
this.onConfigChangedTo, false);

Add this event listener only if your app uses app-specific configuration key-value pairs that theMobileIron server
administrator configures on the Admin Portal.

In the event handler, your app:
• Applies the configuration according to your application’s requirements and logic.
• Calls the AppConnectCordova.configApplied() method.

The configApplied() method

After your event handler processes the information provided in the 'appconnect.configChangedTo' event, it
must call this acknowledgment method:
AppConnectCordova.configApplied(policyState, message)

The 'appconnect.configChangedTo'event

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 47

Your app passes the following parameters to this method:
• the AppConnectCordova.ACPolicyState value that represents the success or failure of handling the new

configuration.
Pass the value APPLIED if the app successfully handled the new configuration. Otherwise, pass the value
ERROR. Pass the value UNSUPPORTED if your app does not support configuration from theMobileIron server. If
you do not implement an event handler for the 'appconnect.configChangedTo' event, the AppConnect
Cordova Plugin behaves as if you passed it UNSUPPORTED.

• a string explaining the AppConnectCordova.ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the app-specific configuration updates.
The string is reported in theMobileIron server log files.

Pasteboard policy API details
The AppConnect Cordova Plugin provides an enumeration, an event, andmethods that allow an app to handle its
pasteboard policy as determined by theMobileIron server. For an overview of this feature, see Data loss prevention
policies.

This policy determines whether your app is allowed to copy content to the pasteboard. This policy does not impact
whether your app is allowed to paste content from the pasteboard into your app.

The ACPasteboardPolicy enumeration

The AppConnectCordova.ACPasteboardPolicy enumeration provides the possible pasteboard statuses for the
app:

AppConnectCordova.prototype.ACPasteboardPolicy = {
UNAUTHORIZED: 0, // The application cannot write data to the pasteboard.

// The AppConnect library enforces this status and ensures
// that the app cannot modify the pasteboard contents.

AUTHORIZED: 1, // The application may write data
// to the pasteboard which gets shared among all apps.
// (Both AppConnect and non-AppConnect apps can read this data).

SECURECOPY: 2 // The application may write data to the general pasteboard which
// is shared with authorized AppConnect apps.
// The AppConnect library implements the underlying technology so
// that the data written to the general pasteboard by one
// AppConnect app is only readable by authorized AppConnect apps.
// If the app is not authorized, or if the device user has not
// entered the AppConnect passcode when required, writing to the
// general pasteboard will fail, and reading from
// it will read unsecured content, if any.

}

Handle the pasteboard policy status as follows:
• Both AUTHORIZED and SECURECOPY indicate that copying content to the pasteboard is allowed. The

AppConnect library handles making sure all apps or only AppConnect apps can paste the data. When the value

PasteboardpolicyAPI details

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 48

is SECURECOPY, the AppConnect library encrypts the data copied to the pasteboard, and decrypts the data
when it is pasted to another AppConnect app.

• The status UNAUTHORIZED indicates that writing data to the pasteboard is not allowed. The AppConnect library
enforces the status UNAUTHORIZED. Therefore, with this status, even if you use an API to write to the
pasteboard, the data is not written.

- Although the AppConnect library does not allow writing data to the pasteboard, your app should disable
special user interfaces, if any, that it uses for copying content to the pasteboard. By disabling such user
interfaces, your app does not give the end user the impression that copying is possible when the
AppConnect library has disabled it.

- iOS behavior still causes the copy button to display, which can cause an end user who taps the copy button
to expect that text has been copied.

Requirements for successful secure copy to pasteboard

The pasteboard policy SECURECOPY means that the AppConnect library encrypts and decrypts pasteboard data.
However, this encryption requires that:
• The app is authorized.
• The device user has entered the AppConnect passcode (or Touch ID/Face ID), if theMobileIron server

administrator required one.

If either of these requirements are not true when the pasteboard policy is SECURECOPY:
• Writing content to the pasteboard (copying) fails. No data is written.
• Reading content from the pasteboard (pasting) reads unsecured content, if any.

The pasteboardPolicy() method

The followingmethod returns the current status of the pasteboard policy for the app:
AppConnectCordova.pasteboardPolicy()

Return value: An AppConnectCordova.ACPasteboardPolicy enumeration value.

Calling pasteboardPolicy() when your app launches

The AppConnect library enables or disables the app’s ability to copy content to the pasteboard depending on the
pasteboardPolicy value:
• Copying is enabled for AUTHORIZED.
• Copying is disabled for UNAUTHORIZED.
• Copying is enabled for SECURECOPY, unless the app is unauthorized or the user has not entered a required

AppConnect passcode.

When your app launches:
1. Upon receiving the Cordova 'deviceready' event, call themethod AppConnectCordova.initialize().
2. Wait for the AppConnectCordova event 'appconnect.isReady' before calling the

AppConnectCordova.pasteboardPolicy() method.

Requirements for successful secure copytopasteboard

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 49

3. In the event handler for the 'appconnect.isReady' event, depending on the
AppConnectCordova.ACPasteboardPolicy value returned from AppConnectCordova.pasteboardPolicy(),
disable or enable special user interfaces, if any, that the app uses for copying content to the pasteboard.
Although the AppConnect library enables or disables writing data to the pasteboard, your app should not give
the end user the impression that copying is possible when the AppConnect library has disabled it.

pasteboardPolicy() return value after updates to pasteboard policy

On any updates to the pasteboard policy while the app is running, the AppConnect Cordova Plugin generates the
'appconnect.pasteboardPolicyChangedTo' event. Subsequent calls to the
AppConnectCordova.pasteboardPolicy() method returns the updated pasteboard policy.

The 'appconnect.pasteboardPolicyChangedTo' event

The AppConnect Cordova Plugin generates the 'appconnect.pasteboardPolicyChangedTo' event when the
pasteboard policy changes after the plugin initialization is completed.

The event object passed to the event handler contains:

Event object
properties

Description

newPasteboardPolicy An AppConnectCordova.ACPasteboardPolicy enumeration value

Event handler for 'appConnect.pasteboardPolicyChangedTo' event

When a change has occurred to the pasteboard policy on theMobileIron server, the AppConnect Cordova Plugin:
1. Stores the new AppConnectCordova.ACPasteboardPolicy value so that subsequent calls to the

AppConnectCordova.pasteboardPolicy() method return the updated policy.
2. Disables or enables copying to the pasteboard as follows:

- Enables copying for AUTHORIZED.
- Disables copying for UNAUTHORIZED.
- Enables copying SECURECOPY, unless the app is unauthorized or the user has not entered a required

AppConnect passcode..
3. Generates the 'appconnect.pasteboardPolicyChangedTo' event.

You can optionally add an event listener to your document object for the
'appconnect.pasteboardPolicyChangedTo' event. For example:

document.addEventListener('appconnect.pasteboardPolicyChangedTo',
this.onPasteboardPolicyChangedTo, false);

Add this event listener only if your app copies content to the pasteboard. This policy does not impact whether your
app is allowed to paste content from the pasteboard into your app.

Your app handles the new status as follows:

pasteboardPolicy() returnvalueafter updates topasteboardpolicy

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 50

New status App actions

UNAUTHORIZED • Disables special user interfaces, if any, that the app uses for copying
content to the pasteboard. Although the AppConnect library disables writing
data to the pasteboard, your app should not give the end user the
impression that copying is possible when the AppConnect library has
disabled it.

• Calls the AppConnectCordova.pasteboardPolicyApplied() method.

AUTHORIZED or
SECURECOPY

• Enables special user interfaces, if any, that the app uses for copying
content to the pasteboard.

• Calls the AppConnectCordova.pasteboardPolicyApplied() method.

The pasteboardPolicyApplied() method

After your event handler processes the information provided in the 'appconnect.pasteboardPolicyChangedTo'
event, it must call this acknowledgment method:
AppConnectCordova.prototype.pasteboardPolicyApplied(policyState, message)

Your app passes the following parameters to this method:
• the AppConnectCordova.ACPolicyState value that represents the success or failure of handling the new

pasteboard policy.
Pass the value APPLIED if the app successfully handled the new policy. Otherwise, pass the value ERROR.
Pass the value UNSUPPORTED if your app does not support copying content to the pasteboard. If you do not
implement an event handler for the 'appconnect.pasteboardPolicyChangedTo' event, the AppConnect
Cordova Plugin behaves as if you passed it UNSUPPORTED.

• a string explaining the AppConnectCordova.ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the new pasteboard policy. The string
is reported in theMobileIron serverlog files.

Open In policy API details
The AppConnect Cordova Plugin provides an enumeration, an event, andmethods that allow an app to handle its
Open In policy as determined by theMobileIron server. For an overview of this feature, see Data loss prevention
policies.

Specifically, when an app is allowed to useOpen In, it can share a document with another app on the device. This
capability:
• is usually presented to the user as anOpen Inmenu item.
• includes sending documents or document portions by encoding them in custom URLs handled by other

applications.

Internally, a Cordova app can use either the UIDocumentInteractionController or UIActivityViewController classes
from Objective-C. The class which the app uses impacts Open In handling as described in Overview of Open In
handling.
• Overview of Open In handling

ThepasteboardPolicyApplied()method

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 51

• The ACOpenInPolicy enumeration
• The openInPolicy() and openInWhitelist() methods
• The 'appconnect.openInPolicyChangedTo' event
• Event handler for 'appConnect.openInPolicyChangedTo' event
• The openInPolicyApplied() method
• Info.plist key related to the Open In policy

Overview of Open In handling

The behavior of the AppConnect library, and the actions your app takes, depend on theOpen In policy status.

The possible status values are:
• AUTHORIZED -- The application is allowed to useOpen In.
• UNAUTHORIZED -- The application is not allowed to useOpen In.
• WHITELIST -- The application is allowed to useOpen In to send documents only to apps in the whitelist.

IMPORTANT:
• Regardless of the Open In policy status, when an appmakes anOpen In request, iOS always displays all the

apps that support the document type.
• Do not use the Objective-C class UIActivityViewController to perform Open In functionality. For example,

make sure any Cordova plugin you use to provide the iOS Open In capability does not use
UIActivityViewController. Because of iOS implementation, the AppConnect library cannot determine which
app the end user selects, and therefore, whether the app is in the whitelist. To ensure security, the AppConnect
library does not allow Open In to any app when theOpen In policy is ACOPENINPOLICY_WHITELIST and the
class used is UIActivityViewController.

The following table summarizes the behavior of the AppConnect library and the actions your app takes. It assumes
you use UIDocumentInteractionController, and do not use UIActivityViewController.

Open In
status

AppConnect library actions Your app’s actions

AUTHORIZED The AppConnect library performsno actionsonOpen In
behavior.

Enable user interfaces, if any, that give the user the option
to useOpen In.

For example, if your app presents amenu item for Open
In, themenu item should be enabled.

UNAUTHORIZED If a user tapson anyof the apps, the AppConnect library
substitutesa dummy file with amangled name.
Therefore, the target app cannot open the file. Target
app error handling varies. For example, some apps
displayan error pop-up.

Disable user interfaces, if any, that give the user the
option to useOpen In.

For example, if your app presents amenu item for Open
In, themenu item should be disabled.

Bydisabling such user interfaces, your app doesnot give
the end user the impression that Open In is possible when
the AppConnect library hasdisabled it.

WHITELIST If a user tapson an app that is not in the whitelist, the
AppConnect library substitutesa dummy file with a
mangled name. Therefore, the target app cannot open

Enable user interfaces, if any, that give the user the option
to useOpen In.

For example, if your app presents amenu item for Open

OverviewofOpen Inhandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 52

Open In
status

AppConnect library actions Your app’s actions

the file. Target app error handling varies. For example,
some appsdisplayan error pop-up.

In, themenu item should be enabled.

The ACOpenInPolicy enumeration

The AppConnectCordova.ACOpenInPolicy enumeration provides the possible Open In statuses for the app:

AppConnectCordova.prototype.ACOpenInPolicy = {
UNAUTHORIZED: 0, // The application may not use Open In.
AUTHORIZED: 1 // The application may use Open In.
WHITELIST: 2 // The application may only use Open In to send

// documents to applications in the whitelist.
}

The openInPolicy() and openInWhitelist() methods

OpenInPolicy() method

The followingmethod returns the current status of the Open In policy for the app:
AppConnectCordova.openInPolicy()

Return value: An AppConnectCordova.ACPOpenInPolicy enumeration value.

OpenInWhitelist() method

The followingmethod returns the current Open In whitelist for the app. The whitelist is the set of apps to which your
app is allowed to send documents. Because the AppConnect library enforces Open In to only the whitelisted apps,
your app uses this list only if it wants to inform the user about the list.
AppConnectCordova.openInWhitelist()

Return value: An array. Each array element is a string which is the bundle ID of an app in the whitelist.

NOTE: When the Open In policy on theMobileIron server specifies “All AppConnect apps”, the Open In
status value is ACOPENINPOLICY_WHITELIST. The openInWhitelist lists all the currently authorized
AppConnect apps. Therefore, your apphandles the “All AppConnect apps” server setting the
sameway it handles the “whitelist” server setting.

For example:

["com.somecompany.someapp","com.anothercompany.anotherapp","com.thatcompany.thatapp"]

Calling OpenInPolicy() and OpenInWhitelist() when your app launches

When your app launches:
1. Upon receiving the Cordova 'deviceready' event, call themethod AppConnectCordova.initialize().
2. Wait for the AppConnectCordova event 'appconnect.isReady' before calling the OpenInPolicy() method.

TheACOpenInPolicyenumeration

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 53

3. In the event handler for the 'appconnect.isReady' event, enable or disable user interfaces, if any, that give
the user the option to use the Open In feature. The choice depends on the
AppConnectCordova.ACPOpenInPolicy value returned from AppConnectCordova.OpenInPolicy().

Method return values after updates to Open In policy

On any updates to the Open In policy while the app is running, the AppConnect Cordova Plugin generates the
'appconnect.OpenInPolicyChangedTo' event. Subsequent calls to the AppConnectCordova.openInPolicy()
and AppConnectCordova.openInWhitelist() methods return the updated Open In policy and whitelist.

The 'appconnect.openInPolicyChangedTo' event

The AppConnect Cordova Plugin generates the 'appconnect.openInPolicyChangedTo' event when theOpen In
policy or whitelist changes after the plugin initialization is completed.

The event object passed to the event handler contains:

Event object
properties

Description

newOpenInPolicy An AppConnectCordova.ACOpenInPolicy enumeration value

newWhitelist An array. Each array element is a string which is the bundle ID of an app in the
whitelist.

For example:

["com.somecompany.someapp","com.anothercompany.anotherapp"]

Because the AppConnect library enforces Open In to only the whitelisted apps, your
app uses this list only if it wants to inform the user about the list.

NOTE: When the Open In policy on theMobileIron server specifies “All
AppConnect apps”, the newOpenInPolicy value is WHITELIST. The
newWhitelist value lists all the currently authorizedAppConnect
apps. Therefore, your apphandles the “All AppConnect apps”
server setting the sameway it handles the “whitelist” server setting.

Event handler for 'appConnect.openInPolicyChangedTo' event

When a change has occurred to the Open In policy or whitelist on theMobileIron server, the AppConnect Cordova
Plugin:
1. Stores the new ACOpenInPolicy value so that subsequent calls to the AppConnectCordova.openInPolicy()

method return the updated policy.
2. Stores the new value of the whitelist so that subsequent calls to the AppConnectCordova.openInWhitelist()

method return the updated whitelist.
3. Generates the 'appconnect.openInPolicyChangedTo' event.

Method returnvalues after updates toOpen Inpolicy

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 54

You can optionally add an event listener to your document object for the 'appconnect.openInPolicyChangedTo'
event. For example:

document.addEventListener('appconnect.openInPolicyChangedTo',
this.onOpenInPolicyChangedTo, false);

Add this event listener only if your app uses the Open In feature.

Your app handles the new status as follows:

New status App actions

UNAUTHORIZED • Disables user interfaces, if any, that give the user the option to use the
Open In feature.

• Calls the AppConnectCordova.openInPolicyApplied() method.

AUTHORIZED • Enables user interfaces, if any, that give the user the option to use the
Open In feature.

• Calls the AppConnectCordova.openInPolicyApplied() method.

WHITELIST • Enables user interfaces, if any, that give the user the option to use the
Open In feature.

• Calls the AppConnectCordova.openInPolicyApplied() method.

The openInPolicyApplied() method

After your event handler processes the information provided in the 'appconnect.openInPolicyChangedTo'
event, it must call this acknowledgment method:
AppConnectCordova.openInPolicyApplied(policyState, message)

Your app passes the following parameters to this method:
• the AppConnectCordova.ACPolicyState value that represents the success or failure of handling the new

Open In policy.
Pass the value APPLIED if the app successfully handled the new policy. Otherwise, pass the value ERROR.
Pass the value UNSUPPORTED if your app does not support the Open In feature. If you do not implement an event
handler for the 'appconnect.openInPolicyChangedTo' event, the AppConnect Cordova Plugin behaves as if
you passed it UNSUPPORTED.

• a string explaining the AppConnectCordova.ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the new Open In policy. The string is
reported in theMobileIron server log files.

Info.plist key related to the Open In policy

Your app can override the Open In policy when the policy blocks the iOS native email app when the app uses
OpenURLwith the mailto: scheme. Overriding the Open In policy for this scenario means that the iOS native
email app is opened even though theOpen In policy is one of the following:
• ACOPENINPOLICY_UNAUTHORIZED
• ACOPENINPOLICY_WHITELIST, and the whitelist does not contain the bundle IDs of the native iOS email app.

TheopenInPolicyApplied()method

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 55

To override the Open In policy for this scenario, add the key MI_AC_DISABLE_SCHEME_BLOCKINGwith the
value YES in theMI_APP_CONNECT dictionary in the app’s Info.plist.

NOTE: TheMobileIron server administrator canalso override the Open In policy for this scenario by
adding the keyMI_AC_DISABLE_SCHEME_BLOCKINGwith the value true to the app’s app-
specific configuration.

Print policy API details
The AppConnect Cordova Plugin provides an enumeration, an event, andmethods that allow an app to handle its
print policy as determined by theMobileIron server. For an overview of this feature, see Data loss prevention
policies.

The ACPrintPolicy enumeration

The AppConnectCordova.ACPrintPolicy enumeration provides the possible print statuses for the app:

AppConnectCordova.prototype.ACPrintPolicy = {
UNAUTHORIZED: 0, // The application may not use Print.
AUTHORIZED: 1 // The application may use Print.

}

The printPolicy() method

The followingmethod returns the current status of the print policy for the app:
AppConnectCordova.printPolicy()

Return value: An AppConnectCordova.ACPrintPolicy enumeration value.

Calling printPolicy() when your app launches

When your app launches:
1. Upon receiving the Cordova 'deviceready' event, call themethod AppConnectCordova.initialize().
2. Wait for the AppConnectCordova event 'appconnect.isReady' before calling the printPolicy() method.
3. In the event handler for the 'appconnect.isReady' event, enable or disable the app’s ability to print. Whether

to enable or disable printing depends on the AppConnectCordova.ACPrintPolicy value returned from
AppConnectCordova.printPolicy().

printPolicy() return value after updates to print policy

On any updates to the print policy while the app is running, the AppConnect Cordova Plugin generates the
'appconnect.printPolicyChangedTo' event. Subsequent calls to the AppConnectCordova.printPolicy()
method returns the updated print policy.

PrintpolicyAPI details

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 56

The 'appconnect.printPolicyChangedTo' event

The AppConnect Cordova Plugin generates the 'appconnect.printPolicyChangedTo' event when the print
policy changes after the plugin initialization is completed.

The event object passed to the event handler contains:

Event object
properties

Description

newPrintPolicy An AppConnectCordova.ACPrintPolicy enumeration value

Event handler for 'appConnect.printPolicyChangedTo' event

When a change has occurred to the print policy on theMobileIron server, the AppConnect Cordova Plugin:
1. Stores the new ACPrintPolicy value so that subsequent calls to the AppConnectCordova.printPolicy()

method return the updated policy.
2. Generates the 'appconnect.printPolicyChangedTo' event.

You can optionally add an event listener to your document object for the 'appconnect.printPolicyChangedTo'
event. For example:

document.addEventListener('appconnect.printPolicyChangedTo',
this.onPrintPolicyChangedTo, false);

Add this event listener only if your app is able to print.

Your app handles the new status as follows:

New status App actions

UNAUTHORIZED • Disables its ability to print.
• Calls the AppConnectCordova.printPolicyApplied() method.

AUTHORIZED • Enables its ability to print.
• Calls the AppConnectCordova.printPolicyApplied() method.

The AppConnectCordova.printPolicyApplied() method

After your event handler processes the information provided in the 'appconnect.printPolicyChangedTo' event,
it must call this acknowledgment method:
AppConnectCordova.prototype.printPolicyApplied (policyState, message)

Your app passes the following parameters to this method:
• the AppConnectCordova.ACPolicyState value that represents the success or failure of handling the new print

policy.
Pass the value APPLIED if the app successfully handled the new policy. Otherwise, pass the value ERROR.
Pass the value UNSUPPORTED if your app does not support printing. If you do not implement an event handler for

The 'appconnect.printPolicyChangedTo'event

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 57

the 'appconnect.printPolicyChangedTo' event, the AppConnect Cordova Plugin behaves as if you passed
it UNSUPPORTED.

• a string explaining the AppConnectCordova.ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the new print policy. The string is
reported in theMobileIron server log files.

Getting the AppConnect library version
The AppConnect Cordova JavaScript interface provides amethod that returns the version of the AppConnect
library.
AppConnectCordova.version ()

This method returns a string value. The value reflects the version of the AppConnect library that the AppConnect
Cordova Plugin is using.

A best practice is to report the AppConnect library version number on your app’s About page. This information is
useful to support organizations if a device user has any issues with the app.

For example, use the following statement to get the AppConnect library version:

var AppConnectVersion = AppConnectCordova.version();

Caching tunneled URL responses
Apps that access enterprise servers can use AppTunnel with HTTP/S tunneling, as described in AppTunnel. By
default, for a tunneled URL request:
• The data for the URL is reloaded from the originating source. Any existing locally cached response is ignored.
• The data in the response is not stored in the local cache.

The reason that AppTunnel with HTTP/S tunneling does not use locally cached responses is to avoid caching
sensitive enterprise server data on the device.

However, some apps have requirements to use locally cached responses. Some examples are:
• The app requires a response even when the device has no network connectivity.
• The app requires a customized response.

If your app requires locally cached responses for URL requests that use AppTunnel with HTTP/S tunneling, use
the following AppConnect Cordova Plugin method:
AppConnectCordova.allowLocalCachingForTunneledRequests(flag)

The value of flag has the following impact:
• true

Allows caching for requests and responses that use AppTunnel with HTTP/S tunneling. However, whether
caching actually occurs depends on the cache policy for the URL request.

• false

Getting theAppConnect libraryversion

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 58

Clears all cached responses, including responses for URL requests not using AppTunnel with HTTP/S
tunneling.

IMPORTANT:
• Wait for the AppConnectCordova event 'appconnect.isReady' before calling

AppConnectCordova.allowLocalCachingForTunneledRequests().
• Do not cache sensitive data.

iOS active state change events due to AppConnect control
switches
Control switches from an AppConnect app to theMobileIron client app and then back to the app in certain
situations. You can receive events when the app is about to move from or to the iOS active state due to these
AppConnect control switches.

Use these events to preserve your app’s state before it resigns from the iOS active state, and restore your app’s
state when it moves back to the iOS active state. For example, if your app is in full screenmode, preserve that fact
so that the app can return to full screenmode.

Optionally implement event listeners for the following events:
• 'appconnect.applicationWillResignActiveForAppConnect'
• 'appconnect.applicationDidBecomeActiveFromAppConnect'

Situations that trigger the state change notifications

The following situations trigger the iOS active state change notifications:
• The app checkin interval expires while an AppConnect app is running. TheMobileIron client app gets

AppConnect policy updates for all the AppConnect apps, and then control switches back to the app that was
running.

• The auto-lock time expires while an AppConnect is running.

NOTE: The following conditions also cause control to switch to theMobileIron client app, but do not
trigger the state change notifications:

• the first time an app is launched
• the first time an app is relaunched after iOS terminated it
• after the device is powered on and the device user first launches an AppConnect app.
• after the device user logs out of secure apps in theMobileIron client app, and then relaunches an AppConnect

app.

Furthermore, if control switches to theMobileIron client app, but, due to user actions, does not directly switch back
to the app, the AppConnect Cordova Plugin does not generate the
'appconnect.applicationDidBecomeActiveFromAppConnect' event. For example, the event is not generated if
control switches from the app to theMobileIron client app because the auto-lock time expires, but the user presses
the Home button instead of entering the AppConnect passcode.

iOSactive state changeevents due toAppConnectcontrol switches

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 59

Upload progress for AppTunnel data
The AppConnect library and theMobileIron client app are responsible for tunneling network connections using
AppTunnel with HTTP/S tunneling.

The AppConnect for iOS Cordova Plugin generates the 'appconnect.uploadProgressDidChange' event when an
AppConnect app uploads data through AppTunnel. The event is triggered only for URLs which are tunneled by
AppConnect as configured in theMobileIron unified endpoint manager (UEM). TheMobileIron UEM are: MobileIron
Core andMobileIron Cloud.

The 'appconnect.uploadProgressDidChange' event
To allow your app to display the upload progress for data uploaded through AppTunnel, add the following event
listener to your document object:

'appconnect.uploadProgressDidChange'

The following table describes the parameters.

Parameters Description

requestURL the requested URL

bytesWritten the number of bytes written in the latest write

totalBytesWritten the total number of bytes written for the connection with this request

totalBytesEx-
pectedToWrite

the number of bytes the connection expects to write

NOTE: In some cases, suchas for streams, the totalBytesExpectedToWrite
parametermaybe 0. The appconnect.uploadProgressDidChange
event is sent onNSURLSession delegate callback. The parameters from
the NSURLSession delegate callback
(URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpected
ToSend:) are forwarded to appconnect.uploadProgressDidChange
event.
See also Apple developer documentation:
https://developer.apple.com/documentation/foundation/nsurlsession
taskdelegate/1408299-urlsession?language=objc

TABLE 5.APPCONNECT.UPLOADPROGRESSDIDCHANGE EVENT PARAMETERS

Example

document.addEventListener('appconnect.uploadProgressDidChange',
this.uploadProgressDidChange,
false);

...
uploadProgressDidChange: function (event) {

Uploadprogress for AppTunneldata

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 60

console.log("(" + event.requestURL + ")uploadProgressDidChange: " + event.bytesWritten +
"B, " + event.totalBytesWritten + "B, " + event.totalBytesExpectedToWrite + "B");

document.getElementById('progress').innerHTML = "Uploading " +
event.totalBytesWritten + "B of " + event.totalBytesExpectedToWrite + "B";
}

The 'appconnect.uploadProgressDidChange'event

4

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 61

Developing third-party dual-mode apps

l What is a dual-mode app?

l Dual-mode app states

l High-level dual-mode app behavior

l Dual-mode API details

What is a dual-mode app?
If your AppConnect app is distributed from the Apple App Store, due to Apple App Store requirements, your app is
required to work as either:
• an AppConnect app for enterprise users
• a regular app for general consumers

Such an app is called a dual-mode app. Using one code base and APIs in the AppConnect for iOS Cordova Plugin,
the app automatically decides which way to behave the first time it launches. Running as an AppConnect app, the
app supports the AppConnect features, such as authorization, data loss prevention, and secure file I/O. Running
as a regular app, the app supports none of the AppConnect features. Furthermore, depending on the app, the
functionality available as a regular app can differ significantly from the functionality available as an AppConnect
app. For example, as a regular app, the app does not allow the user to access any sensitive enterprise data.

AppConnect apps distributed from the Apple App Store must be dual-mode apps. If you are a third-party
app developer, you typically build apps for Apple App Store distribution. If you are an in-house app developer, your
apps are typically distributed from theMobileIron server.

When running as an AppConnect app, the app is inAppConnect Mode, becauseMobileIron, through theMobileIron
server, theMobileIron client app, and the AppConnect library, provides AppConnect management. When running
as a regular app, the app is inNon-AppConnect Mode.

IMPORTANT: If your app is not distributed from the Apple App Store andworks only as anAppConnect
app, ignore the dual-mode capability andassociatedAPIs.

Dual-mode app states
An appmust maintain a dual-mode state that indicates whether it is in AppConnect Mode. It stores this state
persistently, so that when it next launches, it knows how to behave. The possible states are:
• Undecided

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 62

The app has initialized for the first time and has not yet decided whether to run in AppConnect Mode or Non-
AppConnect Mode.

• AppConnect Mode
The app is running as an AppConnect app. It supports the AppConnect features, such as authorization and
data loss prevention policies.

• Non-AppConnect Mode
The app is running as a regular app.

• Pending AppConnect Mode
The app changes to this state if the device user explicitly requests a change to AppConnect Mode using the
app’s user interface. For example, device users in an enterprise sometimes have installed and used an app
before the enterprise requires it as an AppConnect app. In this state, the app is waiting for an event from the
AppConnect Cordova Plugin to find out whether MobileIron AppConnect components aremanaging the app.

The following diagram summarizes the state transitions that a dual-mode app implements. See High-level dual-
mode app behavior for more information about these state transitions.

FIGURE 4.DUAL-MODE APP STATE TRANSITIONS

High-level dual-mode app behavior

When the app launches for the first time

When a dual-mode app launches for the first time, it does not know whether it is managed by MobileIron. It does the
following high-level steps:

High-leveldual-modeappbehavior

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 63

1. Sets its initial dual-mode state to Undecided.
2. Starts the AppConnect library.
3. Waits for an event from the AppConnect Cordova Plugin indicating whether MobileIron is managing the app.

For example, one typical reason that MobileIron is not managing the app is that theMobileIron client app is not
installed on the device.

4. Changes its state to AppConnect Mode or Non-AppConnect Mode according to the event.
- When changing to Non-AppConnect Mode, the app notifies the AppConnect library that it is retiring.

Normally, theMobileIron server decides when to retire an app. In this case, the app is retiring itself. Then
the app stops the AppConnect library. It behaves as a regular app.

- When changing to AppConnect Mode, the app behaves as an AppConnect app.
5. Stores the dual-mode state persistently for the next time it launches.

NOTE: Formore details, including specific API calls for these steps, see API call sequence when the app
launches for the first time.

When an app subsequently launches

On subsequent launches, the app does the following high-level steps:
1. Gets the dual-mode state that it stored.
2. Checks the dual-mode state.
3. If the state is AppConnect Mode, starts the AppConnect library.

The app continues as an AppConnect app.
4. If the state is Non-AppConnect Mode, continues as a regular app.

The app does not start the AppConnect library.

NOTE: Formore details, including specific API calls for these steps, see API call sequence when the app
subsequently launches.

User requests to switch to Non-AppConnect Mode

A dual-mode app provides a user interface that allows the device user to explicitly request that MobileIron no longer
manage the app. That is, the user requests a change to Non-AppConnect Mode. This user interface can be useful if
a device user leaves an enterprise, but still wants to use the app as a regular app.

Users are typically not aware of the term “AppConnect”. Therefore, the user interface should use other terminology.
For example, an app can use “Managed by MobileIron” in its user interface. Another possibility is “Secure enterprise
mode”.

When switching from AppConnect Mode to Non-AppConnect Mode, the app does the following high-level steps:
1. Removes all its secure data, since regular apps do not have secure data.
2. Notifies the AppConnect library that it is retiring.

Normally, theMobileIron server decides when to retire an app. In this case, the app is retiring itself.
3. Stops the AppConnect library.
4. Stores its dual-mode state, Non-AppConnect Mode, persistently for the next time it launches.
5. Continues running as a regular app.

For example, the app no longer enforces AppConnect policies.

Whenanappsubsequently launches

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 64

NOTE: Formore details, including specific API calls for these steps, see API call sequence when user
requests Non-AppConnect Mode.

User requests to switch to AppConnect Mode

A dual-mode app provides a user interface that allows the device user to explicitly request that MobileIronmanage
the app. That is, the user requests a change to AppConnect Mode. For example, device users in an enterprise
sometimes have installed and used an app before the enterprise requires it as an AppConnect app.

Users are typically not aware of the term “AppConnect”. Therefore, the user interface should use other terminology.
For example, an app can use “Managed by MobileIron” in its user interface. Another possibility is “Secure enterprise
mode”.

When switching from Non-AppConnect Mode to AppConnect Mode, the app does the following high-level steps:
1. Starts the AppConnect library.
2. Changes to the Pending AppConnect Mode state.
3. Waits for an event from the AppConnect library indicating that MobileIron is managing the app.
4. If the app receives the event that MobileIron is managing the app, the app changes state to AppConnect Mode,

and persistently stores the new state. It begins behaving as an AppConnect app. For example, it enforces DLP
policies.

NOTE: Formore details, including specific API calls for these steps, see API call sequence when user
requests AppConnect Mode.

Data loss prevention policy handling

When a dual-mode app changes from Non-AppConnect Mode to AppConnect Mode, it starts enforcing the
AppConnect data loss prevention policies that it supports. For example, if the app supports the Open In policy, it
allows document sharing only as directed by the policy it receives from the AppConnect library. When changing to
Non-AppConnect Mode, the app stops enforcing the AppConnect DLP policies.

Dual-mode API details
The AppConnect Cordova Plugin provides an enumeration, an event, andmethods that allow an app to behave as a
dual-mode app.

The ACManagedPolicy enumeration

The ACManagedPolicy enumeration provides the possible managed policy values for the app:

AppConnectCordova.prototype.ACManagedPolicy = {

UNKNOWN: 0, // The AppConnect library has not yet determined
// whether the app is managed by MobileIron.

User requests to switch toAppConnectMode

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 65

UNMANAGED: 1, // The application is not currently managed by MobileIron.

MANAGED: 2 // The application is currently managed by MobileIron.
}

ThemanagedPolicy() method

The followingmethod returns the current status of themanaged policy for app. Themanaged policy indicates
whether MobileIron is managing the app.
AppConnectCordova.managedPolicy()

Return value: An AppConnectCordova.ACManagedPolicy enumeration value.

NOTE: Currently, apps have no need to use the managedPolicy()method. Dual-mode appsdependon
events to instigate changes to the app’s dual-mode state.

The 'appconnect.managedPolicyChangedTo' event

The AppConnect Cordova Plugin generates the 'appconnect.managedPolicyChangedTo' event to provide
managed policy status updates after the plugin initialization is completed.

The event object passed to the event handler contains:

Event object
properties

Description

newManagedPolicy An AppConnectCordova.ACManagedPolicy enumeration value

Event handler for 'appConnect.managedPolicyChangedTo' event

When a change has occurred to themanaged policy, the AppConnect Cordova Plugin:
1. Stores the new ACManagedPolicy value so that subsequent calls to the AppConnectCordova.managedPolicy

() method return the updated policy.
2. Generates the 'appconnect.managedPolicyChangedTo' event.

In a dual-mode app, add an event listener to your document object for the
'appconnect.managedPolicyChangedTo' event. For example:

document.addEventListener('appconnect.managedPolicyChangedTo',
this.onManagedPolicyChangedTo, false);

Your app handles the new managed policy status by changing app’s state to AppConnect Mode or Non-
AppConnect Mode as described in:
• API call sequence when the app launches for the first time
• API call sequence when user requests Non-AppConnect Mode
• API call sequence when user requests Non-AppConnect Mode

ThemanagedPolicy()method

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 66

The stopmethod

The followingmethod shuts down the AppConnect library for the app.

AppConnectCordova.stop()

The app calls the AppConnectCordova.stop() method when it changes state to Non-AppConnect Mode.

If at a later time, the user requests to change to AppConnect Mode, the app restarts the AppConnect library.

For an example of when to call the AppConnectCordova.stop() method, see API call sequence when user
requests AppConnect Mode.

For an example of restarting the AppConnect library, see API call sequence when user requests AppConnect
Mode.

The retire method

The followingmethod informs the AppConnect library that the app is retiring. Normally, theMobileIron server
decides when to retire an app. In this case, the app is retiring itself.
AppConnectCordova.retire()

Calling retire() causes the AppConnect library to:
• clean up information it keeps about the app, including secure data.
• set its managedPolicy status for the app to UNKNOWN.

IMPORTANT: Anappmust call AppConnectCordova.retire() and then immediately call
AppConnectCordova.stop()when it is changing to Non-AppConnect Mode.

API call sequence when the app launches for the first time

When a dual-mode app launches for the first time, it does not know whether it is managed by MobileIron. It waits for
an 'appConnect.managedPolicyChangedTo' event to determine whether to continue in AppConnect Mode or
Non-AppConnect Mode.

Therefore, when launching for the first time, the app does the following:
1. Sets the dual-mode state to Undecided, and persistently stores it.
2. Starts the AppConnect library after receiving the the Cordova 'deviceready' event:

AppConnectCordova.initialize();
3. Waits for the 'appConnect.managedPolicyChangedTo' event.
4. In the event handler for the 'appConnect.managedPolicyChangedTo' event, the app changes its dual-mode

state. The state change depends on the value of the newManagedPolicy property in the event object:
- If the value is MANAGED, the app changes to AppConnect Mode.
- If the value is UNMANAGED, the app changes to Non-AppConnect Mode.

5. If the app changes to AppConnect Mode, it persistently stores its new dual-mode state. It begins behaving as
an AppConnect app. For example, it enforces DLP policies.

6. If the app changes to Non-AppConnect Mode, it does the following:

The stopmethod

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 67

- Calls AppConnectCordova.retire() and then stops the AppConnect library:

AppConnectCordova.retire();
AppConnectCordova.stop();

- Persistently stores its new state.
- Begins behaving as a regular, non-AppConnect app.

API call sequence when the app subsequently launches

When a dual-mode app subsequently launches, it relies on its persisted dual-mode state to determine whether the
behave as an AppConnect app.

When launching for a subsequent time, the app does the following:
1. Gets its persisted dual-mode state.
2. Continues as a regular, non-AppConnect app if the dual-mode state is Non-AppConnect Mode.

The app does not call AppConnectCordova.initialize() to start the AppConnect library in this case.

The remaining steps do not apply.
3. Starts the AppConnect library if the dual-mode state is anything except Non-AppConnect Mode.

AppConnectCordova.initialize();

4. Waits for the 'appconnect.isReady' event before accessing other AppConnectCordova JavaScript
interfaces such as AppConnectCordova.authState(), AppConnectCordova.authMessage(), and
AppConnectCordova.config().

5. Continues as an AppConnect app if the dual-mode state is AppConnect Mode.

API call sequence when user requests Non-AppConnect Mode

If the device user, through the app’s user interface, requests to change to Non-AppConnect Mode, the appmakes
the change.

The app does the following:
1. Performs its usual retire actions, such as removing all its sensitive data, since regular apps do not have

sensitive data.
2. Persistently saves its dual-mode state as Non-AppConnect Mode.
3. Calls the AppConnectCordova.retire() method, and then stops the AppConnect library.

AppConnectCordova.retire();
AppConnectCordova.stop();

4. Continues as a regular, non-AppConnect app.

When the app next launches, it checks its dual-mode state. Because the state is Non-AppConnect Mode, the app
does not start the AppConnect library.

API call sequencewhentheappsubsequently launches

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 68

API call sequence when user requests AppConnect Mode

If the device user, through the app’s user interface, requests to change to AppConnect Mode, the app attempts to
make the change.

The app does the following:
1. Changes to the Pending AppConnect Mode state.
2. Starts the AppConnect library by calling AppConnectCordova.initialize().
3. Waits for the 'appConnect.managedPolicyChangedTo' event.

In the event handler for the 'appConnect.managedPolicyChangedTo' event:
• If the newManagedPolicy property of the event object has the value UNMANAGED:

The app changes its dual-mode state back to Non-AppConnect Mode. The app persistently stores the state.
The app calls AppConnectCordova.retire(), and then stops the AppConnect library:

AppConnectCordova.retire();
AppConnectCordova.stop();

The app notifies the user of the failure to change to AppConnect Mode. It continues behaving as a regular, non-
AppConnect app.

• If the newManagedPolicy property in the even object has the value MANAGED:
The app changes its dual-mode state to AppConnect Mode. The app persistently stores the state.
The app checks if the authorization status is retired. If it is, the app performs its usual retire actions, such as
removing all its sensitive data.
Finally, the app notifies the user of the successful change to AppConnect Mode. It continues behaving as an
AppConnect app.

API call sequencewhenuser requests AppConnectMode

5

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 69

Best practices using the AppConnect for iOS
Cordova Plugin

The following are best practices for developing secure enterprise apps:
• Display authorization status in the home screen
• Allow the user to enter credentials manually
• Limit the size of configuration data from theMobileIron server
• Consider limitations when using the iOS simulator
• Enable the AppConnect library to blur screens when the app becomes inactive
• Do not put secure data in the app bundle
• Indicate to the user that the app is initializing
• Disallow custom keyboard use
• Provide documentation about your app to theMobileIron server administrator

Display authorization status in the home screen
When an app becomes unauthorized or retires, the AppConnect Cordova Plugin AppConnectCordova.authState
() method returns UNAUTHORIZED or RETIRED. Additionally, the AppConnectCordova.authMessage() method
returns a string that explains to the device user why the app is unauthorized or retired. The string sometimes also
explains what the device user can do tomake the app authorized again.

The app should display the AppConnectCordova.authMessage() string. However, consider that since the app is
now unauthorized or retired, the appmust exit its secure functionality. Therefore, the best user experience is to
display the string in a home view that never contains secure information.

The following alternatives for displaying the AppConnectCordova.authMessage() string are not recommended:
• Do not display the string on top of the current view. Beneath themessage, the current view can still have

secure information visible.
• Do not use the AppConnectCordova.displayMessage() method. This method does not match the look of your

app.
• Do not exit the app without displaying the string.

Allow the user to enter credentials manually
Always provide a way for a user to enter login credentials manually in your app. Provide this user interface even if
you are receiving login credentials in app-specific configuration information from the AppConnect library.

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 70

As described in Configuration specific to the app, aMobileIron server administrator can set up configuration
information for your app on the server. Your app receives the information using the AppConnect Cordova
interfaces. This information can include authentication credentials, such as username, password and certificates,
for a corporate service. Because the app receives the information, the device user does not have to enter the
information.

However, if the credentials change, the amount of time for the change to reach your application can vary. Some
variables that impact this notification include:
• the app checkin interval that the administrator configured on theMobileIron server. This value is themaximum

number of minutes until devices running AppConnect apps receive updates of their AppConnect policies and
app-specific configurations.

• whether the device has network coverage.

Therefore, providing changes to devices is not a real-time process and can take up to several hours. Therefore, if
the corporate service rejects the credentials, provide a way for the user to enter the credentials manually.

Limit the size of configuration data from theMobileIron server
Do not design your app to use large amounts of configuration data from theMobileIron server.

As described in Configuration specific to the app, a server administrator can set up configuration information for
your app on the server. Your app receives the information using the AppConnect Cordova Plugin. Use this
capability only for short strings and options, such as server addresses, authentication credentials, and certificates.

Do not use it for larger data items, such as documents, large blocks of HTML, or images. For large data items, use
a web service to deliver the items. Use AppConnect configuration only to provide the URL for the web service.

Although no precise upper limit is defined for an item configured on theMobileIron server, a large item can impact
server performance. It can also slow connectivity between theMobileIron server and theMobileIron client app for
iOS app. A very large item can possibly cause the communication protocol between theMobileIron server and the
MobileIron client app to fail entirely.

Consider limitations when using the iOS simulator
To fully test an AppConnect app, debug on a tethered device using Xcode, as you would for any other app. On a
device, your testing includes theMobileIron client app app, which is necessary for the complete flow of data from
theMobileIron server to your app.

You can do initial functionality testing in the iOS simulator in Xcode. However, when using the AppConnect
Cordova Plugin in the iOS simulator, the plugin interfaces behave as follows:
• AppConnectCordova.authState() returns AUTHORIZED
• AppConnectCordova.config() returns no entries
• AppConnectCordova.pasteboard() returns AUTHORIZED

Limit the size of configurationdata fromtheMobileIron server

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 71

• AppConnectCordova.openInPolicy() returns AUTHORIZED
• AppConnectCordova.printPolicy() returns AUTHORIZED

This behavior is necessary because no simulator version of theMobileIron client app is available, and the
MobileIron client app is necessary for your app to receive AppConnect Cordova Plugin events. Without the events,
the app’s authorization status cannot change to AUTHORIZED, and your app cannot execute its logic that accesses
its secure data and functionality. The AppConnect Cordova Plugin’s special simulator behavior solves this
problem, allowing you to use the iOS simulator to test your app’s functionality. You cannot, however, use the
simulator to test handling events from the AppConnect Cordova Plugin.

Enable the AppConnect library to blur screens when the app
becomes inactive
AppConnect 4.0 for iOS added support for blurring screens when the app becomes inactive. Use this capability of
the AppConnect library, as described in Enable screen blurring. If your app provided its own screen blurring,
remove that code. By using the AppConnect library’s screen blurring capability, all AppConnect apps behave
consistently.

Do not put secure data in the app bundle
Files that you package in your app bundle are not encrypted files. Also, files packaged with an app cannot be
modified at runtime. Therefore, these files are not secure. Therefore, include only non-sensitive data in the app
bundle.

Indicate to the user that the app is initializing
Indicate in the user interface that the app is initializing if the app requires the AppConnectCordova JavaScript
interfaces to determine what to do. For example, use an activity indicator (spinner). Remove the activity indicator
after the app receives the 'appconnect.isReady' event.

One reason this indication is important involves when to display sensitive data. Do not show any sensitive data
until the AppConnect library is ready, because until that time, the app cannot determine whether it is authorized.
Only an authorized app should show sensitive data.

Disallow custom keyboard use
Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. This behavior has potential for harmful data loss.
Therefore, code your app to not allow custom keyboard use. MobileIron server administrators can control whether
your app can use a custom keyboard by specifying a key-value pair (MI_AC_IOS_ALLOW_CUSTOM_

Enable theAppConnect library toblur screenswhentheappbecomes inactive

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 72

KEYBOARDS) on your app’s configuration. Your app can control whether custom keyboards are allowed if the
server administrator has enabled the key-value pair.

Related topics
Custom keyboard control

Provide documentation about your app to theMobileIron server
administrator
Whether your app is an in-house app or is available from the Apple App Store, aMobileIron server administrator
configures the server with information about your app. Provide the server administrator documentation that
specifies:
• whether your app enforces the print policy.

The server administrator needs to know whether allowing or not allowing your app to use print capabilities has
impact on your app’s behavior.

• whether your app handles the pasteboard policy.
The server administrator needs to know whether allowing or not allowing your app to copy content to the
pasteboard has impact on your app’s behavior.
Although the AppConnect library enforces the pasteboard policy, inform theMobileIron server administrator if
your app enables or disables any special user interfaces depending on the policy status. This documentation
allows the administrator to better understand your app’s expected behavior.

• whether your app handles the Open In policy.
Although the AppConnect library enforces the Open In policy, inform theMobileIron server administrator if your
app enables or disables any special user interfaces depending on the policy status. This documentation allows
the administrator to better understand your app’s expected behavior.
Also, if you have a recommended list of whitelisted apps, document their bundle IDs.

• the app-specific configuration key-value pairs.
Provide a list of the key-value pairs that your app expects to receive through the AppConnect API. Provide
each key’s default value if it has one. Specify if the value should default to the device’s user’s LDAP user ID or
password.

• AppTunnel information
If your app expects to interact with internal servers using AppTunnel, specify whether your app expects to work
with AppConnect with HTTP/S tunneling, or whether it requires AppConnect with TCP tunneling.
Also, provide information about the internal servers.
For example:
- Explain the type of servers your app interacts with, such as, for example, SharePoint servers.
- Specify if your app expects to receive internal servers’ host names using the app-specific configuration

API.
- Specify if your app expects to be able to interact with all internal servers.
- If you are an in-house app developer, provide the host names of the internal servers that your app interacts

with. Also, provide the port number on each internal server that the app connects to.
• HTTPS connections that your appmakes that use certificate authentication to an enterprise service.

For in-house app developers, provide the URLs of the enterprise services that use certificate authentication.
If your app receives these URLs through app-specific configuration, make sure you listed the URLs in the app-
specific configuration key-value pair documentation.

• If your app is a dual-mode app, provide dual-mode app behavior.

Providedocumentationabout your app to theMobileIron server administrator

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 73

- Provide expected behavior and features in AppConnect mode versus non-AppConnect mode.
- If your app allows the device user to switch between AppConnect mode and non-AppConnect mode,

document what the device user must do.
• Whether your app uses the AppConnect-provided screen blurring capability

Server administrators need to know whether your app will be impacted if they disable screen blurring for your
app.

• Whether your app includes theMI_AC_DISABLE_SCHEME_BLOCKING key set to YES in its Info.plist.

Providedocumentationabout your app to theMobileIron server administrator

6

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 74

Testing for third-party app developers

l Third-party AppConnect app testing overview

l Set upMobileIron Core

l Set up your end-user device

l Test authorization status handling

l Test data loss prevention policy handling

l Test AppConnect configuration change handling

l Test using AppTunnel

l Test the app documentation

Third-party AppConnect app testing overview
Test your app using the instructions in this chapter or the instructions in Testing for in-house app developers based
on the following table:

Your role Testing instructions

Third-party app developer This chapter

In-house app developer whose organization uses MobileIron
Cloud

This chapter

In-house app developer whose organization uses MobileIron
Core or Connected Cloud.

See Testing for in-house app developers.

Testing with MobileIron Core as described in this chapter is necessary to verify the AppConnect-related
functionality of your AppConnect app. If your app accesses servers behind a firewall using AppTunnel, a
Standalone Sentry is necessary to verify the AppTunnel feature. All AppConnect apps require Mobile@Work to
interact with Core.

For testing your app, MobileIron provides you access toMobileIron Connected Cloud, the cloud offering of the on-
premise server MobileIron Core. MobileIron also provides you access to Standalone Sentry if necessary. You then
use a web portal called the Admin Portal to make configuration changes necessary for testing your app.

NOTE: Apps that you test withMobileIronConnectedCloudandMobile@Work will also work with
MobileIronCloudand supported versions ofMobileIronGo.

Use an enterprise build of your app for testing. When your app is completely tested, build a distribution build for
distributing the app through the Apple App Store. These procedures are for testing only.

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 75

Before you begin:
• Contact MobileIron to provide you with a Core (Connected Cloud) and (if necessary) Standalone Sentry.
• Get Mobile@Work from the Apple App Store.

Set upMobileIron Core
To set up Core for testing your AppConnect app, do the following high-level steps:
1. Login to the Admin Portal.
2. Enable AppConnect onMobileIron Core.
3. Configure the AppConnect global policy.
4. Create an AppConnect container policy.

NOTE: These instructions are for Core 9.7.0.0.

Login to the Admin Portal

MobileIron provides you with the following information about your test MobileIron Core:
• the URL for accessing the Core’s Admin Portal

The Admin Portal is a web portal for configuring Core. The URL has the format:
https://m.mobileiron.net/<app partner name>

• a user ID and password for accessing the Admin Portal
You also use this user ID to register a device with Core.

• a port number for Core, used when you register a device with Core.
The port number is typically four or five digits.

To login to Core:
1. Open a browser to the URL for accessing the Core’s Admin Portal.

Use the URL of your test Core, appended with /mifs. For example:
https://m.mobileiron.net/myCompany/mifs

2. Enter your Username and Password.
3. Click Sign In.

You are now in the Admin Portal.
Change your password when prompted.

Enable AppConnect onMobileIron Core

To enable AppConnect on Core:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it is not already selected.
4. Click Save.

Configure the AppConnect global policy

An AppConnect global policy is necessary for your AppConnect app to work properly.

Set upMobileIronCore

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 76

To configure an AppConnect global policy:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the row that says Default AppConnect Global Policy for the Policy Name.
3. Click Edit in the right-hand pane.
4. For AppConnect, select Enabled.

The display now shows all the AppConnect global policy fields.
5. In the AppConnect Passcode section, for Passcode Type, select Numeric.
6. In the AppConnect Passcode section, select Passcode Is Required For iOS Devices.
7. Click Save.

NOTE: Do not select Authorize in the fieldAppsWithout AnAppConnect Container Policy in the section
Data Loss Prevention Policies in the AppConnect global policy. Youwill authorize the appwith
anAppConnect container policy instead.

Create an AppConnect container policy

An app is authorized only if an AppConnect container policy for the app is present on the device.

To create an AppConnect container policy:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > Container Policy.
3. Enter a name for the AppConnect container policy.

For example: My App’s Container Policy
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. Click Save.

The dialog box closes and the new AppConnect container policy appears in the list.
6. Select the AppConnect container policy you just created.
7. Select Actions > Apply To Label.
8. Select iOS.
9. Click Apply.
10. Click OK.

Set up your end-user device
To set up your end-user device, do the following high-level steps:
1. Set upMobile@Work on an iOS device.
2. Install your app on the device.
3. Set up the AppConnect passcode on the device.

Set upMobile@Work on an iOS device

To set upMobile@Work for iOS on your device:
1. Download and install Mobile@Work from the Apple App Store.
2. Tap theMobileIron app icon to launchMobile@Work.
3. Enter the user name that MobileIron gave you.

CreateanAppConnectcontainer policy

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 77

You use the same user name that you use to log into the Admin Portal.
4. Enter the server as follows:

m.mobileiron.net:<port number>
where <port number> is the port number you received fromMobileIron along with your user name and
password.
For example:
m.mobileiron.net:27643

5. Enter the password.
Enter the password that you created when you first logged into the Admin Portal.

6. Follow the prompts fromMobile@Work to complete its setup.
Allow Mobile@Work to use the current location.
Install new profiles and certificates when prompted.

Install your app on the device

Install your app on the device in the sameway you install any app that you are testing.

Set up the AppConnect passcode on the device

When you run your app for the first time, Mobile@Work prompts you to create the AppConnect passcode. Follow
the steps to create the AppConnect passcode.

Test authorization status handling
You canmake changes to Core configuration to test your app’s handling of the different authorization statuses:
authorized, unauthorized, and retired.

Change the status to authorized or unauthorized

A security policy on Core specifies the requirements for a device. If a device is not compliant with a requirement,
the security policy specifies a compliance action. One compliance action is to block AppConnect apps on the
device, whichmeans that the apps become unauthorized.

The list of requirements that can impact authorization is long, but for testing your app, you need to work with only
one requirement. The requirement involves a list of devicemodels that are not allowed to use AppConnect apps.

Therefore, to unauthorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the Default Security Policy.
3. Click Edit in the right-hand pane.
4. Scroll down to the section called Access Control, under For iOS Devices.
5. Select Block Email, AppConnect Apps, And Send Alert For The Following Disallowed Devices.
6. Move themodel of your test device to the Disallowed area.
7. Click Save.

Install your apponthedevice

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 78

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is unauthorized. Otherwise, it receives the event the next time
it runs.

Verify that your app correctly handles the change to the unauthorized state. Specifically, verify that your app:
• exits any sensitive part of the application.
• stops allowing the user to access sensitive data and views.
• displays themessage received in the callback method that explains the authorization status change.
• calls the AppConnectCordova.authStateApplied() method.

To re-authorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the Default Security Policy.
3. Click Edit in the right-hand pane.
4. In the section called Access Control, under For iOS Devices, uncheck Block Email, AppConnect Apps, And

Send Alert For The Following Disallowed Devices.
5. Click Save.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is authorized. Otherwise, it receives the event the next time it
runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• allows the user to access sensitive data and views.
• calls the AppConnectCordova.authStateApplied() method.

Change the status to retired

An app is authorized only if an AppConnect container policy for the app is present on the device. If you remove the
AppConnect container policy from the device, the app becomes retired.

To retire the app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Remove From Label.
4. Select iOS.
5. Click Remove.

Push the change to your device immediately, by doing the following steps on the device:

Change the status to retired

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 79

1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is retired. Otherwise, it receives the event the next time it
runs. Themessage string in the event object is the default unauthorizedmessage:
“Your administrator has not authorized this app.”

Verify that your app correctly handles the change to the retired state. Specifically, verify that your app:
• exits any sensitive part of the application.
• deletes all sensitive data, including any stored authentication credentials, data in files, keychain items,

pasteboard data, and any other persistent storage.
• displays themessage received in the event that explains the authorization status change.
• calls the AppConnectCordova.authStateApplied() method.

Reauthorize a retired app

A retired app is sometimes re-authorized at a later time.

To reauthorize the retired app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Apply To Label.
4. Select iOS.
5. Click Apply.
6. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is authorized. Otherwise, it receives the event the next time it
runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• dismisses any user interface that displays that the user is not authorized to use the app.
• allows the user to access sensitive data and views.
• calls the AppConnectCordova.authStateApplied() method.

Test data loss prevention policy handling
The AppConnect container policy for your app specifies its data loss prevention (DLP) policies. In this policy, you
specify whether your app is allowed to:
• copy content to the iOS pasteboard.

Reauthorize a retiredapp

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 80

• print by using AirPrint, any future iOS printing feature, any current or future third-party libraries or apps that
provide printing capabilities.

• share documents with other apps.

By changing the AppConnect container policy, you can test:
• your app’s behavior for each data loss prevention policy.
• how your app handles changes to the policies in its event handlers.

To change the DLP policies:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Click Edit in the right-hand pane.
4. Allow or prohibit features relating to data loss prevention policies as follows:

DLP policy Description

Allow Print Select Allow Print if you want the app to use the device’s print capabilities.

Allow Copy/Paste To Select Allow Copy/Paste To if you want the device user to be able to copy content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to copy content from the
AppConnect app and paste it into any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to copy content
from the AppConnect app and paste it into only other AppConnect apps.

Allow Open In Select Allow Open In if you want the app to be allowed to use the device’s Open In
(document interaction) feature.

When you select this option, then select either:
• All Apps

Select All Apps if you want the app to be able to send documents to any other
app.

• AppConnect Apps
Select AppConnect Apps to allow an AppConnect app to send documents to
only other AppConnect apps.

This option results in the AppConnectCordova.openInPolicy() method returning
the value WHITELIST. Also, the AppConnectCordova.openInWhitelist() method
contains the list of currently authorized AppConnect apps.

• Whitelist
Select Whitelist if you want the app to be able to send documents only to the
apps that you specify.
Enter the bundle ID of each app, one per line, or in a semicolon delimited list.
For example:
com.myAppCo.myApp1

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 81

DLP policy Description

com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

5. Click Save.
6. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the events for the updated DLP policies. Otherwise, it receives the events the
next time it runs.

Verify that your app correctly handles the data loss prevention policy changes, as shown in the following table:

Policy change What to verify

Allow copy/paste to • verify that the user can cut or copy text, images, or other data to the pasteboard.
• where appropriate, verify that any special user interface that offers the ability to

cut or copy data is available and enabled.

Also, verify that your app calls the
AppConnectCordova.pasteboardPolicyApplied() method.

Allow copy/paste to for
AppConnect Apps only

• verify that the user can cut or copy text, images, or other data to the pasteboard.
• where appropriate, verify that any special user interface that offers the ability to

cut or copy data is available and enabled.
• verify that the user can paste the data from the pasteboard only into other

AppConnect apps.

Also, verify that your app calls the
AppConnectCordova.pasteboardPolicyApplied() method.

Do not allow
copy/paste to

• verify that the user cannot to cut or copy text, images, or other data to the
pasteboard.

• where appropriate, verify that any special user interface that offers the ability to
cut or copy data is removed or disabled.

Also, verify that your app calls the
AppConnectCordova.pasteboardPolicyApplied() method.

Allow open in for all
apps

Verify that your app enables user interfaces, if any, that give the user the option to
useOpen In.

Also, verify that your app calls the AppConnectCordova.openInPolicyApplied()
method.

Allow open in for
AppConnect apps

Verify that your app enables user interfaces, if any, that give the user the option to
useOpen In.

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 82

Policy change What to verify

Also, verify that your app calls the AppConnectCordova.openInPolicyApplied()
method.

Allow open in for
whitelisted apps

Verify that your app enables user interfaces, if any, that give the user the option to
useOpen In.

Also, verify that your app calls the openInPolicyApplied() method.

Do not allow open in Verify that your app enables user interfaces, if any, that give the user the option to
useOpen In.

Also, verify that your app calls the -openInPolicyApplied() method.

Allow print For each part of your app that allows the user to print secure data, verify the
capability is enabled.

Also, verify that your app calls the printPolicyApplied() method.

Do not allow print For each part of your app that allows the user to print secure data, verify the
capability is removed or disabled.

Also, verify that your app calls the printPolicyApplied() method.

Test AppConnect configuration change handling
AppConnect app configuration onMobileIron Core specifies key-value pairs for configuring your app. You add, and
edit, key-value pairs using the Admin Portal.

By changing the AppConnect app configuration, you can test your app’s event handler for the
'appconnect.configChangedTo'event.

Create an AppConnect app configuration

To create an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.
3. Enter a name for the AppConnect app configuration.

For example: My App’s App Configuration
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. In the App-specific Configurations section, click Add+ to add a key-value pair.
6. Enter the key-value pairs.

TestAppConnectconfigurationchangehandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 83

Key The key is any string that the app recognizes as a configurable item.

For example: userid, appURL

Value Enter the value. The value is either:
• a string

The string can have any value that is meaningful to the app. It can also include one or
more of theseMobileIron Core variables: $USERID$, $EMAIL$, $USER_CUSTOM1$,
$USER_CUSTOM2$, $USER_CUSTOM3$, $USER_CUSTOM4$.
If you do not want to provide a value, enter $NULL$. The $NULL$ value tells the app that
the app user will need to provide the value.
Examples:
$USERID$
https://someEnterpriseURL.com

• a Certificate Enrollment or Certificates setting
Certificate Enrollment and Certificate settings that are configured in Policies & Configs >
Configurations appear in the dropdown list. When you choose a Certificate Enrollment or
Certificate setting, Core sends the contents of the certificate as the value. The contents
are base64-encoded.
If the certificate is password-encoded, Core automatically sends another key-value pair.
The key’s name is the string <name of key for certificate>_MI_CERT_PW. The value is
the certificate’s password.

7. Click Save.
8. Click Yes to confirm.
9. Select the new AppConnect app configuration.
10. Select Actions > Apply To Label.
11. Select iOS.
12. Click Apply.
13. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event for the new configuration. Otherwise, it receives the event the next
time it runs.

Verify that your app correctly handles the new configuration, correctly applying and using the configured options
according to your app’s requirements and design.

Update the AppConnect app configuration

To update the AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the your app’s AppConnect app configuration.
3. Click Edit in the right-hand pane.

Update theAppConnectappconfiguration

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 84

4. In the App-specific Configurations section, click Add+ to add a key-value pair. To delete a key-value pair, click
the X on the row.

5. Update the key-value pairs as described in Create an AppConnect app configuration.
6. Click Save.
7. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event for the updated configuration. Otherwise, it receives the event the
next time it runs.

Verify that your app correctly handles the updated configuration, correctly applying and using the configured
options according to your app’s requirements and design.

Test using AppTunnel
UsingMobileIron’s AppTunnel feature, your app can securely tunnel HTTP and HTTPS network connections from
the app to servers behind an organization’s firewall. Your app does not take any special actions related to tunneling;
the AppConnect library, Mobile@Work, and a Standalone Sentry handle tunneling for the app.

You can test the HTTP/S tunneling capability using the providedMobileIron Core and Sentry. Using the Admin
Portal, you configure app-specific AppTunnel settings for Core and Sentry.

Before you begin:Contact MobileIron to provide you with a Standalone Sentry.

To test your app’s use of AppTunnel with HTTP/S tunneling, do these high-level steps:
1. Enable AppTunnel onMobileIron Core.
2. Use an existing certificate or generate a new one.

If you have an existing certificate, see Use an existing certificate.
Otherwise, seeGenerate a certificate.

3. Configure the Sentry with an AppTunnel service.
4. Configure the AppTunnel service in the AppConnect app configuration.

Enable AppTunnel onMobileIron Core

To enable AppTunnel onMobileIron Core:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it isn’t already selected.
4. Select AppTunnel For Third-party And In-house Apps if it isn’t already selected.
5. Click Save.

Test usingAppTunnel

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 85

Use an existing certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

If you already have an existing certificate, typically a .p12 file, you can use it for both purposes.

To upload the certificate toMobileIron Core:
1. In the Admin Portal, go to Policies & Configs > Configurations.
2. Select Add New > Certificate Enrollment > Single File Identity.
3. For Name, enter any name.

For example: Tunneling Identiity Certificate
4. For Certificate 1, click Browse to select the .p12 or .pfx file of the identity certificate.
5. For Password 1, enter the password for the certificate’s private key, if applicable.
6. Click Save.

Generate a certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

One convenient way to get these certiinvolves makingMobileIron Core a local certificate authority (CA).

This process involves the following high-level steps:
1. Create a certificate authority for using an AppTunnel with HTTP/S tunneling
2. Create a local certificate enrollment setting

Create a certificate authority for using an AppTunnel with HTTP/S tunneling

To create a local certificate authority onMobileIron Core to be used in generating certificates:
1. In the Admin Portal, select Services > Local CA.
2. Select Add > Generate Self-Signed Cert
3. Enter a name for Local CA Name.

For example: CA for AppTunnel
4. Set Key Length to 2048.
5. Set the Issuer Name to “CN=Tunneling CA”.
6. Click Generate.

A screen titled Certificate Template displays.
7. Click Save.
8. Click View Certificate next to your new local certificate authority.

Useanexistingcertificate

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 86

FIGURE 5.VIEWCERTIFICATE DISLAY

9. Copy all the text in into a text file.
10. Save the text file.

You will upload this text file later as the root certificate for authenticating devices to the Standalone Sentry.

Create a local certificate enrollment setting

After you configureMobileIron Core as a local CA, you create a local certificate enrollment setting. This setting
configures MobileIron Core acting as a local CA to generate identity certificates for the devices to present to
Standalone Sentry.

To create a local certificate enrollment setting:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select Add New > Certificate Enrollment > Local.

A dialog appears entitled New Local Certificate Enrollment Setting.
3. Enter a descriptive name in the Name field.

For example: Tunneling certificate

Createa localcertificate enrollment setting

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 87

4. For Local CA, select the certificate authority you created for AppTunnel.
5. For Subject, enter “cn=tunneling”.

The value can be any string.
6. For Key Length, select 2048.
7. Click Issue Test Certificate.

The issued test certificate displays.
8. Click OK to close the displayed certificate.
9. Click Save to save the local certificate enrollment setting.

Configure the Sentry with an AppTunnel service

To support AppTunnel with HTTP/S tunneling, configure the Sentry with the internal servers that your app uses.

Do the following:
1. In the Admin Portal, go to Services > Sentry.
2. Select Add New > Standalone Sentry.
3. Enter the host name of the Sentry that MobileIron provides you.
4. Select Enable AppTunnel.
5. For Device Authentication Configuration:

If you already had a certificate, select Group Certificate.
If you created a local certificate authority, select Identity Certificate.

6. Click Upload Certificate.
If you already had a certificate, upload it.
If you created a local certificate authority, upload the certificate text file that you created in Create a certificate
authority for using an AppTunnel with HTTP/S tunneling. It is the root certificate for authenticating devices to
the Standalone Sentry.

7. In the AppTunnel Configuration section, click + to add a new service.
8. Enter a Service Name.

The service name is any unique identifier for the internal server or servers that your AppConnect app tunnels to.
Entering <ANY> means that the app can reach any of your internal servers.
Service Name examples:
SharePoint
HumanResources

9. For Server Auth, select Pass Through.
This field selects the authentication scheme for the Standalone Sentry to use to authenticate the user to the
internal server. Pass Throughmeans that the Sentry passes through the authentication credentials, such as the
user ID and password (basic authentication) or NTLM, to the internal server.

The other option is Kerberos. Kerberos means that the Sentry uses Kerberos Constrained Delegation (KCD). The
corporate environment must be set up for Kerberos Constrained Delegation.

10. Enter a Server List.
Enter a semicolon-separated list of internal server host names or IP addresses and the port that the Sentry can
access.
For example:
sharepoint1.companyname.com:443;sharepoint2.companyname.com:443.
When you enter multiple servers, the Sentry uses a round-robin distribution to load balance the servers. That is,
it sets up the first tunnel with the first internal server, the next with the next internal server, and so on.

Configure the SentrywithanAppTunnel service

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 88

If you selected <ANY> for the Service Name, the Server List is not applicable.

11. Select TLS Enabled if the internal servers require SSL.
Although port 443 is typically used for https and requires SSL, the internal server can use other port numbers
requiring SSL.

If you selected <ANY> for the Service Name, do not select TLS Enabled.

12. Do not fill in Server SPN List. It applies only when the Server Auth field is Kerberos.
13. Select Proxy/ATC only if your testing requires that you direct the AppTunnel service traffic through a proxy

server. The proxy server is located behind the firewall and sits between the Sentry and corporate resources.
This deployment allows you to access corporate resources without having to open the ports that Sentry would
otherwise require.
If selected, also configure the Server-side Proxy fields: Proxy Host Name / IP and Proxy Port.

14. Click Save.
15. Click View Certificate on the row with your new Sentry.

This action copies the Sentry’s self-signed certificate that you created toMobileIron Core.

Configure the AppTunnel service in the AppConnect app configuration

The AppConnect app configuration specifies the AppTunnel services that your app uses. You configured these
services on the Sentry.

To configure AppTunnel with HTTP/S tunneling on an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.

If you already have created an AppConnect app configuration for your app, select it and click Edit in the right-hand
pane.

3. Enter a name for the AppConnect app configuration if this is a new one.
For example: My App’s App Configuration

4. In the Application field, enter the bundle ID of your app if this is a new app configuration.
For example: com.MyCompany.MySecureApp

5. In the AppTunnel Rules section, click Add+ to add a new AppTunnel configuration.
6. For Sentry, select the Sentry from the drop-down list.
7. For Service, select the service name from the drop-down list.

You created this service name in Create a certificate authority for using an AppTunnel with HTTP/S tunneling.
8. For the URLWildcard, enter the host name or URL of the app server with which the app communicates. If the

Service specified for this server in Configure the Sentry with an AppTunnel service is <ANY>, the host name
can use the wildcard character *.
If a URL request in your appmatches the value you enter here, the request uses AppTunnel with HTTP/S
tunneling.
Examples:
sharepoint1.yourcompany.com
*.yourcompanyname.com

9. For Port, enter the port number that the app connects to.
10. For Identity Certificate:

If you already had a certificate, select the certificate setting that you created in Use an existing certificate.

Configure theAppTunnel service in theAppConnectappconfiguration

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 89

If you created a local certificate authority, select the local certificate enrollment setting that you created in
Create a local certificate enrollment setting. This selection will result in the device receiving an identity
certificate from Core that it will present to the Standalone Sentry for device authentication.

11. Click Save.

If you are creating a new AppConnect app configuration:
1. Select the new AppConnect app configuration.
2. Select Actions > Apply To Label.
3. Select iOS.
4. Click Apply.
5. Click OK.

Push the changes to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, Mobile@Work launches and updates the AppConnect app configuration. If your app is not
running, Mobile@Work launches and updates the configuration the next time that you run your app. When
Mobile@Work has updated the configuration, your app will use AppTunnel with HTTP/S tunneling for the URLs
you specified.

Verify that your app’s networking capabilities work as expected.

Test the app documentation
A MobileIron Core administrator configures Core with information about your app. You provide this information in
documentation about your app. The documentation includes:
• whether your app enforces the pasteboard, the print policy, and the Open In policy.
• your app’s app-specific configuration key-value pairs.
• information about internal servers that your app expects to interact with using AppTunnel.
• whether your appmakes HTTPS connections that use the AppConnect feature for certificate authentication to

an enterprise service.
• expected dual-mode behavior.

Test whether your app correctly handles what your documentation specifies.

For more information, see Provide documentation about your app to theMobileIron server administrator.

Test theappdocumentation

7

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 90

Testing for in-house app developers

l In-house AppConnect app testing overview

l Set upMobileIron Core

l Set up your end-user device

l Test authorization status handling

l Test data loss prevention policy handling

l Test AppConnect configuration change handling

l Test using AppTunnel

l Test the app documentation

In-house AppConnect app testing overview
Test your app using the instructions in this chapter or the instructions in Testing for third-party app developers
based on the following table:

Your role Testing instructions

In-house app developer whose organization uses MobileIron
Core or Connected Cloud.

This chapter.

In-house app developer whose organization uses MobileIron
Cloud

See Testing for third-party app developers

Third-party app developer See Testing for third-party app developers

Testing with MobileIron Core as described in this chapter is necessary to verify the AppConnect-related
functionality of your AppConnect app. If your app accesses servers behind a firewall using AppTunnel, a
Standalone Sentry is necessary to verify the AppTunnel feature. All AppConnect apps require Mobile@Work to
interact with Core.

As an in-house AppConnect app developer, contact your organization’s Core administrator to get access to a Core
and Standalone Sentry (if necessary) for testing. You then use a web portal called the Admin Portal to make
configuration changes necessary for testing your app.

Mobile@Work is available from the Apple App Store.

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 91

Set upMobileIron Core
To set upMobileIron Core for testing your AppConnect app, do the following high-level steps:
1. Login to the Admin Portal.
2. Enable AppConnect onMobileIron Core.
3. Create a label for testing your app.
4. Upload your app toMobileIron Core if you use AppConnect.plist.
5. Verify your AppConnect.plist settings.
6. Configure the AppConnect global policy.
7. Create an AppConnect container policy, if necessary.

NOTE: These instructions are for Core 9.7.0.0.

Login to the Admin Portal

Contact your organization’s MobileIron Core administrator to get the following information about the Core to test
with:
• the URL for accessing the Core’s Admin Portal

The Admin Portal is a web portal for configuring Core. It has the format:
https://<Core domain name>/mifs

• a username and password for accessing the Admin Portal
• a username and password for registering a device with Core

Depending on your Core administrator, this username and password can be the same as the username and
password for accessing the Admin Portal.

To login to Core:
1. Open a browser to the URL for accessing the Core’s Admin Portal.

For example:
https://myCore.mycompany.com/mifs

2. Enter your Username and Password for accessing the Admin Portal.
3. Click Sign In.

You are now in the Admin Portal.

Enable AppConnect onMobileIron Core

To test your AppConnect app, ensure that AppConnect is enabled onMobileIron Core.
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it is not already selected.
4. Click Save.

Create a label for testing your app

MobileIron Core uses labels to associate policies and apps with devices. For testing your app, create a new label
so that your testing impacts only your test device.
1. In the Admin Portal, go to Devices & Users > Labels.

Set upMobileIronCore

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 92

2. Click Add Label.
3. Enter a name for the label.

For example: AppConnect Test
4. Enter a description.

For example: Use only for devices testing new AppConnect apps.
5. Select Manual for the Type.
6. Click Save.

Upload your app toMobileIron Core if you use AppConnect.plist

If your app uses an AppConnect.plist, upload your app toMobileIron Core. Uploading your app causes Core to
create and populate an AppConnect container policy and AppConnect app configuration with the values you
entered in the AppConnect.plist.

To upload your app:
1. In the Admin Portal, select Apps > App Catalog.
2. Select iOS for Platform.
3. Click Add+.

The iOS Add AppWizard starts.
4. Click In-House.
5. Click Browse to select your app’s .ipa file.
6. Click Next.
7. Click Next.
8. Click Finish.

The app is now in Core’s App Catalog. Core has created an AppConnect container policy and AppConnect app
configuration based on your AppConnect.plist.

9. Select the row listing your app.
10. Select Actions > Apply To Label.
11. Select the label that your created in Create a label for testing your app.
12. Click Apply.

Core applies the label to your app. It also applies it to the AppConnect container policy and AppConnect app
configuration.

Verify your AppConnect.plist settings

Once you have uploaded your app toMobileIron Core, verify that the AppConnect.plist settings are correctly
reflected in the AppConnect container policy and AppConnect app configuration.

To verify the AppConnect.plist settings:
1. On the Admin Portal, go to Policies & Configs > Configurations.
2. Select the row with the name of your app and the Setting Type APPCONFIG.
3. Click Edit in the right-hand pane.
4. In the App-specific Configurations section, verify the keys and values are what you entered in the

AppConnect.plist.
5. Click Cancel.
6. Select the row with the name of your app and the Setting Type APPPOLICY.
7. Click Edit in the right-hand pane.

Uploadyour app toMobileIronCore if youuseAppConnect.plist

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 93

8. Verify the data loss prevention settings are what you entered in the AppConnect.plist.
9. Click Cancel.

If any of the key-value pairs or data loss prevention policies are not what you expected, review the contents of your
AppConnect.plist.

Configure the AppConnect global policy

An AppConnect global policy is necessary for your AppConnect app to work properly.

To configure an AppConnect global policy:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select Add New > AppConnect.
3. Enter a name for the AppConnect global policy.

For example: Test AppConnect Global Policy.
4. For AppConnect, select Enabled.

The display now shows all the AppConnect global policy fields.
5. In the AppConnect Passcode section, for Passcode Type, select Numeric.
6. In the AppConnect Passcode section, select Passcode Is Required For iOS Devices.
7. Click Save.

The dialog box closes and the new AppConnect global policy appears in the list.
8. Select the AppConnect global policy that you just created.
9. Select More Actions > Apply To Label.
10. Select the test label that you created in Create a label for testing your app.
11. Click Apply.
12. Click OK.

NOTE: Do not select Authorize in the fieldAppsWithout AnAppConnect Container Policy in the section
Data Loss Prevention Policies in the AppConnect global policy. Youwill authorize the appwith
anAppConnect container policy instead.

Create an AppConnect container policy, if necessary

An app is authorized only if an AppConnect container policy for the app is present on the device. If you have an
AppConnect.plist in your app, and uploaded the app toMobileIron Core, Core creates an AppConnect container
policy automatically. If you do not have an AppConnect.plist in your app, manually create an AppConnect container
policy.

To create an AppConnect container policy:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > Container Policy.
3. Enter a name for the AppConnect container policy.

For example: My App’s Container Policy
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. Click Save.

The dialog box closes and the new AppConnect container policy appears in the list.

Configure theAppConnectglobalpolicy

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 94

6. Select the AppConnect container policy you just created.
7. Select Actions > Apply To Label.
8. Select the test label that you created in Create a label for testing your app.
9. Click Apply.
10. Click OK.

Set up your end-user device
To set up your end-user device, do the following high-level steps:
1. Set upMobile@Work on an iOS device.
2. Install your app on the device.
3. Set up the AppConnect passcode on the device.

Set upMobile@Work on an iOS device

To set upMobile@Work for iOS on your device:
1. Download and install Mobile@Work from the Apple App Store.
2. Tap theMobileIron app icon to launchMobile@Work.
3. Enter the user name that the Core administrator gave you for registering your test device.
4. Enter the server name that the Core administrator gave you.

For example: myCore.mycompany.com
5. Enter the password.

Enter the password that the Core administrator gave you for registering your test device.
6. Follow the prompts fromMobile@Work to complete its setup.

Allow Mobile@Work to use the current location.
Install new profiles and certificates when prompted.

Install your app on the device

Install your app on the device in the sameway you install any app that you are testing.

Set up the AppConnect passcode on the device

When you run your app for the first time, Mobile@Work prompts you to create the AppConnect passcode. Follow
the steps to create the AppConnect passcode.

Test authorization status handling
You canmake changes to theMobileIron Core configuration to test your app’s handling of the different
authorization statuses: authorized, unauthorized, and retired.

Set upyour end-user device

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 95

Change the status to authorized or unauthorized

A security policy onMobileIron Core specifies the requirements for a device. If a device is not compliant with a
requirement, the security policy specifies a compliance action. One compliance action is to block AppConnect
apps on the device, whichmeans that the apps become unauthorized.

The list of requirements that can impact authorization is long, but for testing your app, you need to work with only
one requirement. The requirement involves a list of devicemodels that are not allowed to use AppConnect apps.

Therefore, to unauthorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select Add New > Security.
3. Enter a name.

For example: AppConnect test security policy
4. Scroll down to the section called Access Control, under For iOS Devices.
5. Select Block Email, AppConnect Apps, And Send Alert For The Following Disallowed Devices.
6. Move themodel of your test device to the Disallowed area.
7. Click Save.

Core creates the new security policy.
8. Select the row listing the new security policy.
9. Select More Actions > Apply To Label.
10. Select the test label that you created in Create a label for testing your app.
11. Click Apply.
12. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is unauthorized. Otherwise, it receives the event the next time
it runs.

Verify that your app correctly handles the change to the unauthorized state. Specifically, verify that your app:
• exits any sensitive part of the application.
• stops allowing the user to access sensitive data and views.
• displays themessage received in the callback method that explains the authorization status change.
• calls the AppConnectCordova.authStateApplied() method.

To re-authorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the security policy that you created.
3. Click Edit in the right-hand pane.
4. In the section called Access Control, under For iOS Devices, uncheck Block Email, AppConnect Apps, And

Send Alert For The Following Disallowed Devices.
5. Click Save.

Change the status toauthorizedor unauthorized

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 96

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is authorized. Otherwise, it receives the event the next time it
runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• allows the user to access sensitive data and views.
• calls the AppConnectCordova.authStateApplied() method.

Change the status to retired

An app is authorized only if an AppConnect container policy for the app is present on the device. If you remove the
AppConnect container policy from the device, the app becomes retired.

To retire the app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Remove From Label.
4. Select the label that you created in Create a label for testing your app.
5. Click Remove.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is retired. Otherwise, it receives the event the next time it
runs. Themessage string in the notification is the default unauthorizedmessage:
“Your administrator has not authorized this app.”

Verify that your app correctly handles the change to the retired state. Specifically, verify that your app:
• exits any sensitive part of the application.
• deletes all sensitive data, including any stored authentication credentials, data in files, keychain items,

pasteboard data, and any other persistent storage.
• displays themessage received in the callback method that explains the authorization status change.
• calls the AppConnectCordova.authStateApplied() method.

Reauthorize a retired app

A retired app is sometimes re-authorized at a later time.

To reauthorize the retired app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.

Change the status to retired

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 97

3. Select Actions > Apply To Label.
4. Select the label that you created in Create a label for testing your app.
5. Click Apply.
6. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event that it is authorized. Otherwise, it receives the event the next time it
runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• dismisses any user interface that displays that the user is not authorized to use the app.
• allows the user to access sensitive data and views.
• calls the AppConnectCordova.authStateApplied() method.

Test data loss prevention policy handling
The AppConnect container policy for your app specifies its data loss prevention (DLP) policies. In this policy, you
specify whether your app is allowed to:
• copy content to the iOS pasteboard.
• print by using AirPrint, any future iOS printing feature, any current or future third-party libraries or apps that

provide printing capabilities.
• share documents with other apps.

By changing the AppConnect container policy, you can test:
• your app’s behavior for each data loss prevention policy.
• how your app handles changes to the policies in its event handlers.

To change the DLP policies:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Click Edit in the right-hand pane.
4. Allow or prohibit features relating to data loss prevention policies as follows:

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 98

DLP policy Description

Allow Print Select Allow Print if you want the app to use the device’s print capabilities.

Allow Copy/Paste to Select Allow Copy/Paste to if you want the device user to be able to copy content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to copy content from the
AppConnect app and paste it into any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to copy content
from the AppConnect app and paste it into only other AppConnect apps.

Allow Open In Select Allow Open In if you want the app to be allowed to use the device’s Open In
(document interaction) feature.

When you select this option, then select either:
• All Apps

Select All Apps if you want the app to be able to send documents to any other
app.

• AppConnect Apps
Select AppConnect Apps to allow an AppConnect app to send documents to
only other AppConnect apps.

NOTE: This option results in the AppConnectCordova.openInPolicy()method
returning the value WHITELIST. Also, the
AppConnectCordova.openInWhitelist()methodcontains the list of
currently authorizedAppConnect apps.

• Whitelist
Select Whitelist if you want the app to be able to send documents only to the
apps that you specify.
Enter the bundle ID of each app, one per line, or in a semicolon delimited list.
For example:
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

5. Click Save.
6. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the events for the updated DLP policies. Otherwise, it receives the events the
next time it runs.

Verify that your app correctly handles the data loss prevention policy changes, as shown in the following table:

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 99

Policy change What to verify

Allow copy/paste to • verify that the user can cut or copy text, images, or other data to the
pasteboard.

• where appropriate, verify that any special user interface that offers the ability to
cut or copy data is available and enabled.

Also, verify that your app calls the
AppConnectCordova.pasteboardPolicyApplied() method.

Allow copy/paste to for
AppConnect Apps only

• verify that the user can cut or copy text, images, or other data to the
pasteboard.

• where appropriate, verify that any special user interface that offers the ability to
cut or copy data is available and enabled.

• verify that the user can paste the data from the pasteboard only into other
AppConnect apps.

Also, verify that your app calls the
AppConnectCordova.pasteboardPolicyApplied() method.

Do not allow
copy/paste to

• verify that the user cannot to cut or copy text, images, or other data to the
pasteboard.

• where appropriate, verify that any special user interface that offers the ability to
cut or copy data is removed or disabled.

Also, verify that your app calls the
AppConnectCordova.pasteboardPolicyApplied() method.

Allow open in for all
apps

Verify that your app enables user interfaces, if any, that give the user the option to
useOpen In.

Also, verify that your app calls the AppConnectCordova.openInPolicyApplied()
method.

Allow open in for
AppConnect apps

Verify that your app enables user interfaces, if any, that give the user the option to
useOpen In.

Also, verify that your app calls the AppConnectCordova.openInPolicyApplied()
method.

Allow open in for
whitelisted apps

Verify that your app enables user interfaces, if any, that give the user the option to
useOpen In.

Also, verify that your app calls the AppConnectCordova.openInPolicyApplied()
method.

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 100

Policy change What to verify

Do not allow open in Verify that your app disables user interfaces, if any, that give the user the option to
useOpen In.

Also, verify that your app calls the AppConnectCordova.openInPolicyApplied()
method.

Allow print For each part of your app that allows the user to print secure data, verify the
capability is enabled.

Also, verify that your app calls the AppConnectCordova.printPolicyApplied()
method.

Do not allow print For each part of your app that allows the user to print secure data, verify the
capability is removed or disabled.

Also, verify that your app calls the AppConnectCordova.printPolicyApplied()
method.

Test AppConnect configuration change handling
AppConnect app configuration onMobileIron Core specifies key-value pairs for configuring your app. You add, and
edit, key-value pairs using the Admin Portal.

By changing the AppConnect app configuration, you can test your app’s event handler for the
'appconnect.configChangedTo'event.

If your app includes an AppConnect.plist, and you uploaded your app to Core, Core already has created a default
AppConnect app configuration. Go to Update the AppConnect app configuration.

If your app does not include an AppConnect.plist, create an AppConnect app configuration.

Create an AppConnect app configuration

To create an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.
3. Enter a name for the AppConnect app configuration.

For example: My App’s App Configuration
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. In the App-specific Configurations section, click Add+ to add a key-value pair.
6. Enter the key-value pairs.

TestAppConnectconfigurationchangehandling

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 101

Key The key is any string that the app recognizes as a configurable item.

For example: userid, appURL

Value Enter the value. The value is either:
• a string

The string can have any value that is meaningful to the app. It can also include one or more
of theseMobileIron Core variables: $USERID$, $EMAIL$, $USER_CUSTOM1$,
$USER_CUSTOM2$, $USER_CUSTOM3$, $USER_CUSTOM4$.
If you do not want to provide a value, enter $NULL$. The $NULL$ value tells the app that
the app user will need to provide the value.
Examples:
$USERID$
https://someEnterpriseURL.com

• a Certificate Enrollment or Certificates setting
Certificate Enrollment and Certificate settings that are configured in Policies & Configs >
Configurations appear in the dropdown list. When you choose a Certificate Enrollment or
Certificate setting, Core sends the contents of the certificate as the value. The contents
are base64-encoded.
If the certificate is password-encoded, Core automatically sends another key-value pair.
The key’s name is the string <name of key for certificate>_MI_CERT_PW. The value is
the certificate’s password.

7. Click Save.
8. Click Yes to confirm.
9. Select the new AppConnect app configuration.
10. Select Actions > Apply To Label.
11. Select the label that you created in Create a label for testing your app.
12. Click Apply.
13. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event for the new configuration. Otherwise, it receives the event the next
time it runs.

Verify that your app correctly handles the new configuration, correctly applying and using the configured options
according to your app’s requirements and design.

Update the AppConnect app configuration

To update the AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the your app’s AppConnect app configuration.
3. Click Edit in the right-hand pane.

Update theAppConnectappconfiguration

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 102

4. In the App-specific Configurations section, click Add+ to add a key-value pair. To delete a key-value pair, click
the X on the row.

5. Update the key-value pairs as described in Create an AppConnect app configuration.
6. Click Save.
7. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the event for the updated configuration. Otherwise, it receives the event the
next time it runs.

Verify that your app correctly handles the updated configuration, correctly applying and using the configured
options according to your app’s requirements and design.

Test using AppTunnel
UsingMobileIron’s AppTunnel feature, your app can securely tunnel HTTP and HTTPS network connections from
the app to servers behind an organization’s firewall. Your app does not take any special actions related to tunneling;
the AppConnect library, Mobile@Work, and a Standalone Sentry handle tunneling for the app.

You can test the HTTP/Stunneling capability using the providedMobileIron Core and Sentry. Using the Admin
Portal, you configure app-specific AppTunnel settings for Core and Sentry.

Before you begin:Contact your Core administrator to find out the host name or IP address of the Sentry to use for
the AppTunnel feature.

To test your app’s use of AppTunnel with HTTP/S tunneling, do these high-level steps:
1. Enable AppTunnel onMobileIron Core.
2. Use an existing certificate or generate a new one.

If you have an existing certificate, see Use an existing certificate.
Otherwise, seeGenerate a certificate.

3. Configure the Sentry with an AppTunnel service.
4. Configure the AppTunnel service in the AppConnect app configuration.

Enable AppTunnel onMobileIron Core

To enable AppTunnel onMobileIron Core if it isn’t already enabled:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it isn’t already selected.
4. Select AppTunnel For Third-party And In-house Apps if it isn’t already selected.
5. Click Save.

Test usingAppTunnel

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 103

Use an existing certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

To upload the certificate toMobileIron Core:
1. In the Admin Portal, go to Policies & Configs > Configurations.
2. Select Add New > Certificate Enrollment > Single File Identity.
3. For Name, enter any name.

For example: Tunneling Identiity Certificate
4. For Certificate 1, click Browse to select the .p12 or .pfx file of the identity certificate.
5. For Password 1, enter the password for the certificate’s private key, if applicable.
6. Click Save.

Generate a certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

One convenient way to get these certiinvolves makingMobileIron Core a local certificate authority (CA).

This process involves the following high-level steps:
1. Create a certificate authority for using an AppTunnel with HTTP/S tunneling
2. Create a local certificate enrollment setting

Create a certificate authority for using an AppTunnel with HTTP/S tunneling

To create a local certificate authority onMobileIron Core to be used in generating certificates:
1. In the Admin Portal, select Services > Local CA.
2. Select Add > Generate Self-Signed Cert
3. Enter a name for Local CA Name.

For example: CA for AppTunnel
4. Set Key Length to 2048.
5. Set the Issuer Name to “CN=Tunneling CA”.
6. Click Generate.

A screen titled Certificate Template displays.
7. Click Save.
8. Click View Certificate next to your new local certificate authority.

Useanexistingcertificate

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 104

FIGURE 6.VIEWCERTIFICATE DISPLAY

9. Copy all the text into a text file.
10. Save the text file.

You will upload this text file later as the root certificate for authenticating devices to the Standalone Sentry.

Create a local certificate enrollment setting

After you configureMobileIron Core as a local CA, you create a local certificate enrollment setting. This setting
configures MobileIron Core acting as a local CA to generate identity certificates for the devices to present to
Standalone Sentry.

To create a local certificate enrollment setting:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select Add New > Certificate Enrollment > Local.

A dialog appears entitled New Local Certificate Enrollment Setting.
3. Enter a descriptive name in the Name field.

For example: Tunneling certificate

Createa localcertificate enrollment setting

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 105

4. For Local CA, select the certificate authority you created for AppTunnel.
5. For Subject, enter “cn=tunneling”.

The value can be any string.
6. For Key Length, select 2048.
7. Click Issue Test Certificate.

The issued test certificate displays.
8. Click OK to close the displayed certificate.
9. Click Save to save the local certificate enrollment setting.

Configure the Sentry with an AppTunnel service

To support AppTunnel with HTTP/S tunneling, configure the Sentry with the internal servers that your app uses.

Do the following:
1. In the Admin Portal, go to Services > Sentry.
2. Click the edit icon next to the Sentry that your MobileIron Core Administrator has designated for your

AppTunnel testing.
3. Select Enable AppTunnel if it is not already selected.
4. For Device Authentication Configuration:

If you already had a certificate, select Group Certificate.
If you created a local certificate authority, select Identity Certificate.

5. Click Upload Certificate.
If you already had a certificate, upload it.
If you created a local certificate authority, upload the certificate text file that you created in Create a certificate
authority for using an AppTunnel with HTTP/S tunneling. It is the root certificate for authenticating devices to
the Standalone Sentry.

6. In the AppTunnel Configuration section, click + to add a new service.
7. Enter a Service Name.

The service name is any unique identifier for the internal server or servers that your AppConnect app tunnels to.
Entering <ANY> means that the app can reach any of your internal servers.
Service Name examples:
SharePoint
HumanResources

8. For Server Auth, select Pass Through.
This field selects the authentication scheme for the Standalone Sentry to use to authenticate the user to the
internal server. Pass Throughmeans that the Sentry passes through the authentication credentials, such as the
user ID and password (basic authentication) or NTLM, to the internal server.

The other option is Kerberos. Kerberos means that the Sentry uses Kerberos Constrained Delegation (KCD). The
corporate environment must be set up for Kerberos Constrained Delegation.

9. Enter a Server List.
Enter a semicolon-separated list of internal server host names or IP addresses and the port that the Sentry can
access.
For example:
sharepoint1.companyname.com:443;sharepoint2.companyname.com:443.
When you enter multiple servers, the Sentry uses a round-robin distribution to load balance the servers. That is,
it sets up the first tunnel with the first internal server, the next with the next internal server, and so on.

Configure the SentrywithanAppTunnel service

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 106

If you selected <ANY> for the Service Name, the Server List is not applicable.

10. Select TLS Enabled if the internal servers require SSL.
Although port 443 is typically used for https and requires SSL, the internal server can use other port numbers
requiring SSL.

If you selected <ANY> for the Service Name, do not select TLS Enabled.

11. Do not fill in Server SPN List. It applies only when the Server Auth field is Kerberos.
12. Select Proxy/ATC only if your testing requires that you direct the AppTunnel service traffic through a proxy

server. The proxy server is located behind the firewall and sits between the Sentry and corporate resources.
This deployment allows you to access corporate resources without having to open the ports that Sentry would
otherwise require.
If selected, also configure the Server-side Proxy fields: Proxy Host Name / IP and Proxy Port.

13. Click Save.
14. Click View Certificate on the row with your new Sentry.

This action copies the Sentry’s self-signed certificate that you created to Core.

Configure the AppTunnel service in the AppConnect app configuration

The AppConnect app configuration specifies the AppTunnel services that your app uses. You configured these
services on the Sentry.

To configure AppTunnel on an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > App Configuration.
2. Select Add New > AppConnect > App Configuration.

If you already have an AppConnect app configuration for your app, select it and click Edit in the right-hand pane.

3. Enter a name for the AppConnect app configuration if this is a new one.
For example: My App’s App Configuration

4. In the Application field, enter the bundle ID of your app if this is a new app configuration.
For example: com.MyCompany.MySecureApp

5. In the AppTunnel Rules section, click Add+ to add a new AppTunnel configuration.
6. For Sentry, select the Sentry from the drop-down list.
7. For Service, select the service name from the drop-down list.

You created this service name in Create a certificate authority for using an AppTunnel with HTTP/S tunneling.
8. For the URLWildcard, enter the host name or URL of the app server with which the app communicates. If the

Service specified for this server in Configure the Sentry with an AppTunnel service is <ANY>, the host name
can use the wildcard character *.
If a URL request in your appmatches the value you enter here, the request uses AppTunnel with HTTP/S
tunneling.
Examples:
sharepoint1.yourcompany.com
*.yourcompanyname.com

9. For Port, enter the port number that the app connects to.
10. For Identity Certificate:

If you already had a certificate, select the certificate setting that you created in Use an existing certificate.

Configure theAppTunnel service in theAppConnectappconfiguration

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 107

If you created a local certificate authority, select the local certificate enrollment setting that you created in
Create a local certificate enrollment setting. This selection will result in the device receiving an identity
certificate from Core that it will present to the Standalone Sentry for device authentication.

11. Click Save.

If you are creating a new AppConnect app configuration:
1. Select the new AppConnect app configuration.
2. Select Actions > Apply To Label.
3. Select the label that you created in Create a label for testing your app.
4. Click Apply.
5. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If app is running, Mobile@Work launches and updates the AppConnect app configuration. If your app is not
running, Mobile@Work launches and updates the configuration the next time that you run your app. When
Mobile@Work has updated the configuration, your app will use AppTunnel with HTTP/S tunneling for the URLs
you specified.

Verify that your app’s networking capabilities work as expected.

Test the app documentation
Once your app is ready for in-house distribution, aMobileIron Core administrator configures Core with information
about your app. You provide this information in documentation about your app. The documentation includes:
• whether your app enforces the pasteboard, the print policy, and the Open In policy.
• your app’s app-specific configuration key-value pairs.
• information about internal servers that your app expects to interact with using AppTunnel.
• whether your appmakes HTTPS connections that use the AppConnect feature for certificate authentication to

an enterprise service.
• expected dual-mode behavior.

Test whether your app correctly handles what your documentation specifies.

For more information, see Provide documentation about your app to theMobileIron server administrator.

Test theappdocumentation

8

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 108

AppConnect for iOS Cordova Plugin revision
history

l AppConnect 4.5.0 for iOS Cordova Plugin revision history

l AppConnect 4.4.2 for iOS Cordova Plugin revision history

l AppConnect 4.4.1 for iOS Cordova Plugin revision history

l AppConnect 4.4.0 for iOS Cordova Plugin revision history

l AppConnect 4.3.1 for iOS Cordova Plugin revision history

l AppConnect 4.3 for iOS Cordova Plugin revision history

l AppConnect 4.2.1 for iOS Cordova Plugin revision history

l AppConnect 4.2 for iOS Cordova Plugin revision history

l AppConnect 4.1.1 for iOS Cordova Plugin revision history

l AppConnect 4.1 for iOS Cordova Plugin revision history

l AppConnect 4.0 for iOS Cordova Plugin revision history

l AppConnect 3.5 for iOS Cordova Plugin revision history

l AppConnect 3.1.3 for iOS Cordova Plugin revision history

l AppConnect 3.1.2 for iOS Cordova Plugin revision history

l AppConnect 3.1.1 for iOS Cordova Plugin revision history

l AppConnect 3.1 for iOS Cordova Plugin revision history

l AppConnect 3.0 for iOS Cordova Plugin revision history

l Releases prior to AppConnect 3.0 for iOS Cordova Plugin revision history

AppConnect 4.6.0 for iOS Cordova Plugin revision history
This release provides the following:

l New features summary

l Resolved issues

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 109

New features summary
This release includes the following new features and enhancements:

l Improvements to memory consumption: Secure File I/O APIs have been optimized to decrease
memory consumption while processing large files.

l Two Cordova plugin variants: Due to Apple deprecating the UIWebView class, the AppConnect for iOS
SDK is available in two variants: one with UIWebView andWKWebView support, and another with
WKWebView support, but no UIWebView support. The AppConnect SDK without UIWebView support is
provided for apps that will be submitted to the App Store. The Cordova plugin included with each variant of
the SDK provides the same support as the SDK variant.
See Cordova Plugin variants and AppConnect Cordova Plugin contents.

Resolved issues

This release includes the following new resolved issues:

l AP-5422: Fixed issue with tunneled requests authentication when app implements
URLSession:didReceiveChallenge:completionHandler: method of the URLSessionDelegate protocol.

l AP-5328: Fixed an issue where AppConned apps flipped to theMobileIron client app for password
authentication. Now the passcode prompt is seen within the wrapped app.

AppConnect 4.5.3 for iOS Cordova Plugin revision history
This release provides the following:

l Resolved issues

Resolved issues

This release provides the following new resolved issues in the SDK and wrapper:

l AP-5376, APG-1177: Fixed an issue where redirected server requests could fail to connect.

AppConnect 4.5.2 for iOS Cordova Plugin revision history
This release does not provide any updates to the SDK.

AppConnect 4.5.1 for iOS Cordova Plugin revision history
This release does not provide any updates to the SDK.

New features summary

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 110

AppConnect 4.5.0 for iOS Cordova Plugin revision history
This release provides the following:

l Resolved issues

l Known issues

Resolved issues

This release provides the following new resolved issues:

l AP-5256: Workaround for a bug in a third-party app security framework, which caused a crash when used
with AppConnect.

l AP-5241: Fixed crash in [ACAppInterfaceBus displayMessage:scheme:completion:].

l AP-5199: Sometimes AppConnect apps failed to unlock using biometric authentication if the device
passcode was set as the fallback option. Users may have seen this issues if the Check-in interval and the
AutoLock interval are small and equivalent. This issue is fixed.

Known issues

This release includes the following new known issues:

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

AppConnect 4.4.2 for iOS Cordova Plugin revision history
This release provides the following:

l Resolved issues

l Known issues

Resolved issues

This release provides the following new resolved issues:

l AP-5245: Fixed a Secure File I/O thread-safety issue which could cause I/O errors when writing tomultiple
files simultaneously. Note that I/O to individual files should always be done from a single thread.

l AP-5253: Fixed an exception when launching apps in Xcode's Simulator.

Known issues

This release includes the following new known issue:

AppConnect 4.5.0 for iOSCordovaPlugin revisionhistory

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 111

l AP-5252: Web@Work 2.9.0.0 for iOS with Chromium does not trust some sites. For more information, see
the following Knowledge Base article in theMobileIron Community: Web@Work - Certain sites may not be
trusted when using Chromium engine.

AppConnect 4.4.1 for iOS Cordova Plugin revision history
This release provides the following:

l Resolved issues

l Known issues

Resolved issues

This release includes the following new resolved issues:

l AP-5233: Under certain conditions when adding cookies to a network request, the cookies were dropped
after receiving an HTTP 302 redirect. This issue is fixed.

Known issues

This release includes the following new known issues:

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

AppConnect 4.4.0 for iOS Cordova Plugin revision history
This release provides the following:

l New features summary

l Resolved issues

l Limitations

New features summary
This release includes the following new features and enhancements:

l Support for iOS 13: AppConnect apps work as expected on iOS 13 devices.

l armv7s architecture: Support for the armv7s architecture has been dropped.

Resolved issues

This release provides the following new resolved issues:

AppConnect 4.4.1 for iOSCordovaPlugin revisionhistory

https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine
https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 112

l AP-5158: iOS 13 changed the identification for iPad devices. If your iPad is upgraded to iOS 13, MobileIron
recommends that you also upgrade toMobileIron Core to one of the following patch releases: 10.2.0.2,
10.3.0.2, or 10.4.0.1. These patches contain the fixes for the changes in iOS 13 for iPad identification.

l AP-5179: On devices running iOS 13, openURL does not return the bundle ID of the calling app if the team
ID is not the same. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to
AppConnect 4.4.0.

l AP-5201: Previously, the NSProxy instance proxying application delegate did not receive application
lifecycle callbacks. This issue is fixed.

l AP-5207: On devices running iOS 13, AppConnect apps canOpen files to other apps whenOpen In is
disabled. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect
4.4.0.

l AP-5166: On devices running iOS 13, NSURLSession failed. This issue is fixed with AppConnect 4.4.0 for
iOS. To address the issue, update to AppConnect 4.4.0.

l AP-5169: On devices running iOS 13, Email+ for iOS displayed a black background in app switcher. This
issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect 4.4.0.

l AP-5174: Fixed the root cause due to which Email+ for iOS crashed intermittent.

l AP-5206: Previously, the AppConnect for iOS SDK was not calling applicationDidBecomeActive. This
issue is fixed.

Limitations

This release includes the following new limitations:

l AP-5186: The openURL API in iOS 13 provides the bundle ID of the calling app only if the calling app has
the same team ID. Due to this limitation, the Open From feature does not work on iOS 13 devices.

l AP-5164: Sharing files with the Chrome extension if Open In is restrictedmay cause the application to
freeze.

l AP-5159: On devices running iOS 13, the "Unable to Share Document with selected application" prompt is
not shown unless the Share dialog is closed.

AppConnect 4.3.1 for iOS Cordova Plugin revision history

New features

l Track upload progress for data tunneled through AppTunnel
A new event 'appconnect.uploadProgressDidChange' is provided to track the progress of data uploads
through AppTunnel.
See Upload progress for AppTunnel data.

l Support for the armv7s architecture is deprecated.

Resolved issues

This release provides the following new resolved issue:

Limitations

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 113

l APG-1132: Fixed a potential crash in the NSURLSession delegate_task:didCompleteWithError: method.

AppConnect 4.3 for iOS Cordova Plugin revision history

New features
• Support for MobileIron AppStation

Apps built with the AppConnect 4.3.0 for iOS Cordova Plugin can run with MobileIron AppStation as the
MobileIron client app instead of MobileIron Go. Administrators can useMobileIron AppStation on devices which
are interacting with aMobileIron Cloud tenant that supports Mobile Apps Management (MAM) but not
Mobile DeviceManagement (MDM).
For your AppConnect app to support AppStation:
- Declare the alt-appconnectURL scheme in your app’s Info.plist as another allowed URL scheme.

See Declare the AppConnect URL schemes as allowed.
Also see Upgrade tasks or Getting started tasks.

• Support for Open From data loss prevention policy
The AppConnect 4.3.0 for iOS Cordova Plugin adds support for the Open From data loss protection policy. The
AppConnect library enforces the policy as configured on theMobileIron server. No Cordova APIs are added
and no app changes are necessary.

At the date of this AppConnect release, no MobileIron servers support this policy.

• iOS 9 no longer supported
AppConnect 4.3.0 for iOS is not supported on iOS 9 devices.
See Product versions required .

AppConnect 4.2.1 for iOS Cordova Plugin revision history

New features
• Allow AppConnect apps to send custom cookies in web requests

Someweb pages inject custom cookies into web requests. For example, when an end user taps on a link in a
web page, the page's JavaScript injects a custom cookie. If a user makes such a request from aweb page
displayed in an AppConnect app, by default AppConnect does not include the injected cookies in the web
request, which can cause the request to fail. AppConnect now includes the custom cookies in the request if the
MobileIron server administrator includes the following key in the app's app-specific configuration on the
MobileIron server: MI_AC_USE_ORIGINAL_COOKIES_FOR_DOMAINS. The value of the key is a comma-separated
string listing the domains for which the custom cookies should be included. Make sure no spaces are included
in the value.
For example:
www.somewebsite.com,somename.someotherwebsite.com

AppConnect 4.2 for iOS Cordova Plugin revision history
This release of the AppConnect for iOS Cordova Plugin has no new features.

AppConnect 4.3 for iOSCordovaPlugin revisionhistory

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 114

Resolved issues
• AP-4919: Fixed an issue that caused an AppConnect app to crash when it used the same object as a delegate

for multiple UI elements.
• AP-4150: After an AppConnect SDK or Cordova app became inactive and the AppConnect library blurred the

screen, a noticeable delay occurred when removing the blur when the app became active. This issue has been
fixed.

Known issues
• AP-4940: The LookUp option in the iOS context menu allows data to be shared to non-AppConnect apps

regardless of theOpen In andCopy/Paste To data loss prevention policies.

AppConnect 4.1.1 for iOS Cordova Plugin revision history
This AppConnect release has no new features.

Resolved issues
• AP-4920: When an AppConnect’s app upload request is redirected, the request failed when using AppTunnel.

This issue has been fixed by converting the stream request to a body request when using AppTunnel. Note that
you can override the conversion by adding a key-value pair to the app’s AppConnect configuration. AddMI_
AC_DISABLE_HTTP_STREAM_CONVERSION with the value Yes.

• APG-1118: Fixed an issue where apps subclassing NSProxy could crash on launch with the error -[NSProxy
doesNotRecognizeSelector:_ACDecoratorClass].

• APG-1097: Provides a workaround to a known bug in NSURLSession that sometimes causes the form body to
bemissing in connections in AppConnect apps when using AppTunnel.

Known issues
• AP-4919: If an AppConnect app uses the same object as a delegate for multiple UI elements, the app crashes.

AppConnect 4.1 for iOS Cordova Plugin revision history
This AppConnect release has several new features. It has no new known or resolved issues or limitations.

New features
• Certificate pinning support
• Lock AppConnect apps when screen is off
• Overriding the Open In Policy for OpenURLwith themailto: scheme

Certificate pinning support

This AppConnect release supports certificate pinning for AppConnect apps to heighten security for communication
between AppConnect apps and enterprise servers or cloud services.

Using certificate pinning requires:
• Configuration on theMobileIron server.

Resolved issues

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 115

ForMobileIron Core, see “Certificate pinning for AppConnect apps” in theMobileIron Core AppConnect and
AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through themost recently released version as supported by MobileIron.

This feature requires no additional development in the app.

Lock AppConnect apps when screen is off

This AppConnect release supports automatically logging out device users from AppConnect apps when the device
screen is turned off due to either inactivity or user action.

This feature requires:
• Configuration on theMobileIron server.

For MobileIron Core, see “Configuring the AppConnect global policy” in theMobileIron Core AppConnect and
AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through themost recently released version as supported by MobileIron.

This feature requires no additional development in the app.

Overriding the Open In Policy for OpenURL with the mailto: scheme

This AppConnect release allows either the app or MobileIron server administrator to override the Open In policy
when the policy blocks the iOS native email app when the app uses OpenURLwith the mailto: scheme.

The AppConnect library overrides the Open In policy for native email if either of the following are true:
• TheMobileIron server administrator added the key MI_AC_DISABLE_SCHEME_BLOCKINGwith the value

true to the app’s app-specific configuration.
• The app added the key MI_AC_DISABLE_SCHEME_BLOCKINGwith the value YES in theMI_APP_

CONNECT dictionary in the app’s Info.plist.

THE MI_APP_CONNECT dictionary is new in this release.

SeeOpen In policy API details .

AppConnect 4.0 for iOS Cordova Plugin revision history

New features
• iOS 8 no longer supported
• Drag and Drop data loss prevention policy support
• Native email control using the Open In DLP policy
• App extension control using the Open In DLP policy
• Custom keyboard use controlled by MobileIron server
• Screen blurring
• Requirement for Face ID usage Info.plist entry
• Support for sending AppConnect logs fromMobile@Work
• Automatic policy status updates sent to MobileIron server

LockAppConnectappswhenscreen is off

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 116

• Support for storing AppConnect library encryption keys in the Secure Enclave

iOS 8 no longer supported

AppConnect 4.0 for iOS is not supported on iOS 8 devices.

See Product versions required .

Drag and Drop data loss prevention policy support

MobileIron server administrators can set a drag and drop policy for each AppConnect app. It specifies whether
AppConnect apps can drag content to all other apps, to only other AppConnect apps, or not at all. The AppConnect
library enforces this policy. Your app provides no code to support the drag and drop policy.

NOTE: This feature is not supportedwithMobileIronCloud.

SeeData loss prevention policies.

Native email control using the Open In DLP policy

TheOpen In Data Loss Prevention policy now includes controlling whether an app can share documents with the
native iOS mail app. Opening a document with the native iOS mail app is allowed only if one of the following is true:
• Open In is allowed for all apps
• Open In is allowed for only whitelisted apps, and the native iOS mail app is in the whitelist. The whitelist must

contain both of these bundle IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

App extension control using the Open In DLP policy

TheOpen in data loss protection policy now includes restricting access to the iOS extensions that apps provide.
Specifically:

Open In DLP for host
app (the app using
the extension)

Extension behavior

All apps allowed The host app can use any app’s extension for Open In.

Only AppConnect apps
allowed

The host app can use only extensions provided by AppConnect apps for Open In.

Whitelist The host app can use only extensions of apps in the whitelist for Open In.

Custom keyboard use controlled by MobileIron server

TheMobileIron server can now control custom keyboard use by your AppConnect app. If the administrator does not
configure this choice, your app can choose to reject custom keyboard use.

iOS 8 no longer supported

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 117

SeeCustom keyboard control.

Screen blurring

AppConnect 4.0 for iOS adds support for blurring screens when the app becomes inactive. If your app provided its
own screen blurring, remove that code. By using the AppConnect library’s screen blurring capability, all
AppConnect apps behave consistently.

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a Boolean.
Set the value to YES.

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, theMobileIron server administrators
can disable screen blurring by setting a key-value pair on the server for your app’s configuration. The server key is
MI_AC_ENABLE_SCREEN_BLURRINGwith the value false.

See Enable screen blurring.

Requirement for Face ID usage Info.plist entry

IncludePrivacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose of
Face ID use. For example, add the valueAppConnect. If youmanually add this key, its name is
NSFaceIDUsageDescription.

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through themost recently released version as supported by MobileIron.

See Allow Face ID.

Support for sending AppConnect logs from Mobile@Work

AppConnect apps using AppConnect 4.0 for iOS support the feature in Mobile@Work for iOS that sends
AppConnect logs to an email address of your choice, such as a company’s helpdesk. This feature requires
Mobile@Work 9.8 for iOS through themost recently released version as supported by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

The option is displayed only for apps using AppConnect 4.0 for iOS. However, the displayed option is disabled if
the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, if you included the following key-value pair for the app in its AppConnect app configuration:
• MI_AC_ENABLE_LOGGING_TO_FILE set toYes

Screenblurring

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 118

Automatic policy status updates sent to MobileIron server

The AppConnect library now automatically sends a status update to theMobileIron server when it receives the
following changes:

Change Status update that AppConnect library sends to MobileIron server

Open In policy Informs server that the policy change has been applied.

Pasteboard policy Informs server that the policy change has been applied.

Print policy Informs server that the policy change has been passed to the app.

Configuration values Informs server that the configuration change has been passed to the app.

Authentication status Informs server that the authentication change has been passed to the app.

This change has no impact on your app’s implementation. Your app should continue to always call the appropriate
notification acknowledgment method:

Support for storing AppConnect library encryption keys in the Secure Enclave

For heightened security of the encryption keys that the AppConnect library uses, aMobileIron server administrator
can now specify that the keys are stored in the Apple hardware known as the Secure Enclave. By using the Secure
Enclave, the encryption key’s attack surface is reduced, because the keys are stored in the Secure Enclave rather
than inmemory. TheMobileIron server administrator uses the key namedMI_AC_CONTAINER_TYPE with the
value ENCLAVE in the app’s app configuration. The AppConnect library consumes this key. It is not passed to
your app in Its configuration key-value pairs.

To benefit from this feature, the devicemust:
• have Apple’s Secure Enclave hardware.

Devices that have biometric security have Secure Enclave hardware.

• be running iOS 11 through themost recently released version as supported by MobileIron
• be runningMobile@Work 9.8 for iOS through themost recently released version as supported by MobileIron

MobileIron Go does not support this feature.

Resolved issues
• AP-4446: Fixed an issue where the authStateChangeTo event was not called when using the AppConnect

Cordova Plugin.
• AP-4202: Custom protocol classes set to NSURLSessionConfiguration were previously ignored in

AppConnect apps. This issue has been fixed.
• AP-4133: Added ability to use NSURLConnection with NSURLSession networking with AppTunnel.

Automatic policystatus updates sent toMobileIron server

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 119

Known issues
• AP-4657: The "unauthorizedmessage" screen is blurred. It continues to be blurred until the next time the app

switches to theMobileIron client app. After the next AppConnect checkin, the screen is no longer blurred.

Limitations
• AP-4720: On some devices, screen blurring does not occur when going to the Task Switcher.

AppConnect 3.5 for iOS Cordova Plugin revision history

New features

iOS 11 compatibility

This version of the AppConnect for iOS Cordova Plugin is compatible with devices running iOS 11 Beta 7. At the
time of this AppConnect release, the GA version of iOS 11 is not available.

IMPORTANT: Upgrade your app to use the AppConnect 3.5 for iOS Cordova Plugin for your app to run
on iOS 11devices. Apps using Plugin versions prior to 3.1.3crash on iOS 11devices. Apps
using version 3.1.3do not crash, but the AppConnect library does not handle the
pasteboarddata loss prevention policy correctly.

Formore information, see Product versions required on page 21.

Open In changes

This version of the AppConnect for iOS Cordova Plugin has the following changes to Open In handling:
• The AppConnect library supports a new key-value pair from theMobileIron server that tells the library not to

enforce the Open In policy. A MobileIron server administrator determines if this behavior is appropriate for an
enterprise. An appmakes no changes relating to this feature.
See “Overriding the Open In Policy for the app” in the administrator documentationMobileIron CoreMobileIron
Core AppConnect and AppTunnel Guide.

• Because of iOS implementation changes, if an app uses the Objective-C class UIActivityViewController to
execute Open In, when theOpen In policy specifies a whitelist, Open In to all apps is not allowed. Therefore,
use only UIDocumentInteractionController to execute Open In. For example, if you use a Cordova plugin to use
the Open In capability, make sure it uses UIDocumentInteractionController.
SeeOverview of Open In handling on page 51.

Resolved issues
• AP-4196: When an AppConnect Cordova app loaded an HTML page, the AppConnect for iOS Cordova Plugin

did not re-initialize properly. The issue has been fixed.
• AP-4184: Fixed an installation failure of the AppConnect Cordova Plugin for apps using Cordova 7.0.0.
• AP-4145: URL requests made on a background thread were not tunneled if the AppConnect library in the app

had not received the AppTunnel rules. The issue has been fixed because the AppConnect library now blocks
URL requests until after it has received the AppTunnel rules.

Known issues

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 120

• AP-3917: When a URL request using NTLM authentication was tunneled with AppTunnel, an error occurred
when the device user was prompted with the user credentials dialog. The dialog displayed the Standalone
Sentry host name instead of the URL request’s host name. The issue has been fixed.

• AP-3564: The sample Cordova app TestAppConnect did not become authorized on iOS 9 devices. The issue
has been fixed.

Limitations
• AP-4302: Apps that use UIDocumentInteractionController’s preview API will not be able to share documents

with other apps, because iOS 11 beta 6 and 7 allow sharing only with certain built-in extensions.

AppConnect 3.1.3 for iOS Cordova Plugin revision history
This release has no new features.

Resolved issues
• AP-4054: The HTTP error code 403 was not always reported to apps using AppTunnel. This issue has been

fixed.
• AP-4149: In some cases, enterprises that used both AppTunnel and a global HTTP proxy policy resulted in

AppConnect apps having no access to the network. The issue occurred when an AppTunnel rule caused a
tunneling attempt for requests to the URL for the proxy auto-configuration (PAC) file. The issue occurred for all
AppTunnel rules that did one of the following:
- used a wildcard character in the AppTunnel rule’s hostname such that the PAC file URLmatched the rule
- explicitly named the PAC file URL in the AppTunnel rule’s hostname
To fix the issue, the AppConnect library now supports a new key-value pair in the AppConnect app
configuration for an AppConnect app:
- key name: global_http_proxy_url
- value: the URL of the PAC file, which the Core administrator also enters into the Proxy PAC URL field of

the global HTTP proxy policy.
Example: http://pac.myproxy.mycompany.com

The AppConnect library does not attempt to tunnel the specified URL, which results in successful use of both
AppTunnel and the global HTTP proxy policy,

An AppConnect app does not receive this key-value pair. It is consumed by the AppConnect library.

• AP-4152: This issue fixes a crash of AppConnect apps on iOS 11 Beta 1. However, this release does not
support iOS 11.

AppConnect 3.1.2 for iOS Cordova Plugin revision history
This release has no new features.

Resolved issues
• AP-4062: Fixed a critical issue that caused an AppConnect app to crash if all of the following are true:

- The app uses AppTunnel with either HTTP/S tunneling or TCP tunneling.
- The AppConnect log level “Debug” is activated for the app.
- The device is registered with MobileIron Core 9.4.0.0.

Limitations

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 121

AppConnect 3.1.1 for iOS Cordova Plugin revision history
This release has no new features.

Resolved issues
• AP-3996: Renamed an AppConnect library internal class (PasteboardManager) to avoid naming conflicts.

AppConnect 3.1 for iOS Cordova Plugin revision history

New features

Update to OpenSSL 1.0.2h

The AppConnect library now uses OpenSSL version 1.0.2h.

Open In policy now enforced by AppConnect library
The AppConnect library now enforces the Open In policy. An app no longer enforces the policy itself. An app now
only has to enable or disable any special user interfaces that give the user the option to useOpen In. For example,
if your app presents amenu item for Open In, themenu item should be enabled. By disabling such user interfaces,
your app does not give the end user the impression that Open In is possible when the AppConnect library has
disabled it.

If you are upgrading your app to use the AppConnect 3.1 for iOS SDK, make the appropriate
modifications to your code.

For details, seeOpen In policy API details on page 50.

Resolved issues
• AP-3721: Fixed an AppTunnel issue when using the iOS Social framework's SLRequest class.
• AP-3698: Fixed an issue that caused an AppConnect app to crash if the app used a custom protocol handler

with NSURLSession (such as when the Layer SDK uses the SPDY protocol).
Note that although the app no longer crashes, the custom protocol request might fail if the request is tunneled
using AppTunnel.

• AP-3674: Fixed an issue where AppConnect apps inadvertently shared encrypted data with other iOS 10
devices on the same iCloud account.

Known issues
• AP-3958: When you copy content from an AppConnect app, pasting from the Universal Clipboard onto another

device sometimes does not work.

Limitations
• AP-3711: A black screen is shownwhen flipping from theMobileIron client app to an AppConnect app on

devices running all versions of iOS 8. This is an Apple issue.

AppConnect 3.1.1 for iOSCordovaPlugin revisionhistory

MobileIronAppConnect 4.6.0 for iOSCordovaPluginDevelopers Guide| 122

AppConnect 3.0 for iOS Cordova Plugin revision history
This release has no new features. It fixes miscellaneous bugs.

Releases prior to AppConnect 3.0 for iOS Cordova Plugin
revision history
For the revision history of releases prior to AppConnect 3.0 for iOS Cordova Plugin, see the"MobileIron
AppConnect 4.2 for iOS Cordova Plugin Developers Guide", available at MobileIron AppConnect for iOS Product
Documentation.

AppConnect 3.0 for iOSCordovaPlugin revisionhistory

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

	Contents
	Introducing the MobileIron AppConnect for iOS Cordova Plugin
	AppConnect for iOS overview
	Where to get the AppConnect for iOS Cordova Plugin
	Secure app features
	AppConnect for iOS Cordova Plugin advantages
	64-bit and 32-bit app support
	MobileIron AppConnect components
	Using a secure app
	App responsibilities
	The MobileIron client app and AppConnect library responsibilities
	Cordova Plugin variants
	AppConnect Cordova Plugin contents
	AppConnect for iOS architecture
	The MobileIron client app and AppConnect apps
	App checkin and the MobileIron client app
	The AppConnect passcode auto-lock time and the MobileIron client app

	Product versions required
	Securing and managing the app using the AppConnect library
	Authorization
	AppConnect passcode and Touch ID/Face ID policy
	Configuration specific to the app
	AppTunnel
	Supported APIs
	AppTunnel with TCP tunneling

	Certificate authentication to enterprise services
	Supported networking methods
	Unsupported networking methods

	Data loss prevention policies
	Custom keyboard control
	Data protection

	Getting started with the AppConnect for iOS Cordova Plugin
	Upgrade tasks
	Getting started tasks
	Before you begin
	Getting started task list
	Run the AppConnect Cordova Plugin installation script
	Declare the AppConnect URL schemes as allowed
	Add AppConnect-related entries to your Info.plist
	Enable screen blurring
	Allow Face ID

	Update Xcode project settings
	Initialize the AppConnect library
	Wait for the AppConnect library to be ready
	Specify app permissions and configuration in a plist file
	Code changes if you manually recreate the iOS platform directory

	Troubleshooting
	App crashes due to not waiting for AppConnect ready event
	Problem
	Solution

	AppConnect for iOS Cordova Plugin API
	AppConnect for iOS Cordova Plugin overview
	Dual-mode app capabilities
	The AppConnectCordova JavaScript interface
	Event handling overview
	AppConnect Cordova Plugin events
	Event handling acknowledgments

	AppConnect ready API details
	The 'appConnect.isReady' event
	The isReady() method
	Event handler for 'appConnect.isReady' event

	Authorization API details
	The ACAuthState enumeration
	The authState() and authMessage() methods
	The authState() method
	The authMessage() method
	Calling authState() and authMessage() when your app launches
	Method return values after updates to authorization status

	The 'appconnect.authStateChangedTo' event
	Event handler for 'appConnect.authStateChangedTo' event
	The authStateApplied() method
	The displayMessage() method

	App-specific configuration API details
	The config() method
	Calling config() when your app launches
	config() return value after updates to app-specific configuration

	The 'appconnect.configChangedTo' event
	Event handler for 'appConnect.configChangedTo' event
	The configApplied() method

	Pasteboard policy API details
	The ACPasteboardPolicy enumeration
	Requirements for successful secure copy to pasteboard
	The pasteboardPolicy() method
	Calling pasteboardPolicy() when your app launches
	pasteboardPolicy() return value after updates to pasteboard policy

	The 'appconnect.pasteboardPolicyChangedTo' event
	Event handler for 'appConnect.pasteboardPolicyChangedTo' event
	The pasteboardPolicyApplied() method

	Open In policy API details
	Overview of Open In handling
	The ACOpenInPolicy enumeration
	The openInPolicy() and openInWhitelist() methods
	OpenInPolicy() method
	OpenInWhitelist() method
	Calling OpenInPolicy() and OpenInWhitelist() when your app launches
	Method return values after updates to Open In policy

	The 'appconnect.openInPolicyChangedTo' event
	Event handler for 'appConnect.openInPolicyChangedTo' event
	The openInPolicyApplied() method
	Info.plist key related to the Open In policy

	Print policy API details
	The ACPrintPolicy enumeration
	The printPolicy() method
	Calling printPolicy() when your app launches
	printPolicy() return value after updates to print policy

	The 'appconnect.printPolicyChangedTo' event
	Event handler for 'appConnect.printPolicyChangedTo' event
	The AppConnectCordova.printPolicyApplied() method

	Getting the AppConnect library version
	Caching tunneled URL responses
	iOS active state change events due to AppConnect control switches
	Situations that trigger the state change notifications

	Upload progress for AppTunnel data
	The 'appconnect.uploadProgressDidChange' event

	Developing third-party dual-mode apps
	What is a dual-mode app?
	Dual-mode app states
	High-level dual-mode app behavior
	When the app launches for the first time
	When an app subsequently launches
	User requests to switch to Non-AppConnect Mode
	User requests to switch to AppConnect Mode
	Data loss prevention policy handling

	Dual-mode API details
	The ACManagedPolicy enumeration
	The managedPolicy() method
	The 'appconnect.managedPolicyChangedTo' event
	Event handler for 'appConnect.managedPolicyChangedTo' event
	The stop method
	The retire method
	API call sequence when the app launches for the first time
	API call sequence when the app subsequently launches
	API call sequence when user requests Non-AppConnect Mode
	API call sequence when user requests AppConnect Mode

	Best practices using the AppConnect for iOS Cordova Plugin
	Display authorization status in the home screen
	Allow the user to enter credentials manually
	Limit the size of configuration data from the MobileIron server
	Consider limitations when using the iOS simulator
	Enable the AppConnect library to blur screens when the app becomes inactive
	Do not put secure data in the app bundle
	Indicate to the user that the app is initializing
	Disallow custom keyboard use
	Provide documentation about your app to the MobileIron server administrator

	Testing for third-party app developers
	Third-party AppConnect app testing overview
	Set up MobileIron Core
	Login to the Admin Portal
	Enable AppConnect on MobileIron Core
	Configure the AppConnect global policy
	Create an AppConnect container policy

	Set up your end-user device
	Set up Mobile@Work on an iOS device
	Install your app on the device
	Set up the AppConnect passcode on the device

	Test authorization status handling
	Change the status to authorized or unauthorized
	Change the status to retired
	Reauthorize a retired app

	Test data loss prevention policy handling
	Test AppConnect configuration change handling
	Create an AppConnect app configuration
	Update the AppConnect app configuration

	Test using AppTunnel
	Enable AppTunnel on MobileIron Core
	Use an existing certificate
	Generate a certificate
	Create a certificate authority for using an AppTunnel with HTTP/S tunneling
	Create a local certificate enrollment setting

	Configure the Sentry with an AppTunnel service
	Configure the AppTunnel service in the AppConnect app configuration

	Test the app documentation

	Testing for in-house app developers
	In-house AppConnect app testing overview
	Set up MobileIron Core
	Login to the Admin Portal
	Enable AppConnect on MobileIron Core
	Create a label for testing your app
	Upload your app to MobileIron Core if you use AppConnect.plist
	Verify your AppConnect.plist settings
	Configure the AppConnect global policy
	Create an AppConnect container policy, if necessary

	Set up your end-user device
	Set up Mobile@Work on an iOS device
	Install your app on the device
	Set up the AppConnect passcode on the device

	Test authorization status handling
	Change the status to authorized or unauthorized
	Change the status to retired
	Reauthorize a retired app

	Test data loss prevention policy handling
	Test AppConnect configuration change handling
	Create an AppConnect app configuration
	Update the AppConnect app configuration

	Test using AppTunnel
	Enable AppTunnel on MobileIron Core
	Use an existing certificate
	Generate a certificate
	Create a certificate authority for using an AppTunnel with HTTP/S tunneling
	Create a local certificate enrollment setting

	Configure the Sentry with an AppTunnel service
	Configure the AppTunnel service in the AppConnect app configuration

	Test the app documentation

	AppConnect for iOS Cordova Plugin revision history
	AppConnect 4.6.0 for iOS Cordova Plugin revision history
	New features summary
	Resolved issues

	AppConnect 4.5.3 for iOS Cordova Plugin revision history
	Resolved issues

	AppConnect 4.5.2 for iOS Cordova Plugin revision history
	AppConnect 4.5.1 for iOS Cordova Plugin revision history
	AppConnect 4.5.0 for iOS Cordova Plugin revision history
	Resolved issues
	Known issues

	AppConnect 4.4.2 for iOS Cordova Plugin revision history
	Resolved issues
	Known issues

	AppConnect 4.4.1 for iOS Cordova Plugin revision history
	Resolved issues
	Known issues

	AppConnect 4.4.0 for iOS Cordova Plugin revision history
	New features summary
	Resolved issues
	Limitations

	AppConnect 4.3.1 for iOS Cordova Plugin revision history
	New features
	Resolved issues

	AppConnect 4.3 for iOS Cordova Plugin revision history
	New features

	AppConnect 4.2.1 for iOS Cordova Plugin revision history
	New features

	AppConnect 4.2 for iOS Cordova Plugin revision history
	Resolved issues
	Known issues

	AppConnect 4.1.1 for iOS Cordova Plugin revision history
	Resolved issues
	Known issues

	AppConnect 4.1 for iOS Cordova Plugin revision history
	New features
	Certificate pinning support
	Lock AppConnect apps when screen is off
	Overriding the Open In Policy for OpenURL with the mailto: scheme

	AppConnect 4.0 for iOS Cordova Plugin revision history
	New features
	iOS 8 no longer supported
	Drag and Drop data loss prevention policy support
	Native email control using the Open In DLP policy
	App extension control using the Open In DLP policy
	Custom keyboard use controlled by MobileIron server
	Screen blurring
	Requirement for Face ID usage Info.plist entry
	Support for sending AppConnect logs from Mobile@Work
	Automatic policy status updates sent to MobileIron server
	Support for storing AppConnect library encryption keys in the Secure Enclave

	Resolved issues
	Known issues
	Limitations

	AppConnect 3.5 for iOS Cordova Plugin revision history
	New features
	iOS 11 compatibility
	Open In changes

	Resolved issues
	Limitations

	AppConnect 3.1.3 for iOS Cordova Plugin revision history
	Resolved issues

	AppConnect 3.1.2 for iOS Cordova Plugin revision history
	Resolved issues

	AppConnect 3.1.1 for iOS Cordova Plugin revision history
	Resolved issues

	AppConnect 3.1 for iOS Cordova Plugin revision history
	New features
	Update to OpenSSL 1.0.2h
	Open In policy now enforced by AppConnect library

	Resolved issues
	Known issues
	Limitations

	AppConnect 3.0 for iOS Cordova Plugin revision history
	Releases prior to AppConnect 3.0 for iOS Cordova Plugin revision history

