
MobileIron Core 11.1.0.0 AppConnect
Guide

Revised: June 9, 2021

For complete product documentation see:
MobileIron Core Product Documentation Home Page

Proprietary and Confidential | Do Not Distribute

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240gaAAA&Name=MobileIron+Core

MobileIronCore 11.1.0.0 AppConnectGuide| 2

Copyright © 2012 - 2021 MobileIron, Inc. All Rights Reserved.

Any reproduction or redistribution of part or all of these materials is strictly prohibited. Information in this
publication is subject to change without notice. MobileIron, Inc. does not warrant the use of this publication. For
some phone images, a third-party database and image library, Copyright © 2007-2009 Aeleeta's Art and Design
Studio, is used. This database and image library cannot be distributed separate from the MobileIron product.

“MobileIron,” the MobileIron logos and other trade names, trademarks or service marks of MobileIron, Inc.
appearing in this documentation are the property of MobileIron, Inc. This documentation contains additional
trade names, trademarks and service marks of others, which are the property of their respective owners. We do
not intend our use or display of other companies’ trade names, trademarks or service marks to imply a
relationship with, or endorsement or sponsorship of us by, these other companies.

MobileIronCore 11.1.0.0 AppConnectGuide| 3

Contents
Contents 3

Revision history 14

New features and enhancements 15

AppConnect overview 16

What are AppConnect-enabled apps? 16

AppConnect apps from MobileIron 17

Third-party and in-house AppConnect apps 17

AppTunnel overview 17

HTTP/S tunneling 18

TCP tunneling (also known as Advanced AppTunnel) 18

The AppConnect passcode 18

AppConnect apps and authentication to enterprise app servers 19

Authentication using Kerberos Constrained Delegation 20

Certificate authentication for Android AppConnect apps 20

Certificate authentication for iOS AppConnect apps 20

Authentication through MobileIron Access 20

App-specific configuration for AppConnect apps 21

AppConnect for Android overview 21

Wrapping modes 22

The MobileIron client app, the Secure Apps Manager, and the AppConnect wrapper 22

Supported Android device processors 23

Supported Android operating systems 23

Samsung Knox container (Knox Workspace) and AppConnect apps 23

AppConnect for Android component support and compatibility 23

Data loss prevention for secure apps for Android 24

Data encryption for secure apps for Android 24

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 4

Special badging for secure apps for Android 24

AppConnect for Android apps 25

Types of AppConnect Apps 25

AppConnect apps that MobileIron provides for Android 25

Docs@Work 25

Email+ 26

Web@Work 26

File Manager 26

Other documentation about MobileIron-provided AppConnect apps 26

When an Android device user can use AppConnect for Android 26

AppConnect for iOS overview 27

Component support and compatibility 27

Wrapping support for mobile development platforms 27

Data loss prevention for secure apps for iOS 27

Data encryption for secure apps for iOS 27

AppConnect-related data 28

App-specific data 28

MobileIron UEM client for iOS and AppConnect apps 29

App check-in and MobileIron UEM client 29

The AppConnect passcode auto-lock time and MobileIron UEM client 30

Dual-mode apps 31

AppConnect apps that MobileIron provides for iOS 31

When an iOS device user can use AppConnect for iOS 32

Configuring AppConnect and AppTunnel 33

Configuration overview 33

Basic configuration 33

Adding third-party and in-house secure apps 34

Adding AppTunnel support 34

Adding compliance actions 35

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 5

AppConnect configuration tasks 35

Adding secure apps for deployment 35

AppConnect global policy 36

AppConnect passcode requirements 37

Configuring the AppConnect global policy 38

AppConnect global policy field description 38

Self-service AppConnect passcode recovery 55

AppConnect passcode strength 56

Mechanism to force all device users to change their AppConnect passcodes 58

Interaction with the lockdown policy regarding Android camera access 58

AppConnect container policies 59

AppConnect app authorization 59

Data loss prevention settings 60

Automatically created AppConnect container policies 60

Configuring AppConnect container policies 61

AppConnect container policy field description 62

Enabling secure apps 65

Enabling licensing options for Android secure apps 65

Enabling licensing options for iOS secure apps 65

Enabling AppTunnel 66

Configuring an AppTunnel service 66

About the AppTunnel service name 67

AppConnect app configuration 68

Automatically created AppConnect app configuration 68

Automatically provided key-value pairs 69

Configuring an AppConnect app configuration 69

Checking the device’s labels 70

Adding a device to a label 70

AppConnect app configuration field description 70

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 6

Configuring the OpenWith Secure Email App option 76

76

Configuring compliance actions 76

Quick start configuration for AppConnect for Android 77

Uploading the Secure Apps Manager to Core for Android AppConnect quick start 78

Uploading the AppConnect apps to Core for Android AppConnect quick start 79

Enabling Core licensing options for Android AppConnect quick start 79

Configuring the AppConnect global policy for Android AppConnect quick start 80

Configuring the AppConnect container policy for Android AppConnect quick start 81

Configuring settings specific to the app for Android AppConnect quick start 83

Configuring email attachment control for Android AppConnect quick start 84

Quick start configuration for AppConnect for iOS 85

Adding AppConnect apps to Core for iOS AppConnect quick start 85

Enabling Core licensing options for iOS AppConnect quick start 86

Configuring the AppConnect global policy for iOS AppConnect quick start 87

Configuring the AppConnect container policy for iOS AppConnect quick start 88

Configuring settings specific to the app for iOS AppConnect quick start 89

Configuring email attachment control for iOS AppConnect quick start 90

Using AppConnect for Android 91

Hybrid web app support 91

Fingerprint login for AppConnect apps for Android 92

Required product versions for fingerprint login for AppConnect for Android 93

Requirements for fingerprint login for AppConnect for Android 93

Configuring fingerprint login for AppConnect for Android (Core) 93

Device User impact of fingerprint login for AppConnect for Android 94

Device user experience at registration 94

Device user experience if already registered 95

Device user options for enabling or disabling fingerprint login 95

Less common device user scenarios for fingerprint login for AppConnect for Android 96

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 7

Security versus convenience of passcode and fingerprint for AppConnect for Android 98

AppTunnel with TCP tunneling support for Android secure apps 100

Types of apps that can use AppTunnel with TCP tunneling 101

When to use AppTunnel with HTTP/S tunneling versus TCP tunneling 102

Configuring AppTunnel with TCP tunneling for Android secure apps 102

Configuring an AppTunnel TCP service 103

About the AppTunnel TCP service name 104

Configuring the AppTunnel TCP service in the AppConnect app configuration 104

Configuring per-app idle session timeout for AppTunnel with TCP tunneling 106

Certificate authentication using AppConnect with TCP tunneling for Android secure apps 106

App and enterprise server requirements 107

Configuring certificate authentication using AppTunnel with TCP tunneling for Android secure apps 107

Overview 107

High-level tasks for certificate authentication using AppTunnel with TCP tunneling 109

Setting up the certificate for authenticating the user to the enterprise server 109

Specifying the AppTunnel services that use certificate authentication 110

Specifying which certificate to use to authenticate the user to the enterprise server 110

AppTunnel and TLS protocol versions in Android secure apps 111

Configuring the TLS protocol for AppTunnel 112

Lock, unlock, and retire impact on AppConnect for Android 113

Lock impact 113

Unlock the AppConnect container impact 113

Retire impact 114

Lock Android AppConnect apps when screen is off 114

Copy/Paste for AppConnect for Android 115

Comparison with AppConnect for iOS copy/paste policy 116

Copying from non-AppConnect apps to AppConnect apps 116

Interaction with Exchange setting 117

Sharing content from AppConnect for Android apps to non-AppConnect apps 117

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 8

Web-related DLP policies 118

Web DLP policy for browser launching 118

DLP allowing links from non-AppConnect apps to open in Web@Work 119

Web DLP versus Non-AppConnect apps can open URLs in Web@Work DLP 119

DLP policy for media player access 120

Media file requirements 120

Device-initiated security controls for AppConnect for Android 121

Configure the actions on the AppConnect global policy 121

Interaction with the Exchange setting 121

Custom keyboards in AppConnect apps 122

App whitelist 123

Key-value pair for the app whitelist 123

App whitelist examples 124

How the app whitelist is evaluated 125

Configuring an app whitelist 125

Secure File Manager features 126

Secure folder access 126

About allowing a secure app to ignore the auto-lock time 126

App requirements to ignore the auto-lock time 127

What the device user sees when an app ignores the auto-lock time 127

Situations that wipe Android AppConnect app data 128

Accessible Android apps to preserve the user experience 128

Secure Apps Manager Android permissions 129

Disabling analytics data collection for AppConnect for Android 130

Using AppConnect for iOS 131

Open-In data loss prevention policy details 131

Open In behavior in wrapped apps versus SDK apps 131

iOS native email use and the Open In DLP policy 134

Open In and native email with an AppConnect version prior to AppConnect 4.0 for iOS 134

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 9

Open In and native email with AppConnect 4.0 for iOS through most recently released version 135

Putting iOS native email into the Open In Whitelist 136

AirDrop use and the Open In DLP policy 136

App extension use and the Open In DLP policy 136

Whitelisting services integrated into iOS in the Open In DLP policy 136

Overriding the Open In policy for an app 137

Open From data loss prevention policy 138

Custom keyboard control 138

Screen blurring 139

Dictation with the native keyboard is not allowed for wrapped apps 140

Heightened security for AppConnect apps using the Secure Enclave 140

Situations that wipe AppConnect for iOS app data 141

Device-initiated (local) compliance for iOS jailbreak detection 141

Compliance actions for device-initiated jailbreak detection 142

Configuring device-initiated compliance for jailbreak detection 142

Creating a compliance action 142

Specifying the compliance action in the security policy 144

Touch ID or Face ID for accessing secure apps 144

Comparison of the two Touch ID or Face ID options 145

Security versus convenience of passcode and Touch ID or Face ID options 147

Touch ID or Face ID with fallback to device passcode 150

Configuring the security policy for strong device passcode 150

Switches to Mobile@Work eliminated with Touch ID or Face ID with fallback to device passcode 151

Improved user experience 151

Device user impact in Mobile@Work 152

Less common device user scenarios 152

Touch ID or Face ID with fallback to AppConnect passcode 154

Improved user experience 155

Device User impact of Touch ID or Face ID with fallback to AppConnect passcode 155

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 10

Configuring Touch ID or Face ID 155

Certificate pinning for AppConnect apps 156

About certificates used in certificate pinning 157

About domains in certificate pinning 157

Certificate pinning domains for root and intermediate CA certificates 157

Certificate pinning domains for leaf certificates 158

Configuring certificate pinning 158

Uploading the trusted certificates 158

Creating a Client TLS configuration 159

Modifying an AppConnect app configuration, Web@Work setting, or Docs@Work setting 160

Creating an AppConnect app configuration for the app if one does not already exist 160

Configuring the Client TLS configuration in the AppConnect app configuration 160

Viewing certificate pinning information in Mobile@Work 161

Certificate authentication from AppConnect apps to enterprise services 161

Impact on AppTunnel use 162

Setting up certificate authentication from an AppConnect app 162

Creating an AppConnect app configuration for the app if one does not already exist 163

Configuring the key-value pairs for the certificate and URL matching rule 164

Details about MI_AC_CLIENT_CERT_#_RULE 164

Rule format 165

Matching logic 165

Impact to tunneling when using a global HTTP proxy 167

AppConnect Key-value Pairs Summary 168

AppConnect for Android key-value pairs 168

AppConnect Global policy key-value pairs 168

AppConnect app configuration key-value pairs 170

Secure Apps Manager app configuration key-value pairs 171

AppConnect for iOS key-value pairs 171

Troubleshooting AppConnect and AppTunnel for Android 174

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 11

Logging for AppConnect apps for Android 174

Turning on device log encryption on Android devices 174

State and encryption mode of Android secure apps 175

Status of AppConnect-related policies and configurations for an app 176

Troubleshooting AppConnect and AppTunnel for iOS 177

Logging for AppConnect apps for iOS 177

Overview of logging for AppConnect apps for iOS 177

Log levels 178

How the log level appears in messages 179

Log file details 180

Log data collection overview 181

Configuring logging for an AppConnect app 181

Creating a new label 182

Applying labels 182

Log level configuration impact on the device 183

Activating verbose or debug logging on the device 184

Emailing log files from Mobile@Work 184

Removing log level configuration when no longer needed 185

Secure apps status display in Mobile@Work 185

Navigating to the secure apps status display 186

The secure apps status display contents 186

Status details for a specific secure app 186

AppTunnel configuration troubleshooting display in Mobile@Work 190

Navigating to the AppTunnel configuration troubleshooting display 190

Troubleshooting with the AppTunnel configuration display fields 192

Client Certificate display 193

Specifying a trusted root certificate in the Standalone Sentry 195

Specifying a valid client certificate in the AppConnect app configuration 195

Rules display 196

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 12

Sentry display 197

Sentry Certificate display 199

Uploading a valid Sentry certificate to Standalone Sentry 200

AppTunnel configuration troubleshooting checklist 201

Status of AppConnect-related policies and configurations for an app 202

Viewing certificates stored in Mobile@Work 203

AppTunnel diagnostics in SDK-built apps 204

Secure Apps on Android Devices - User Perspective 205

Downloading and installing the secure apps 205

Creating the secure apps passcode 206

Choosing a more complex AppConnect passcode 206

Recovering the AppConnect passcode when forgotten 207

Secure apps notifications 207

Secure apps status bar icons 208

Camera, gallery, and media player warning messages 208

Secure apps on iOS Devices - User Perspective 210

Secure apps passcode management 210

Creating a secure apps passcode 211

Creating a more complex secure apps passcode 213

Logging in with the secure apps passcode 215

Logging out or resetting passcode for secure apps 216

Resetting the secure apps passcode - administrator initiated 216

Touch ID or Face ID with fallback to device passcode – device user perspective 217

Choosing Touch ID or Face ID with fallback to device passcode to access secure apps 217

Device users choose Touch ID or Face ID 218

Device users choose passcode 218

Touch ID or Face ID with fallback to AppConnect passcode – device user perspective 218

Choose whether to use Touch ID or Face ID 219

Use Touch ID or Face ID when the auto-lock time expires 220

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 13

Changing from secure apps passcode to Touch ID or Face ID 221

Changing from Touch ID or Face ID to secure apps passcode 222

Contents

MobileIronCore 11.1.0.0 AppConnectGuide| 14

Revision history

Date Revision

June 9, 2021 Made correction about the function of the Cancel button in Touch ID or Face ID
with fallback to AppConnect passcode – device user perspective.

TABLE 1. REVISION HISTORY

Revision history

1

MobileIronCore 11.1.0.0 AppConnectGuide| 15

New features and enhancements

This guide documents the following new features and enhancements.

l AppConnect passcode history updates: The Passcode history option in the AppConnect Global
policy is changed as follows:

o The value options are updated to 12. This means that you can restrict device users from reusing any
password up to the past 12 passwords.

o The passcode reuse is case insensitive. This means that the passcode case is not considered for
reuse. Device users cannot change the case for past passcodes and reuse them. Password and
passWord are considered the same.

This feature update requires Secure Apps Manager 9.2.0 for Android.
For more information, see the description for Passcode history in the AppConnect global policy field
description table.

2

MobileIronCore 11.1.0.0 AppConnectGuide| 16

AppConnect overview

AppConnect is a MobileIron feature that containerizes apps to protect data on iOS and Android devices. Each
AppConnect-enabled app becomes a secure container whose data is encrypted, protected from unauthorized
access, and removable. Because each user has multiple business apps, each app container is also connected to
other secure app containers. This connection allows the AppConnect-enabled apps to share data, like
documents. Polices and configurations set up in a MobileIron unified endpoint management (UEM) platform are
used to manage the AppConnect-enabled apps.

The MobileIron UEM are MobileIron Cloud and MobileIron Core.

While AppConnect protects data on a device -- data-at-rest, another MobileIron feature, AppTunnel, protects
data as it moves between a device and enterprise data sources -- data-in-motion. MobileIron AppTunnel is a
MobileIron feature that provides secure tunneling and access control to enterprise data sources. App-by-app
session security protects the connection between each app container and the corporate network. AppTunnel is
particularly useful when an organization does not want to open up VPN access to all apps on the device. This
feature requires a Standalone Sentry configured to support app tunneling.

Related topics

l What are AppConnect-enabled apps?

l AppTunnel overview

l The AppConnect passcode

l AppConnect apps and authentication to enterprise app servers

l App-specific configuration for AppConnect apps

l AppConnect for Android overview

l AppConnect for iOS overview

What are AppConnect-enabled apps?
AppConnect-enabled apps, also known as AppConnect apps, are apps that have been containerized using one
of the following methods:

l wrapping (iOS and Android)

l AppConnect SDK (iOS)

l AppConnect Cordova Plugin (iOS)

MobileIronCore 11.1.0.0 AppConnectGuide| 17

You configure and distribute AppConnect apps to devices on the MobileIron unified endpoint management
(UEM) platform. The MobileIron UEM are MobileIron Cloud and MobileIron Core. From the device user
perspective, AppConnect apps are called secure apps. Secure apps can share data only with other secure apps.
Unsecured apps cannot access the data.

Related topics

AppConnect overview

AppConnect apps fromMobileIron

MobileIron provides a number of AppConnect apps, including Email+, Web@Work, and Docs@Work.

License requirements for each MobileIron AppConnect app varies.The license requirements are listed in
Enabling secure apps.

Third-party and in-house AppConnect apps

Your organization and third-party providers can create secure apps by either:

l wrapping the apps (Android and iOS)

l developing iOS apps by using the AppConnect for iOS SDK or AppConnect for iOS Cordova Plugin

License requirements for each MobileIron AppConnect app varies. The license requirements are listed in
Enabling secure apps.

NOTE: Youcannotwrapanapp that youget fromGoogle Playor theAppleAppStore.

See the following for details about how to wrap or develop an AppConnect app:

l AppConnect for Android Product Documentation Home Page
o MobileIron AppConnect for Android App Developers Guide

l AppConnect for iOS Product Documentation Hope Page
o MobileIron AppConnect for iOS AppWrapping Developers Guide

o MobileIron AppConnect for iOS SDK App Developers Guide

o MobileIron AppConnect for iOS Cordova Plugin Developers Guide

AppTunnel overview
MobileIron AppTunnel provides per-app secure tunneling and access control to protect app data as it moves
between the device and corporate backend resources. You configure MobileIron UEM and Standalone Sentry to
support AppTunnel for an app. AppTunnel provides:

AppConnect apps fromMobileIron

https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android
https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+iOS&Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

MobileIronCore 11.1.0.0 AppConnectGuide| 18

l HTTP/S tunneling

l TCP tunneling (also known as Advanced AppTunnel)

HTTP/S tunneling

AppTunnel can tunnel HTTP/S traffic between an iOS or Android AppConnect app and a corporate backend
resource. The apps must use specific APIs to make their HTTP/S connections. Contact the app vendor or
developer to find out if the app works with AppTunnel for HTTP/S tunneling.

TCP tunneling (also known as Advanced AppTunnel)

AppTunnel can tunnel TCP traffic between an AppConnect app and a corporate backend resource. A TCP
tunnel supports HTTP/S and TCP connections. TCP tunneling for AppConnect apps is set up differently for iOS
and Android:

l Android AppConnect apps
AppConnect apps for Android that are wrapped with the Generation 2 wrapper support TCP tunneling
using AppTunnel.

l iOS AppConnect apps
AppConnect apps for iOS support TCP tunneling using the MobileIron Tunnel app. Therefore, to use
TCP tunneling for iOS AppConnect apps, in addition to Standalone Sentry, also deploy and install
MobileIron Tunnel on iOS devices and apply the Tunnel VPN profile to the iOS AppConnect app.

NOTE: AppTunnel for iOSandAndroiddoes not support UDP tunneling. Therefore, if anAppConnectapp
requires UDP, suchas for streamingvideo, it cannot useAppTunnel to tunnel its data.

Related topics

l AppTunnel with TCP tunneling support for Android secure apps

l See "AppTunnel with Standalone Sentry" in the Sentry Guide for MobileIron Core on the MobileIron
Sentry Product Documentation Home Page.

l For information about deploying MobileIron Tunnel for iOS, see Tunnel for iOS Guide on the MobileIron
Tunnel for iOS Product Documentation Home Page.

The AppConnect passcode
You can require an AppConnect passcode, also known as the secure apps passcode. With a single login using
the AppConnect passcode, the device user can access all the secure apps. You configure the rules for the
AppConnect passcode on the administrative portal for the MobileIron UEM. The AppConnect passcode is not
the same as the passcode used to unlock the device.

For the highest possible security when using AppConnect, MobileIron recommends that each device use both of
the following:

HTTP/S tunneling

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Sentry&Id=a1s3400000240gYAAQ&Name=MobileIron+Sentry
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Sentry&Id=a1s3400000240gYAAQ&Name=MobileIron+Sentry
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Tunnel&Id=a1s3400000240gzAAA&Name=Tunnel+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Tunnel&Id=a1s3400000240gzAAA&Name=Tunnel+for+iOS

MobileIronCore 11.1.0.0 AppConnectGuide| 19

l a device passcode

l an AppConnect passcode

In some environments, however, using both passcodes is not feasible due to usability and other requirements.
For these reasons, you have the option to not require an AppConnect passcode. Also, you can allow Touch ID or
Face ID (iOS) or fingerprint (Android) instead of an AppConnect passcode for accessing AppConnect apps for a
simpler user experience.

When the AppConnect passcode is not required, users enter only a device passcode, if one is required, to unlock
the device. Users are not encumbered with entering a second authentication to access secure apps. Because
the apps are AppConnect-enabled, they are secured with AppConnect features such as data loss prevention
policies. Also, the secure apps’ data is protected with encryption. However, not requiring an AppConnect
passcode means data encryption does not use the AppConnect passcode in creating the encryption key.

Your organization’s security requirements determine whether accessing secure apps without an AppConnect
passcode is an acceptable trade-off for an improved user experience.

Related topics

l Data encryption for secure apps for Android

l Data encryption for secure apps for iOS

l Touch ID or Face ID for accessing secure apps.

l Security versus convenience of passcode and Touch ID or Face ID options

l Fingerprint login for AppConnect apps for Android

AppConnect apps and authentication to enterprise app
servers
You can set up AppConnect apps to provide device users a seamless authentication experience to your
enterprise applications. In such a setup, users do not have to enter any credentials when accessing enterprise
applications from an AppConnect app from a device managed by MobileIron. When users launch an
AppConnect app the MobileIron UEM client on the managed device authenticates the user. After the user is
authenticated, the user can access the enterprise application without having to enter any credentials.

The following methods are available to support this capability:

l Authentication using Kerberos Constrained Delegation

l Certificate authentication for Android AppConnect apps

l Certificate authentication for iOS AppConnect apps

l Authentication through MobileIron Access

AppConnect apps and authentication to enterprise app servers

MobileIronCore 11.1.0.0 AppConnectGuide| 20

Authentication using Kerberos Constrained Delegation

You can use Kerberos Constrained Delegation (KCD) for authenticating a user to an enterprise server.

To use this feature, the app must do the following:

l Use the AppTunnel feature, configured for authenticating the user to the enterprise server using
Kerberos Constrained Delegation (KCD).

l Interact with an enterprise server that supports authentication using KCD.

NOTE: AppConnect-enabledActiveSyncemail apps suchas, Email+ forAndroid, andEmail+ for iOSdo
not useAppTunnel. Youconfigure the Standalone Sentry for authenticating theuser to the
ActiveSync server usingKCD.

All AppConnect apps can use this feature, including:

l Android third-party AppConnect apps

l iOS third-party AppConnect apps built with the AppConnect for iOS SDK or the AppConnect for iOS
Cordova Plugin

l Web@Work

l Docs@Work

NOTE: MobileIrondoes not support KCDwithCIFS-basedcontent servers.

Certificate authentication for Android AppConnect apps

An Android AppConnect app can send a certificate to identify and authenticate the app user to an enterprise
server when using AppTunnel with TCP tunneling.

Related topics

Certificate authentication using AppConnect with TCP tunneling for Android secure apps.

Certificate authentication for iOS AppConnect apps

An iOS AppConnect app can send a certificate to identify and authenticate the app user to an enterprise service.

Related topics

Certificate authentication from AppConnect apps to enterprise services.

Authentication through MobileIron Access

For an AppConnect app, in a MobileIron Access deployment with Core or Cloud, if an enterprise cloud service is
set up in Access,

Authentication using Kerberos ConstrainedDelegation

MobileIronCore 11.1.0.0 AppConnectGuide| 21

l Authentication to the cloud service goes through Access.

l If AppTunnel rules are configured in the AppConnect app configuration, data traffic goes through
AppTunnel, however authentication traffic goes through Tunnel to Access.

l In addition, with zero sign-on, device users can get passwordless access to cloud services on their
managed devices.

l If Enable MobileIron Access is selected in the AppConnect app configuration, AppTunnel traffic is
trusted by MobileIron Access. The AppConnect app does not require Tunnel to authenticate through
Access.

Related topics

l For information about MobileIron Access and how to set up Access, see the Access Guideon the
MobileIron Access Product Documentation Home Page.

l For information about Enable Mobile Access, see AppConnect app configuration field description.

App-specific configuration for AppConnect apps
On the administrative portal for the UEMl, you can configure settings that are specific to an AppConnect app.
Because MobileIron Core provides these settings to the app, device users do not have to manually enter
configuration details that an AppConnect app requires. By automating the configuration for the device users,
each user has a better experience when installing and setting up apps. Also, the enterprise has fewer support
calls, and the app is secured from misuse due to misconfiguration. This feature is also useful for apps which do
not want to allow the device users to provide certain configuration settings for security reasons.

Each AppConnect-enabled app’s documentation should specify the necessary configuration for the app.

AppConnect for Android overview
MobileIron supports AppConnect for Android by wrapping Android apps. The following sections provide an
overview.

l Wrapping modes

l The MobileIron client app, the Secure Apps Manager, and the AppConnect wrapper

l Supported Android device processors

l Supported Android operating systems

l Samsung Knox container (Knox Workspace) and AppConnect apps

l AppConnect for Android component support and compatibility

l Data loss prevention for secure apps for Android

l Data encryption for secure apps for Android

l Special badging for secure apps for Android

App-specific configuration for AppConnect apps

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Access&Id=a1s3400000240gUAAQ&Name=MobileIron+Access

MobileIronCore 11.1.0.0 AppConnectGuide| 22

Wrapping modes

Two modes of wrapping are available:

l Generation 2

l Generation 1

Generation 2 wrapping is the default mode, and is required for a number of Android features. Generation 1
wrapping should only be used for features not supported by Generation 2. For information about the features
supported by Generation 2 and Generation 1 wrapping modes, see "Wrapping support of commonly used app
capabilities" in the AppConnect for Android App Developers Guide available on the MobileIron AppConnect for
Android Product Documentation Home Page.

NOTE: AppConnectappsare supportedonly inmultiple-appkioskmode. Theyarenot supported in
single-appkioskmode. Kioskmode information is in “Android Kiosk Support” in theCore Device
Management Guide for Android and Android Enterprise Devices.

The MobileIron client app, the Secure Apps Manager, and the AppConnect
wrapper

Two MobileIron apps work together on the Android device to support AppConnect. Together, they provide the
security and management of all the AppConnect apps.

These MobileIron apps are:

l the MobileIron client app for Android (MobileIron Go or Mobile@Work)

l the Secure Apps Manager

Each AppConnect app is wrapped with the AppConnect wrapper, which enforces security along with the
MobileIron client app and the Secure Apps Manager. On the device, the apps are called secure apps.

The Secure Apps Manager performs the following tasks to support AppConnect apps on Android devices:

l manages the data encryption key.

l handles the AppConnect passcode login for all AppConnect apps.

l provides a list of all the AppConnect apps on the device.

When a new Secure Apps Manager becomes available, you do not need to re-wrap all your apps. Secure Apps
Manager is backward compatible. A wrapped app requires the corresponding or newer version of Secure Apps
Manager. For example, an app wrapped with Wrapper 8.5.0.0 requires Secure Apps Manager 8.5.0.0 or later
version that supports apps wrapped with Wrapper 8.5.0.0.

Therefore, for MobileIron Core deployments, upgrade devices to the corresponding version of Secure Apps
Manager if you upgrade an app on the device to use a new wrapper version.

Wrappingmodes

https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android
https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android

MobileIronCore 11.1.0.0 AppConnectGuide| 23

For the AppConnect app compatibility with the latest version of Secure Apps Manager, see the AppConnect for
Android release notes available in the MobileIron AppConnect for Android Product Documentation Home Page.

NOTE: Support for variousAppConnect forAndroid features sometimes requireminimumversions of the
MobileIronclient app, SecureAppsManager, and thewrapper, as specified ineach feature’s
description.

Supported Android device processors

AppConnect on Android is supported on devices with:

l 32-bit ARM processors

l 64-bit ARM processors

Supported Android operating systems

For Android versions that AppConnect for Android supports, see the AppConnect Secure Apps for Android
Release Notes and Upgrade Guide.

For Android versions that Core supports, see theMobileIron Core and Connector Release Notes and Upgrade
Guide.

However, some AppConnect for Android features require one of the more recent Android versions. These
exceptions are noted in specific feature descriptions.

Samsung Knox container (Knox Workspace) and AppConnect apps

The Samsung Knox container, known as the Knox Workspace, is not supported with AppConnect apps.
Specifically:

l The Samsung Knox container does not support any AppConnect apps running inside the Knox
container.

l MobileIron does not support using both a Knox container and AppConnect container on the same
device.

NOTE: Ina featurecalledAppConnect for Knox,Mobile@Work forAndroid uses SamsungKnoxPlatform
features toprovideanadded layer of security. Note thatAppConnect for Knoxuses only the
AppConnect container. Thedevicecannot have the SamsungKnoxcontainer. For information
aboutAppConnect for Knox, see “AppConnect for SamsungKnoxdevices” in theCore Device
Management Guide for Android and Android Enterprise Devices

AppConnect for Android component support and compatibility

For the list of Secure Apps Manager versions that Core supports, see theMobileIron Core and Connector
Release Notes and Upgrade Guide.

SupportedAndroid device processors

https://help.mobileiron.com/s/mil-productdoclistpage?Label=AppConnect+Android&Id=a1s3400000240gcAAA&Name=AppConnect+for+Android

MobileIronCore 11.1.0.0 AppConnectGuide| 24

For the list of Mobile@Work versions supported with a particular Secure Apps Manager version, see the
AppConnect Secure Apps for Android Release Notes and Upgrade Guide for the Secure Apps Manager version.

Regarding support of Secure Apps Manager versions with wrapper versions:

l When you upgrade to a new Secure Apps Manager, you do not need to re-wrap all your apps. A new
Secure Apps Manager is supported with apps wrapped with the newest wrapper plus the two most
recent older wrappers. That is, Secure Apps Manager is backward compatible.

l An app wrapped with a newer wrapper requires the corresponding or newer version of Secure Apps
Manager. For example, an app wrapped with Wrapper 8.5.0.0 requires Secure Apps Manager 8.5.0.0 or
later version that supports apps wrapped with Wrapper 8.5.0.0.
Therefore, upgrade devices to the corresponding version of Secure Apps Manager if you upgrade an
app on the device to use a new wrapper version.

NOTE: Support for variousAppConnect forAndroid features sometimes requireminimumversions of
Mobile@Work, SecureAppsManager, and thewrapper, as specified ineach feature’s description.

Data loss prevention for secure apps for Android

Data loss prevention policies for secure apps allow you to secure the sensitive data in AppConnect apps. With
data loss prevention policies, you determine whether:

l device users can take screen captures of protected data.

l AppConnect apps can access camera photos or gallery images.

l AppConnect apps can streammedia to media players.

l AppConnect apps have copy/paste restrictions.

l tapping a web link in an AppConnect app can open the web page in an unsecured browser.

l tapping a web link in a non-AppConnect app can open the web page in Web@Work.

NOTE: Document interaction (Open In) is always restricted toall AppConnectapps forAndroid.

Data encryption for secure apps for Android

App data for AppConnect apps on the device is encrypted. AES-256 encryption (which uses a key size of 256
bits) is used.

The encryption key is not stored on the device. It is programmatically derived. If an AppConnect passcode is
required, it is used in the encryption key’s derivation, making the application data secure even on a device that
becomes compromised. (When a device is compromised, it is “rooted”, meaning an app has root access).

Special badging for secure apps for Android

An Android device user recognizes that an app is a secure app because its icon is overlaid with a special badge.

Data loss prevention for secure apps for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 25

AppConnect for Android apps

The following provides an overview of the types of AppConnect apps:

l Types of AppConnect Apps

l AppConnect apps that MobileIron provides for Android

l Other documentation about MobileIron-provided AppConnect apps

Types of AppConnect Apps

AppConnect for Android supports apps developed by:

l third-party developers

l in-house developers

l MobileIron

The apps can be:

l Java apps

l Hybrid web apps, including Cordova and PhoneGap apps
Hybrid web apps use Android WebView andWebKit technologies to access and display web content.

l Java apps which use C or C++ code
C and C++ code are native code languages on Android devices. These apps are built with the Android
Native Development Kit (NDK)

l Apps built with the Xamarin development platform

l Apps built with the React Native mobile development framework

All apps are wrapped with the AppConnect for Android wrapper. All apps are distributed by uploading them to the
App Catalog on the MobileIron UEM as in-house apps.

Wrapping does not support all Java APIs and features or all NDK features. Details are listed in theMobileIron
AppConnect for Android App Developers Guide.

AppConnect apps that MobileIron provides for Android

MobileIron provides the following AppConnect apps. These apps are available on the Software > Downloads
page at:

https://help.mobileiron.com/s/software

Docs@Work

The Docs@Work for Android app provides users with an easy way to access, annotate, share, and view
documents across a variety of on-premise and cloud storage repositories (for example, SharePoint, CIFS,

AppConnect for Android apps

MobileIronCore 11.1.0.0 AppConnectGuide| 26

WebDAV, O365, Box, and Dropbox).

Email+

Email+ provides secure email, calendar, and contacts on corporate-owned and BYOD Android devices by
communicating with an ActiveSync server in your enterprise.

Web@Work

Web@Work is a secure browser that allows your device users to easily and securely access your organization's
web content.

File Manager

This secure File Manager allows a user to save, browse, and manage files in the secure container. For example,
the user can browse saved email attachments. The user can also save documents from any other AppConnect
app.

Other documentation about MobileIron-provided AppConnect apps

For more information about the AppConnect apps that MobileIron provides for Android, see:

l Docs@Work for Android Guide

l Email+ for Android Guide

l Web@Work for Android Guide

When an Android device user can use AppConnect for Android

An Android device user can use an AppConnect app only if:

l The device user has been authenticated through a MobileIron UEM platform via a MobileIron UEM
client:
o The MobileIron unified endpoint management (UEM) platform are MobileIron Cloud, MobileIron

Core.
o The MobileIron UEM clients are MobileIron Go, Mobile@Work.

l You have authorized the app to run on the device.
o If the app is not authorized, the app does not allow the device user to access any secure data or

functionality. If a device user launches an unauthorized wrapped app, the app displays a message
and exits.

o To authorize an AppConnect app for a device, you apply the appropriate labels to the app’s
AppConnect container policy.

l No situation has caused an authorized AppConnect app to become unauthorized for a device.
o These situations include, for example, when the device has been out of contact with Core for a

period of time that you configure.

Email+

MobileIronCore 11.1.0.0 AppConnectGuide| 27

l The device user has entered the AppConnect passcode, if you have required one.

AppConnect for iOS overview
AppConnect for iOS apps are either:

l built using the AppConnect for iOS SDK

l wrapped

AppConnect functionality on iOS devices is provided by the AppConnect app and the MobileIron UEM client app
for iOS. Unlike AppConnect for Android, AppConnect for iOS has no separate Secure Apps.

l MobileIron Go for MobileIron Cloud

l Mobile@Work for MobileIron Core

Component support and compatibility

For the supported versions of the various components in an AppConnect deployment, including the MobileIron
UEM and MobileIron UEM client, see “Product versions required” in either

l theMobileIron AppConnect for iOS SDK App Developers Guide

l theMobileIron AppConnect for iOS AppWrapping Developers Guide

See the guide that corresponds to the version of AppConnect with which the app is built or wrapped.

Wrapping support for mobile development platforms

Many iOS apps are created using mobile development platforms, rather than using the Apple environment that
targets only iOS devices. You can wrap iOS apps that were created using these mobile development platforms:

l PhoneGap

l IBMWorklight

l Xamarin

Data loss prevention for secure apps for iOS

You determine whether an app can use the iOS pasteboard, the document interaction feature (Open In, Open
From), drag and drop, copy-paste or print. AppConnect for iOS uses this information to limit the app’s
functionality to prevent data loss through these features.

Data encryption for secure apps for iOS

The following describe the data encryption for secure apps for iOS:

AppConnect for iOS overview

MobileIronCore 11.1.0.0 AppConnectGuide| 28

l AppConnect-related data

l App-specific data

AppConnect-related data

AppConnect-related data, such as app configurations and certificates, is encrypted on the device. The
encryption key is not stored on the device. It is either:

l Protected by the device user’s AppConnect passcode.

l Protected by the device passcode if the administrator does not require an AppConnect passcode.

l Protected by the device passcode if the device user uses Touch ID / Face ID with fallback to device
passcode to access AppConnect apps.

l Protected by the AppConnect passcode if the device user uses Touch ID / Face ID with fallback to
AppConnect passcode to access AppConnect apps.

If no AppConnect passcode or device passcode exists, the data is encrypted, but the encryption key is not
protected by either passcode.

App-specific data

Data that the app saves on the device is also protected with encryption. Specifically:

l For a wrapped app, if the device has a device passcode, then iOS encrypts the app’s data.
If no device passcode exists, iOS encrypts the data, but the encryption key is not protected.

l For an app built with the SDK or Cordova Plugin, if the app enables iOS data protection on its files, and
the device has a device passcode, then iOS encrypts the app’s data. Most apps enable iOS data
protection, which is default app behavior.
If no device passcode exists, iOS encrypts the data, but the encryption key is not protected.

l Some SDK apps use SDK-provided secure services. For these apps, the app’s data is encrypted if the
device has a device passcode or an AppConnect passcode.
If no device passcode or AppConnect passcode exists, iOS encrypts the data, but the encryption key is
not protected.

NOTE: SDKapps that use SDK-provided secure services canalso shareencrypteddatawithother
SDKapps. Todo this, theapp’s documentationprovidesanencryptiongroup ID key for you
to include in theapp’s app-specific configuration. If you include the samevalue for an
encryptiongroup ID key for anotherAppConnectapp, theappscan share theencrypted
data.

Contact the app developer or vendor to determine whether the app enables iOS data protection, and whether
SDK apps use the SDK-provided secure file I/O. This information contributes to your decisions to require an
AppConnect passcode and device passcode.

The following table summarizes the protection of the data that AppConnect apps save on the device. Note that if
a device user uses Touch ID or Face ID to access AppConnect apps, a device passcode is available.

AppConnect-related data

MobileIronCore 11.1.0.0 AppConnectGuide| 29

Device passcode
but no
AppConnect
passcode

AppConnect
passcode but no
device passcode

Device passcode
and AppConnect
passcode

Neither a device
passcode or
AppConnect
passcode

Wrapped apps App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

SDK and Cordova
apps that enable
iOS data protection
(typical behavior)

App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

SDK apps that use
SDK-provided
secure services

App data
encrypted

App data
encrypted

App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

TABLE 2. ENCRYPTION OFAPPCONNECT APP DATA ON THE DEVICE

MobileIron UEM client for iOS and AppConnect apps

The MobileIron UEM client for iOS supports AppConnect apps, including the following:

l Periodically does an app check-in with the MobileIron UEM to get management and security-related
information and passes the information to the AppConnect app.

l Enforces the AppConnect passcode and Touch ID / Face ID for accessing AppConnect apps.

The MobileIron UEM clients are, MobileIron Go for MobileIron Cloud deployments and Mobile@Work for
MobileIron Core deployments

App check-in and MobileIron UEM client

On each app check-in, The MobileIron UEM client gets AppConnect policy updates for all the AppConnect apps
that have already run on the device. These updates include changes to:

l the AppConnect global policy for the device.

l AppConnect container policies for each of the AppConnect apps that have run on the device.

l AppConnect app configurations for each of the AppConnect apps that have run on the device.

l the current authorization status for each of the AppConnect apps that have run on the device.

The MobileIron UEM client does an app check-in in the following situations:

MobileIron UEMclient for iOS andAppConnect apps

MobileIronCore 11.1.0.0 AppConnectGuide| 30

l The device user launches an AppConnect app for the first time.
o In this situation, the MobileIron UEM client finds out about the app for the first time, and adds it to the

set of AppConnect apps for which it gets updates.

l The app check-in interval expires while an AppConnect app is running.

l The app check-in interval expired while no AppConnect apps were running and then the device user
launches an AppConnect app.

On iOS devices, when the UEM client does an app check-in, the UEM client comes to the foreground and the
AppConnect app goes to the background momentarily. Once the UEM client has completed the app check-in,
the AppConnect app returns to the foreground.

NoteTheFollowing:

l The ForceDeviceCheck-in featureon theMobileIronUEMdoes not sync thepolicies and settings
related toAppConnect for iOS. Theappcheck-in interval in theAppConnectglobal policyon
MobileIronCoreand in theAppConnectDeviceconfigurationonMobileIronCloudcontrols these
updates. However, in theMobileIronUEMclient for iOSon thedevice, theCheck for Updates
optiondoes sync thepolicies and settings related toAppConnect.

l Whencontrol switches toMobile@Workdue toanappcheck-in,Mobile@WorkgetsAppConnect
policy updates fromCore. However,Core indicates in thedevicedetails display that thepolicies
areonly “sent” or “pending” until thenext appcheck-in. At thenextappcheck-in,Core finds out
whether anAppConnectapphasapplied thepolicies. If it has,Core indicates thepolicies are
“applied”at that time.

The AppConnect passcode auto-lock time and MobileIron UEM client

The MobileIron UEM client (MobileIron Go or Mobile@Work) launches to prompt the device user for the
AppConnect passcode or Touch ID / Face ID in the following situations:

l The device user launched or switched to an AppConnect app after the auto-lock time expired. You
configure the auto-lock time in the AppConnect global policy.

l The AppConnect passcode auto-lock time expires while the device is running an AppConnect app.

NOTE: If thedeviceuser is interactingwith theapp, theauto-lock timedoes not expire. This case
occurs onlywhen thedeviceuser has not touched thedevice for thedurationof the
timeout interval.

l After the device is powered on and the device user first launches an AppConnect app.

l The device user used Mobile@Work to log out of AppConnect apps, and then launches an AppConnect
app.

l You have changed the complexity rules of the AppConnect passcode, and an app check-in occurs.

In each of these situations, the MobileIron UEM client launches, and presents the device user with a screen for
entering his AppConnect passcode or Touch ID / Face ID. After the device user enters the passcode or Touch ID
/ Face ID, the device user automatically returns to the AppConnect app.

The AppConnect passcode auto-lock time andMobileIron UEMclient

MobileIronCore 11.1.0.0 AppConnectGuide| 31

Related topics

Touch ID or Face ID for accessing secure apps

Dual-mode apps

Some apps that are built with the AppConnect for iOS SDK can behave as either an AppConnect-enabled app,
or a regular, unsecured, standalone app. These apps are called dual-mode apps. For example, Email+ for iOS is
a dual-mode app. As a dual-mode app, the same app can behave as a secure enterprise app for enterprise
users, or as a regular app for general consumers.

A dual-mode app behaves as an AppConnect-enabled app on a device when:

l The device is registered to MobileIron UEM and the MobileIron UEM client is installed on the device.

l You have configured MobileIron UEM to support AppConnect with the relevant AppConnect
configurations.

Otherwise, the app behaves as a regular, unsecured, standalone app.

Regarding the decision to run as an AppConnect-enabled app versus a regular app:

l Some dual-mode apps allow the device user to change the app into an AppConnect-enabled app or
regular app after having already run it the other way.

l Some dual-mode apps require the user to uninstall and reinstall the app to make this change.

l Some apps delay their decision to run as an AppConnect-enabled app or regular app until after the
MobileIron UEM client is installed on the device.

AppConnect apps that MobileIron provides for iOS

MobileIron provides the following AppConnect apps for iOS. These apps are available in the Apple App Store.

l Docs@Work
Docs@Work provides device users an intuitive way to access, store, view, edit, and annotate documents
from content repositories, such as Microsoft SharePoint, and cloud services like Box and Dropbox.
For more information about Docs@Work, see the MobileIron Docs@Work Product Documentation
Home Page.

l Web@Work
Web@Work allows your users to easily and securely access your organization's web content.
For more information about Web@Work, see the MobileIron Web@Work Product Documentation Home
Page.

l Email+
Email+ for iOS provides secure email, calendar, contacts, and tasks on iOS devices.
For more information about Email+, see the MobileIron Email+ Product Documentation Home Page.

Dual-modeapps

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Docs%40Work&Id=a1s3400000240gxAAA&Name=Docs%40Work+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Docs%40Work&Id=a1s3400000240gxAAA&Name=Docs%40Work+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Web%40Work&Id=a1s3400000240gZAAQ&Name=Web%40Work+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Web%40Work&Id=a1s3400000240gZAAQ&Name=Web%40Work+for+iOS
https://help.mobileiron.com/s/mil-productdoclistpage?Label=Email+&Id=a1s3400000240gVAAQ&Name=Email++for+iOS

MobileIronCore 11.1.0.0 AppConnectGuide| 32

When an iOS device user can use AppConnect for iOS

An iOS device user can use an AppConnect app only if:

l The device user has been authenticated through MobileIron Core.
The user must use the Mobile@Work for iOS app to register the device with MobileIron Core.
Registration authenticates the device user.

l You have authorized the app to run on the device.
If the app is not authorized, the app does not allow the device user to access any secure data or
functionality. If a device user launches an unauthorized wrapped app, the app displays a message and
exits. An SDK app (an app built with AppConnect for iOS SDK or Cordova Plugin) should have the same
behavior if the app handles only secure data and functionality. Otherwise, an SDK app runs but restricts
the user to only unsecured functionality and data.
To authorize an AppConnect app for a device, you apply the appropriate labels to the app’s AppConnect
container policy.

l No situation has caused an authorized AppConnect app to become unauthorized for a device.
These situations include, for example, when the device OS is compromised. The MobileIron UEM client
reports device information to the MobileIron UEM. The MobileIron UEM then determines whether to
change the AppConnect apps on the device to unauthorized based on security policies and associated
compliance actions that you configure.

l The device user has entered the AppConnect passcode or Touch ID / Face ID.
You configure whether the AppConnect passcode is required, and also configure rules about its
complexity. You also configure whether the device user can use Touch ID or Face ID to access secure
apps.

NOTE: AppConnect for iOS is not supportedwhenadevice is configured for single-appmode,which is
described in "Single-appmodepolicies" in theCore Device Management Guide for iOS and macOS
Devices.

Whenan iOS device user can use AppConnect for iOS

3

MobileIronCore 11.1.0.0 AppConnectGuide| 33

Configuring AppConnect and AppTunnel

l Configuration overview

l AppConnect configuration tasks

l Adding secure apps for deployment

l AppConnect global policy

l AppConnect container policies

l Enabling secure apps

l Enabling AppTunnel

l Configuring an AppTunnel service

l AppConnect app configuration

l Configuring the OpenWith Secure Email App option

l Configuring compliance actions

l Quick start configuration for AppConnect for Android

l Quick start configuration for AppConnect for iOS

Configuration overview
The steps required to configure AppConnect depend on which aspects you intend to enable and deploy.

l Basic configuration

l Adding third-party and in-house secure apps

l Adding AppTunnel support

l Adding compliance actions

Basic configuration

Complete the following steps to implement a basic AppConnect configuration:
1. Add the MobileIron secure apps you intend to deploy.

These are AppConnect apps provided by MobileIron.
See Adding secure apps for deployment.

2. Configure the AppConnect global policy.
See AppConnect global policy.

3. Configure the AppConnect container policy.
See AppConnect container policies.

4. Enable any MobileIron secure apps you intend to deploy.
See Enabling secure apps.

MobileIronCore 11.1.0.0 AppConnectGuide| 34

5. Configure the app-specific configuration if required by the app.
See AppConnect app configuration.

6. If you are using AppConnect-enabled email clients, configure the email attachment control option called
OpenWith Secure Email App.
See Configuring the OpenWith Secure Email App option

Adding third-party and in-house secure apps

If you intend to deploy secure apps developed by your organization or a third-party provider, complete the
following steps:
1. Complete the steps in Configuration overview.
2. Enable AppConnect third-party and in-house apps.

See Enabling secure apps.
3. If you are using AppConnect-enabled email clients, configure the email attachment control option called

OpenWith Secure Email App.
See Configuring the OpenWith Secure Email App option

Adding AppTunnel support

Add AppTunnel support to secure the data that moves between your secure apps and your corporate data
sources.

Before you begin

Ensure that you have a Standalone Sentry configured to support AppTunnel. The required steps include:

l Setting up the Standalone Sentry connectivity settings, which include the Sentry host name or IP
address, and the port number MobileIron Core uses to access the Sentry.

l Enabling the Standalone Sentry for AppTunnel.

l Configuring the Standalone Sentry for device authentication, which is how the device authenticates to
the Standalone Sentry. This authentication includes setting up certificates if you require them.

Procedure

The high-level tasks for configuring AppTunnel are:

1. Complete the steps in Basic configuration.

2. Complete the steps in Adding third-party and in-house secure apps, if applicable.

3. Enable AppTunnel on MobileIron Core, if you are deploying third-party or in-house apps.
See Enabling AppTunnel.

4. Configure an AppTunnel service on Standalone Sentry.
See Configuring an AppTunnel service.

5. Configure the AppTunnel rules in an AppConnect app configuration for each app using AppTunnel.
See AppConnect app configuration.

Adding third-party and in-house secure apps

MobileIronCore 11.1.0.0 AppConnectGuide| 35

Related topics

l “Configuring Standalone Sentry for AppTunnel” in the Sentry Guide for MobileIron Core

l “Working with app tunnels” in the Sentry Guide for MobileIron Core for actions you can take on an app
tunnel. For example, you can block an app tunnel, so that an AppConnect app on a device cannot
access the backend resource.

Adding compliance actions

You have the option of specifying AppConnect compliance actions as part of a security policy. To specify these
compliance actions:

1. Complete the steps in Configuration overview.

2. Complete the steps in Configuration overview, if applicable.

3. Complete the steps in Configuration overview, if applicable.

4. Configure compliance actions.See Configuring compliance actions.

AppConnect configuration tasks
All the tasks related to AppConnect configuration are listed here. See Configuring AppConnect and
AppTunnel to determine which tasks you need to complete and in what order.

l Adding secure apps for deployment

l AppConnect global policy

l AppConnect container policies

l Enabling secure apps

l Enabling AppTunnel

l Configuring an AppTunnel service

l AppConnect app configuration

l Configuring the OpenWith Secure Email App option

l Configuring compliance actions

Adding secure apps for deployment
You use the App Catalog on the Admin Portal to deploy secure apps. The App Catalog has two kinds of apps for
both iOS and Android: in-house apps and public apps. In-house apps are uploaded to the App Catalog. Public
apps are imported to the App Catalog from either Google Play or iTunes.

The following table shows the whether secure apps can be in-house or public apps:

Adding compliance actions

MobileIronCore 11.1.0.0 AppConnectGuide| 36

OS In-house secure apps can be... Public secure apps can be...

Android • Secure apps from
MobileIron

• Secure apps developed by your
organization

• Secure apps developed by and
received from a third party

• Not supported for secure apps

iOS • Secure apps from
MobileIron

• Secure apps developed by your
organization

• Secure apps developed by and
received from a third party

• Third-party secure apps available in iTunes

TABLE 3. PLATFORM SUPPORT FOR IN-HOUSE AND PUBLIC SECURE APPS

Related topics

“Working with apps for iOS devices” and “Working with apps for Android devices” in the Core Apps@Work Guide

AppConnect global policy
The AppConnect global policy applies to all AppConnect apps on devices. These AppConnect apps include:

l third-party and in-house AppConnect apps

l Web@Work

l Docs@Work

l Email+

l other AppConnect apps that MobileIron provides

MobileIron Core applies a default AppConnect global policy automatically to all devices. You can modify the
default AppConnect global policy. You can also create custom AppConnect global policies and apply those to
specific devices.

IMPORTANT: If youareusingAppConnect on iOSdevicesbut not onAndroiddevices, applya separate
AppConnectGlobal policy toAndroiddevices. Donot use the sameAppConnectGlobal
policy for both iOSandAndroiddevices. In theAppConnectGlobal policy forAndroid
devices, ensure that forAppConnect the Disabledoption is selected.

In the AppConnect global policy, you configure:

l whether AppConnect is enabled for the devices

l AppConnect passcode requirements

AppConnect global policy

MobileIronCore 11.1.0.0 AppConnectGuide| 37

l out-of-contact timeouts

l the app check-in interval

l the default end-user message for when an app is not authorized

l whether AppConnect apps with no AppConnect container policy are authorized by default
See AppConnect global policy

l default settings for data loss prevention policies

AppConnect passcode requirements

On the AppConnect global policy, you specify whether the device user is required to enter an AppConnect
passcode to access the AppConnect apps on the device. For the highest possible security when using
AppConnect, MobileIron recommends that each device has both a device passcode and an AppConnect
passcode. You can also allow users to use Touch ID or Face ID (iOS) or fingerprint (Android) instead of the
AppConnect passcode to access secure apps. For more information about whether to require an AppConnect
passcode, see:

l The AppConnect passcode

l Data encryption for secure apps for Android

l Data encryption for secure apps for iOS

l Touch ID or Face ID for accessing secure apps

l Fingerprint login for AppConnect apps for Android

NOTE: ForAndroid, if users createanAppConnectpasscodemore than60minutesafter registering the
device, theymust first enter theirMobileIronCorecredentials. After users creates theAppConnect
passcode, theAppConnect container is created.

When you require an AppConnect passcode, you also specify:

l Passcode Type

l Minimum Passcode Length

l Minimum Number of Complex Characters

l Maximum Passcode Age

l Auto-Lock Time

l Passcode history

l Maximum Number of Failed Attempts

l Passcode strength requirements

If the device user fails to correctly enter the AppConnect passcode after a certain number of attempts, the user
cannot access AppConnect apps. Specifically:

AppConnect passcode requirements

MobileIronCore 11.1.0.0 AppConnectGuide| 38

l On iOS devices, device users must enter their Core credentials and then create a new AppConnect
passcode.

l On Android devices, send an Unlock AppConnect Container command to the device from the Admin
Portal. The command removes the secure apps passcode. The user can then create it again.

Related topics

l Self-service AppConnect passcode recovery

l Mechanism to force all device users to change their AppConnect passcodes

Configuring the AppConnect global policy

You configure the AppConnect global policy on Mobileiron Core in Policies & Configs > Policies.

Procedure

1. In the Admin Portal, select Policies & Configs > Policies.

2. Edit the default AppConnect global policy, or select Add New > AppConnect to create a new one.

3. Enter the requested information.

4. Click Save.

5. If you created a new policy, apply the appropriate labels to the AppConnect global policy.
If you are using the default AppConnect global policy, it automatically applies to all devices.

Related topics
For a description of the fields in the AppConnect global policy, see AppConnect global policy field description

AppConnect global policy field description

Use the following guidelines to create or edit an AppConnect global policy:

Configuring the AppConnect global policy

MobileIronCore 11.1.0.0 AppConnectGuide| 39

Item Description Default Value

Name Required. Enter a descriptive name for this policy.
This text is displayed to identify this policy throughout
the Admin Portal. This name must be unique within
this policy type.

TIP: Thoughusing the samename for different
policy types is allowed (e.g., Executive),
consider keeping thenamesunique toensure
clearer logentries.

Default AppConnect Global
Policy

Status Select Active to turn on this policy.

Select Inactive to turn off this policy.

Active

Priority Specifies the priority of this custom policy relative to
the other custom policies of the same type. This
priority determines which policy is applied if more
than one policy is associated with a specific device.
Select Higher than or Lower than, then select an
existing policy from the dropdown list. For example, to
give Policy A a higher priority than Policy B, you
would select Higher than and Policy B.

Because this priority applies only to custom policies,
this field is not enabled when you create the first
custom policy of a given type.

For more information about policy priorities, see
“Prioritizing policies” inGetting Started with
MobileIron Core.

Description Enter an explanation of the purpose of this policy. Default AppConnect Global
Policy

AppConnect Select Enabled to enable AppConnect on the device.

Select Disabled to disable AppConnect on the
device.

When you select Enabled, the screen displays the
rest of its fields.

Disabled

AppConnect Passcode

Passcode Type Specify the type of passcode:

l Numeric
The passcode is allowed to have only digits in
it. However, the device user can choose to
create an alphanumeric passcode.

Alphanumeric

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 40

Item Description Default Value

l Alphanumeric
The passcode must contain at least one digit
and one letter.

l Don't Specify
The passcode is allowed to have characters
of any type.

Minimum
Passcode Length

Select a number between 1 and 16 to specify the
minimum length for the passcode.

4

Minimum Number
of Complex
Characters

Select a number between 1 and 10 to specify the
minimum number of special characters that must be
included in the passcode. Select “-” to require no
special characters in the passcode.

This option is only applicable when the passcode type
is alphanumeric.

NOTE: A special character is anycharacterwhich
is not 0-9, a-z, or A-Z. For example, $, \, and
äare special characters.

1

Maximum
Passcode Age

Enter a value between 1 and 730.

Specifies the number of days the secure apps
passcode is valid. The value is updated on a device
when the next device check-in occurs. After the
passcode age is exceeded (that is, the passcode
expires), device users see an alert that the passcode
has expired after they authenticate.. Device users
must create a new passcode before they can access
secure apps.

If you do not want the passcode to expire, leave the
field blank, which is the default.

None

Auto-Lock Time Select the maximum amount of time to allow as an
inactivity timeout. After this period of inactivity in
AppConnect apps, the device user is locked out of the
apps if an AppConnect passcode is required. The
device user must reenter the AppConnect passcode
to access AppConnect apps.

15 minutes

Passcode history Select a value from 1 to 12, or “-”.

This value specifies the number of most recently used
secure apps passcodes that device users cannot use
when changing their passcode.

1

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 41

Item Description Default Value

The default value is 1, which means that when users
create a new passcode, the only restriction is that
they cannot reuse their current passcode.

If you do not want a passcode history, select “-”. In
this case, the user can reuse any previous passcode,
including the current passcode.

Case is not considered when passcode reuse is
evaluated. This means that device users cannot just
change the case for a past passcode and reuse that
passcode. Password and passWord are considered
the same when a passcode is evaluated for reuse.
Passcode history is preserved even after
AppConnect is disabled and re-enabled. This
requires Mobile@Work 12.11.10 for iOS or Secure
Apps Manager 9.2.0 for Android.

If you change this field value from none to a value
between 1 and 12:

l On iOS devices, the next time that users
change the passcode, Mobile@Work puts the
new passcode in the history. Therefore, after
this policy change, users can reuse the
current passcode the first time they change
the passcode.

l On Android devices, the Secure Apps
Manager puts the current passcode in the
history the next time that the user logs in.
Therefore, after this policy change, users who
are already logged in can reuse the current
passcode the first time they change the
passcode.

Maximum Number
of Failed Attempts

Select a value between 2 and 10. Select “--” if you do
not want to limit failed attempts.

Specifies the number of failed authentication
attempts after which the option selected for
Maximum Number of Failed Attempts Action is
applied.

iOS

Device users must enter their Core credentials and
then create a new AppConnect passcode.

10

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 42

Item Description Default Value

After the passcode is reset, the Mobile@Work client
does not flip back to the AppConnect app.

Android

Send an Unlock AppConnect Container command
to the Android device from the Admin Portal. The
command removes the secure apps passcode. Users
can then create it again.

NOTE: If themaximum is greater than5, after the
5thattempt, theuser canattempt to
reenter the secureappspasscodeonly
afterwaitingprogressively longer time
periods.

Related topics

Self-service AppConnect passcode recovery

Maximum number
of failed attempts
action

Block: Select to block the AppConnect app if the
AppConnect passcode retry attempts exceed the
configured maximum number of failed attempts.

Retire: Select to retire the AppConnect app if the
AppConnect passcode retry attempts exceed the
configured maximum number of failed attempts.
When AppConnect apps are retired, they become
unauthorized (blocked), and the secure data is
deleted (wiped). The app remains functional with only
the unsecure data.

NOTE: OnAndroiddevices, fingerprint logindoes
notwork if themaximum failedattempts
exceeds theconfiguredvalue.

Block

Passcode is
required for iOS
devices

Select this field if you require device iOS users to
enter an AppConnect passcode to use any
AppConnect app.

Not selected

Use Touch ID or
Face ID when
supported

This option is available only if you selected Passcode
is required for iOS devices.

Select this field to allowdevice users to enter their
Touch ID (fingerprint) or Face ID, if available, to
access secure apps.

When you select this option, another option appears
that beginsWhen using Touch ID or Face ID, fall
back to: Most customers keep the default which is

Not selected

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 43

Item Description Default Value

Device passcode. Selecting AppConnect
passcode is less frequently used.

Related topics

Touch ID or Face ID for accessing secure apps

When using
Touch ID or Face
ID, fall back to:

These options are available only if you selected Use
Touch ID or Face ID when supported.

Most customers keep the default which is Device
passcode. This option gives the device user the
convenience of using Touch ID or Face ID rather than
an AppConnect passcode to access secure apps. If
entering the Touch ID or Face ID fails, the user enters
(falls back to) the device passcode to access secure
apps.

With the AppConnect passcode option, when the
auto-lock time for AppConnect apps expires, the
device user uses Touch ID or Face ID rather than the
AppConnect passcode to re-access AppConnect
apps. If entering the Touch ID or Face ID fails, the
user enters (falls back to) the AppConnect passcode
to access secure apps. The device user also uses the
AppConnect passcode for other situations requiring
AppConnect authentication such as the first time an
AppConnect app is launched or when the user logs
out of secure apps in Mobile@Work.

IMPORTANT: Use theoptionAppConnect
passcodeonly if youhavea
compelling reason tonot require
your users to havea strongdevice
passcode.

Related topics

Touch ID or Face ID for accessing secure apps

Device Passcode

Allow iOS users to
recover their
passcode

This option is available only if you selected Passcode
is required for iOS devices.

Select this option to allow a device users to recovery
their AppConnect passcode themselves.

This option defaults to allowed. If you disable this
option, no method is available to recover a
forgotten AppConnect passcode on iOS devices.

Selected

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 44

Item Description Default Value

The device user must delete and reinstall
Mobile@Work and each AppConnect app.

Related topics

Self-service AppConnect passcode recovery

Lock AppConnect
apps
automatically
when the screen
is off

This option is available only if you selected Passcode
is required for iOS devices.

Select this option to automatically log out device
users from AppConnect apps when the device screen
is turned off due to either inactivity or user action.

To access AppConnect apps after unlocking the
screen (whether or not unlocking the screen requires
user authentication), the device user must re-enter
the AppConnect passcode (or Touch ID/Face ID).

This setting requires:

l Mobile@Work 10.0.0 for iOS through the
most recently released version as supported
by MobileIron.

l AppConnect apps built or wrapped with
AppConnect 4.1 for iOS through the most
recently released version as supported by
MobileIron.

Previous versions of these components ignore this
setting.

Not selected

Passcode is
required for
Android devices

Select this field if you require Android device users to
enter an AppConnect passcode to use any
AppConnect app.

Selected

Allow Android
users to recover
their passcode

This option is available only if you selected Passcode
is required for Android devices.

This option defaults to not allowed.

Related topics

Self-service AppConnect passcode recovery

Not selected

Use fingerprint
authentication
when supported

This option is available only if you selected Passcode
is required for Android devices.

Select this option to give the device user the
convenience of using a fingerprint instead of an

Not selected

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 45

Item Description Default Value

AppConnect passcode to access AppConnect apps
on Android devices.

Related topics

Fingerprint login for AppConnect apps for Android

Lock AppConnect
apps
automatically
when the screen
is off

This option is available only if you selected Passcode
is required for Android devices.

Select this option to automatically log out device
users from AppConnect apps when the device screen
is turned off due to either inactivity or user action.

To access AppConnect apps after unlocking the
screen (whether or not unlocking the screen requires
user authentication), the device user must re-enter
the AppConnect passcode (or fingerprint).

This setting is supported with Secure Apps Manager
8.3.0 through the most recently released version as
supported by MobileIron. Previous versions of the
Secure Apps Manager ignore this setting.

Related topics

Lock Android AppConnect apps when screen is off

Not selected

Check for
AppConnect
passcode strength

Select this option if you want to set a required level of
AppConnect passcode strength.

When you select this option, a slider displays. Use the
slider to select the desired AppConnect passcode
strength, or enter a value between 0 and 100 in the
text field.

Related topics

AppConnect passcode strength

Not selected

Passcode
Strength

This option is available only if you selected Check for
AppConnect passcode strength.

Use the slider to select the desired AppConnect
passcode strength, or enter a value between 0 and
100 in the text field.

Related topics

AppConnect passcode strength

35

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 46

Item Description Default Value

End User Terms of Service

Enable End User
Terms of Service

When selected, end users must accept the terms of
service before they can access AppConnect apps.

However, selecting this option does not present users
with the terms of service if either of the following are
true:
• The terms of service is not configured.
• The AppConnect passcode is not required. That

is:
- Passcode is required for Android devices

is not selected for Android devices.
- Passcode is required for iOS devices is not

selected for iOS devices.

For details about configuring the terms of service, see
"Terms of service" in theCore Device Management
Guide.

This feature requires:

l For iOS devices:Mobile@Work 10.0.2 for
iOS through the most recently released
version as supported by MobileIron.

l For Android devices:Mobile@Work 10.1
for Android and Android Secure Apps
Manager 8.4.0 through the most recently
released versions as supported by
MobileIron.

Not selected

End User Terms
of Service
Frequency

Select one of the following:

l Always: End users must accept the terms of
service each time they are prompted to enter
their AppConnect passcode or biometric
identification.

l Once: End users must accept the terms of
service only one time. On iOS devices, this
occurs when they create their AppConnect
passcode. On Android devices, this occurs
when they are first prompted to enter their
AppConnect passcode or biometric
identification.

If the terms of service is updated in the user's
language after the user has accepted it, the user

Always

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 47

Item Description Default Value

will be asked to accept it once again.

AppConnect Security Controls On Device

Device Out Of Contact

Wipe AppConnect
Apps After

Specify a value from 1 through 90 days. Leave the
field empty if you do not want to wipe AppConnect
apps when the device is out of contact with
MobileIron Core.

Once the AppConnect global policy is applied to the
device, wiping the AppConnect apps occurs on the
device after the specified time without reconnecting to
MobileIron Core.

30 days

Android

Device
Compromised

Android only:

SelectWipe AppConnect data if you want to retire
all secure apps when the device is compromised
(rooted). When secure apps are retired, they become
unauthorized (blocked), and their data is deleted
(wiped).

After the device has checked in and received the
AppConnect global policy, no further interaction is
required from Core. Mobile@Work detects when the
device is compromised and retires the secure apps.

Select None to cause no action when the device is
compromised.

Related topics

Device-initiated security controls for AppConnect for
Android

None

USB Debug
Enabled

Android only:

SelectWipe AppConnect data if you want to retire
all secure apps when USB debugging is enabled on
the device. When secure apps are retired, they
become unauthorized (blocked), and their data is
deleted (wiped).

After the device has checked in and received the
AppConnect global policy, no further interaction is
required from Core. Mobile@Work detects when USB
debugging is enabled and retires the secure apps.

None

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 48

Item Description Default Value

Select None to cause no action when USB
debugging is enabled.

Related topics

Device-initiated security controls for AppConnect for
Android

Remove
AppConnect apps
(and apps data)
when device is
retired

Android only:

Select this option to remove AppConnect apps and
associated apps data when the device is retired. The
policy silently removes the apps from Samsung Knox
devices, and prompts the user to uninstall the apps
from other types of devices.

None

iOS

Enable mutli-user
auto sign-out after
X minutes of
inactivity

iOS only:

Select this option to configure automatic sign-out on
multi-user iOS devices.

Valid values are from 5 minutes to 120 minutes.

This feature requires Mobile@Work 11.0 for iOS
through the most recently released version as
supported by MobileIron.

Related topics

"Setting automatic sign-out for multi-user devices" in
the Core Device Management Guide for iOS and
macOS Devices.

Not selected

App Authorization

App Check-in
Interval

iOS only:

Select the maximum number of minutes until devices
running AppConnect apps receive updates of their
AppConnect global policy, their AppConnect app
configuration, and their AppConnect container
policies.

Note that these policies and settings are not updated
on the device when:

l the device checks in at its regular sync
interval.

l you force a device check-in from the Devices

60 minutes

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 49

Item Description Default Value

& Users screen.

However, in the Mobile@Work for iOS app on the
device, the Check for Updates option does sync the
policies and settings related to AppConnect.

Regarding Android:

The app check-in interval does not apply to Android.
However, the AppConnect-related policies and
settings are updated on the device when the device
checks in. Device check-in occurs:

l according to the sync interval specified on the
device’s sync policy.

l when you force a device check-in from the
Devices & Users screen.

l when the device user uses the Force Device
Check-in feature in Mobile@Work on the
device.

Unauthorized
Message

Enter the default message that Mobile@Work
displays if the app is not authorized on the device. If
you do not enter a default message, the system
provides one.

NOTE: If AppConnectappsareunauthorized
(blocked)due toa security policy
violation, theout-of-compliancemessage
is displayed insteadof thismessage.

None

Data Loss Prevention Policies

Apps without an
AppConnect
container policy

Select Authorize if you want AppConnect apps to be
authorized by default. If you do not select this option,
app authorization is determined by the labels applied
to the AppConnect container policy and the device.

If you select this option, then you can also select:

l the iOS data loss prevention policies

l the Android screen capture policy

Not selected

iOS

Copy/Paste To iOS only: Not selected

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 50

Item Description Default Value

Select Allow if you want the device user to be able to
copy content from AppConnect apps to other apps.
You can override this option in each app’s individual
AppConnect container policy.

When you select this option, then select either:

l All apps
Select All apps if you want the device user to
be able to copy content from the AppConnect
app and paste it into any other app.

l AppConnect apps
Select AppConnect apps if you want the
device user to be able to copy content from
the AppConnect app and paste it only into
other AppConnect apps.
Select

Related topics

Comparison with AppConnect for iOS copy/paste
policy

Print iOS only:

Select Allow if you want AppConnect apps to be
allowed to use print capabilities by default. You can
override this option in each app’s individual
AppConnect container policy.

Not selected

Open In iOS only:

Select Allow if you want AppConnect apps to be
allowed to use the Open In (document interaction)
feature by default. You can override this option in
each app’s AppConnect container policy.

When you select this option, then select either:

l All apps

l AppConnect apps

Select AppConnect apps to allow an
AppConnect app to send documents to only
other AppConnect apps.

l Whitelist

SelectWhitelist if you want the app to be

Not selected

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 51

Item Description Default Value

able to send documents only to the apps that
you specify.

Enter the bundle ID of each app, one per line.

For example:

com.myAppCo.myApp1

com.myAppCo.myApp2

The bundle IDs that you enter are case
sensitive.

Related topics

l Open-In data loss prevention policy details

l Sharing content from AppConnect for
Android apps to non-AppConnect apps .

Open From iOS only:

Select Allow if you want AppConnect apps to be
allowed to use the Open From (document interaction)
feature by default. You can override this option in
each app’s AppConnect container policy.

When you select this option, then select either:

l All apps

Select to allow an AppConnect app to receive
documents from any app.

l AppConnect apps

Select AppConnect apps to allow an
AppConnect app to receive documents from
only other AppConnect apps.

l Whitelist

SelectWhitelist if you want an AppConnect
app to receive documents only from the apps
that you specify.

Enter the bundle ID of each app, one per line.

For example:
com.myAppCo.myApp1

com.myAppCo.myApp2

The bundle IDs that you enter are case

Not selected

Enabled if Apps without an
AppConnect container
policy is enabled.

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 52

Item Description Default Value

sensitive.

Related topics

l Open From data loss prevention policy

l Sharing content from AppConnect for
Android apps to non-AppConnect apps .

Drag and Drop iOS only:

Select Allow if you want the device user to be able to
drag content from AppConnect apps to other apps.
You can override this option in each app’s individual
AppConnect container policy.

When you select this option, then select either:

l All apps
Select All apps if you want the device user to
be able to drag content from the AppConnect
app and drop it into any other app.

l AppConnect apps
Select AppConnect apps if you want the
device user to be able to drag content from
the AppConnect app and drop it only into
other AppConnect apps.

Not selected

Android

Copy/Paste Android only:

Specify one of the following options:
• No restrictions

The device user can copy and paste between any
apps, whether the apps are AppConnect apps or
unsecured apps. The device exhibits standard
copy/paste behavior. This option is the default.
Clipboard use: The device uses the standard
Android clipboard for all copy/paste activity. That
is, AppConnect apps and unsecured apps all use
the same clipboard.

• Among AppConnect apps
Copy and paste is not possible between
AppConnect apps and unsecured apps. The
device user can copy and paste among

No restrictions

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 53

Item Description Default Value

AppConnect apps, and within an AppConnect
app. The user can also copy and paste among
unsecured apps and within an unsecured app.
This option prevents data leaks into or out of the
secure container.
Clipboard use: AppConnect apps share a
clipboard, and unsecured apps share a separate
clipboard.

• Within an AppConnect app
The device user can copy and paste within each
AppConnect app. However, the user cannot copy
and paste among AppConnect apps, or between
AppConnect apps and unsecured apps. The user
can also copy and paste among unsecured apps
and within an unsecured app.
This option is the most restrictive.
Clipboard use: Each AppConnect app has its
own clipboard. Unsecured apps share one
clipboard among all unsecured apps.

Related topics

Copy/Paste for AppConnect for Android

Camera Android only:

Select Allow to allow camera photo access for all the
AppConnect apps on an Android device.

When you select this setting, an AppConnect app
can, for example, use a camera app to take a photo
with the camera and allow the device user to save the
photo.

Related topics

Interaction with the lockdown policy regarding
Android camera access.

Not selected

Gallery Android only:

Select Allow to allow all the AppConnect apps on an
Android device to access images from the gallery.

When you select this setting, an AppConnect app
can, for example, allow a device user to attach
images from the gallery to an email.

Not selected

MediaPlayer Android only: Not selected

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 54

Item Description Default Value

Select Allow to allow all the AppConnect apps to
streammedia to media players.

When you select Allow, AppConnect apps can
stream the following file types to media players:

l MP3 audio files

l WAV audio files

l MP4 video files

The supported file size depends on the Android
Secure Apps version as well as the device.

Related topics

DLP policy for media player access.

Screen capture Android only:

Select Allow if you want AppConnect apps to allow
screen capture by default. You can override this
option in each app’s AppConnect container policy.

Not selected

Web Android only:

Select Allow to allow an unsecured browser to
attempt to display a web page when a device user
taps the page’s URL in a secure app.

If you do not select Allow, only Web@Work can
display the page.

Related topics

Web DLP policy for browser launching.

Not selected

Non-AppConnect
apps can open
URLs in
Web@Work

Android only:

Select Allow to allow device users to choose to view
a web page in Web@Work or other AppConnect-
enabled browser when they tap a link (URL) in an app
that is not AppConnect-enabled.

Related topics

DLP allowing links from non-AppConnect apps to
open in Web@Work.

Not selected

TABLE 4. APPCONNECT GLOBAL POLICY FIELDS (CONT.)

AppConnect global policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 55

Self-service AppConnect passcode recovery

You can allow self-service AppConnect passcode recovery on both iOS and Android devices. Self-service
AppConnect passcode recovery allows device users to recover their AppConnect passcode themselves if they
forgot it. Device users first enter their MobileIron Core registration credentials before creating a new AppConnect
passcode.

Although allowing self-service AppConnect passcode recovery can decrease support calls for passcode
assistance and improve the device user experience, your security requirements can be more important to you.
Evaluate your priorities for security and device user experience and make the right choice for your enterprise.

However, self-service AppConnect passcode recovery behaves differently on the two platforms, as summarized
in the following table:

iOS Android

Default value in
AppConnect global policy

Self-service AppConnect passcode
recovery is allowed.

Self-service AppConnect passcode
recovery is not allowed.

What happens when self-
service recovery is not
allowed?

No method is available to recover a
forgotten AppConnect passcode.

The device user must delete and
reinstall Mobile@Work and each
AppConnect app.

Therefore, if you do not allow self-
service AppConnect passcode
recovery, consider increasing the
number of failed passcode attempts
on the AppConnect global policy.

You can send an Unlock
AppConnect Container command
from the MobileIron Core Admin
Portal. This command removes the
AppConnect passcode. The device
user then creates a new AppConnect
passcode.

Touch ID / Face ID impact You can choose to use Touch ID or
Face ID, when supported on the
device, regardless of whether you
allow or disable self-service
AppConnect passcode recovery.
Disabling or allowing AppConnect
passcode recovery is not relevant
when the device is using Touch ID or
Face ID with fallback to device
passcode.

Not applicable.

Fingerprint impact Not applicable You can choose to use fingerprint,
when supported on the device,
regardless of whether you allow or
disable self-service AppConnect
passcode recovery.

TABLE 5. SELF-SERVICEAPPCONNECT PASSCODE RECOVERY ON IOS VERSUSANDROID

Self-service AppConnect passcode recovery

MobileIronCore 11.1.0.0 AppConnectGuide| 56

iOS Android

When the device user creates a new
AppConnect passcode, the user must
again choose whether to enable
fingerprint login.

Maximum number of failed
attempts on the
AppConnect global policy

If you allow self-service AppConnect
passcode recovery, the device user
can create a new AppConnect
passcode when reaching the
maximum number of failed attempts.

If you do not allow self-service
AppConnect passcode recovery, no
method is available to recover a
forgotten AppConnect passcode.
Therefore, consider increasing the
maximum number of failed passcode
attempts.

If you allow self-service AppConnect
passcode recovery, it is not available
when the device user reaches the
maximum number of failed attempts.

You must send an Unlock
AppConnect Container command
from the MobileIron Core Admin
Portal to allow the device user to
create a new AppConnect passcode
and access AppConnect apps.

If you do not allow self-service
AppConnect passcode recovery, you
also must send an Unlock
AppConnect Container command
when the device user reaches the
maximum number of failed attempts.

Password history on the
AppConnect global policy

When a device user creates a new
AppConnect passcode through self-
service recovery, the passcode
history rule is enforced.

When a device user creates a new
AppConnect passcode, whether due
to an Unlock AppConnect
Container command or through self-
service recovery, the passcode
history rule is enforced.

TABLE 5. SELF-SERVICEAPPCONNECT PASSCODE RECOVERY ON IOS VERSUSANDROID (CONT.)

AppConnect passcode strength

You can set the desired AppConnect passcode strength to enforce how strong an AppConnect passcode must
be. Setting the AppConnect passcode strength prevents device users from using AppConnect passcodes that
are weak and therefore easy to guess. However, setting the AppConnect passcode strength too high makes
using AppConnect apps inconvenient for the device user because they have to enter a more complicated or
longer AppConnect passcode. Therefore, when you choose the AppConnect passcode strength requirement,
consider both your security needs and your device user convenience.

NoteTheFollowing:

l Enabling, disabling, or changing the passcode strength requires the device user to reset the
AppConnect passcode.

AppConnect passcode strength

MobileIronCore 11.1.0.0 AppConnectGuide| 57

l The AppConnect passcode strength setting has no impact on the device passcode. Even if the device
users are using Touch ID or Face ID with fallback to device passcode to access AppConnect apps, the
device passcode is not impacted by the AppConnect passcode strength.

l On iOS devices running Mobile@Work prior to version 9.7.0, the AppConnect Passcode Type on the
AppConnect global policy must be either Alphanumeric or Don’t Specify. Password strength is not
supported on these iOS devices when the passcode type is Numeric. On Android devices, password
strength is supported with all AppConnect passcode types.

To set the AppConnect passcode strength, choose a value between 0 and 100 as follows:

Strength
value

Description Examples

0 - 20 Weak: risky password
l Few characters: zxcvbn

l Sequences: abcdefghijk987654321

l Names: briansmith4mayor

l Words: viking

l Words with number substitutions:
ScoRpi0ns

21 - 40 Fair: protection from throttled
online attacks

Throttled online attacks are attacks to
guess the passcode which are:
• on the device
• rate-limited

Rate-limited attacks are limited to
some number of attempts per time
period.

l Few characters but with special characters:
qwER43@!

l Words plus numbers: temppass22

l Names plus numbers: ryanhunter2000

l Words with special character and number
substitutions: R0$38uD99

l Names with capitalization:
verlineVANDERMARK

41 - 60 Good: protection from unthrottled
online attacks

Unthrottled online attacks are attacks
to guess the passcode which are:
• on the device
• not rate-limited

l Longer words with special character and
number substitutions: Tr0ub4dour&3

l Longer phrases with numbers and special
characters:
neverforget13/3/1997

l Longer letter, number, and special
character combinations:
asdfghju7654rewq
OEUIDHG&*()LS_

61 - 80 Strong: moderate protection from
offline slow-hash scenario

An offline slow-hash scenario is a
sophisticated algorithm for guessing a

l Longer random letters and numbers:
zevusqr3
esqu3Wil
tgbvdnjuk

TABLE 6. APPCONNECT PASSCODE STRENGTH VALUES

AppConnect passcode strength

MobileIronCore 11.1.0.0 AppConnectGuide| 58

Strength
value

Description Examples

passcode. The algorithm runs offline
from the device after copying
passcode-related files from the
device.

l Longer phrases with numbers and special
characters:
Compl3xChar$

81 - 100 Very strong: strong protection
from offline slow-hash scenario

l Very long random characters:
eheuczkqyq
rWibMFACxAUGZmxhVncy
Ba9ZyWABu99
[BK#6MBgbH88Tofv)vs$w

l Long phrases:
correcthorsebatterystaple

l Long phrases with substitutions:
coRrecth0rseba++ery9.23.2007staple$

TABLE 6. APPCONNECT PASSCODE STRENGTH VALUES (CONT.)

Mechanism to force all device users to change their AppConnect passcodes

Device users are prompted to change their AppConnect passcodes when you change any of the following
settings on the AppConnect global policy:

l AppConnect passcode type

l AppConnect passcode length

l AppConnect passcode strength settings

The device users must change their AppConnect passcodes regardless whether their passcode already meets
the new requirements.

With this mechanism, you have a way to force all devices users to change their AppConnect passcode. This
capability is useful if, for example:

l Your security requirements change, and you want to require a more complex passcode, such as a longer
passcode.

l You are concerned that some users’ AppConnect passcodes have been compromised, but you do not
know exactly which users.

Interaction with the lockdown policy regarding Android camera access

The lockdown policy for the device has an option to enable or disable the camera. The lockdown policy applies to
all apps on the device, not just AppConnect apps. The interactions between the lockdown policy and the
AppConnect global policy are:

Mechanism to force all device users to change their AppConnect passcodes

MobileIronCore 11.1.0.0 AppConnectGuide| 59

l If the lockdown policy prohibits camera use, AppConnect apps cannot use the camera. Camera use is
prohibited even if you allow camera access on the AppConnect global policy.

l If the lockdown policy allows camera use, AppConnect apps can access photos from the camera only if
you allow camera access on the AppConnect global policy.

The following table summarizes this interaction of the lockdown policy and the AppConnect global policy:

AppConnect global policy:
Camera access allowed

AppConnect global policy:
Camera access prohibited

Lockdown policy:
Camera enabled

AppConnect apps can use the camera. AppConnect apps cannot use the
camera.

Lockdown policy:
Camera disabled

AppConnect apps cannot use the
camera.

AppConnect apps cannot use the
camera.

TABLE 7. CAMERA OPTIONS INTERACTIONS IN LOCKDOWN POLICY ANDAPPCONNECT GLOBAL POLICY

AppConnect container policies
The AppConnect container policy:

l authorizes an AppConnect app.

l specifies the data loss prevention settings for an AppConnect app.

l can be automatically created by MobileIron Core.

NOTE: For eachAppConnectapp,make sureonly oneAppConnect container policyapplies toeach
device.

AppConnect app authorization

Each AppConnect app requires an AppConnect container policy. The presence of an AppConnect container
policy for a device is what authorizes the app on the device. You apply a label to the AppConnect container
policy to apply it to a device.

If you later remove the AppConnect container policy, or remove the device’s label from the policy:

l an iOS AppConnect app becomes retired. A retired app becomes unauthorized on the device and the
app deletes (wipes) all its sensitive data.

l an Android AppConnect app becomes unauthorized. If the app is unauthorized, when the device user
tries to run it, the Secure Apps Manager displays a message that the app is unauthorized.

AppConnect container policies

MobileIronCore 11.1.0.0 AppConnectGuide| 60

Related topics

l Situations that wipe AppConnect for iOS app data

l Situations that wipe Android AppConnect app data

Data loss prevention settings

In the AppConnect container policy, you also configure data loss prevention (DLP) settings. Specifically, you
configure whether you want the app to be allowed to use these features:

l Copy / paste (iOS only)

l Print (iOS only)

l Open In (document interaction) (iOS only)

l Open From (document interaction) (iOS only)

l Drag and Drop (iOS only)

l Screen capture (Android only)

An app’s AppConnect container policy overrides the corresponding settings on the AppConnect global policy.

Automatically created AppConnect container policies

When you upload an AppConnect app to MobileIron Core’s App Catalog, Core automatically creates an
AppConnect container policy as follows:

l For Android AppConnect apps:
MobileIron Core always takes this automatic action. If the app has specified DLP settings, Core uses
those settings. Otherwise, Core creates an AppConnect container policy with all the values set to not
allowed.

l For iOS AppConnect apps built with the AppConnect for iOS SDK or Cordova Plugin:
Core takes this automatic action only if an in-house app has specified its desired default values for the
policy in its IPA file. This automatic action does not occur when you specify an Apple App Store
AppConnect app as a recommended app.

l For wrapped iOS AppConnect apps:
Core always takes this automatic action, setting all the DLP values to not allowed.

The name of the AppConnect container policy is:

For iOS AppConnect apps Default <bundle ID of app> Container Policy

For Android AppConnect apps Default <package ID of app> Container Policy

TABLE 8. NAME OF AUTOMATICALLY-CREATEDAPPCONNECT CONTAINER POLICY

NOTE: In theAdminPortal, on Policies & Configs > Configurations, thenameof theapp, not thenameof
theAppConnect container policy, displays in thenamecolumn.

Data loss prevention settings

MobileIronCore 11.1.0.0 AppConnectGuide| 61

You can override these DLP values by editing the app’s AppConnect container policy. MobileIron Core keeps in
sync the labels that you apply to the app and the labels that you apply to the AppConnect container policy that
Core automatically created.

Configuring AppConnect container policies

The following describes the steps to configure an AppConnect container policy.

Procedure

1. In the Admin Portal, select Policy & Configs > Configurations.

2. Select the existing container policy for the app, or select Add New > AppConnect > Container Policy
to create a new one.
FIGURE 1. APPCONNECT CONTAINER POLICY

3. Enter the requested information.

4. Click Save.

5. Select the new app policy.

6. SelectMore Actions > Apply To Label.

7. Select the labels to which you want to apply this AppConnect container policy.

8. Click Apply.

Be sure to apply one of the labels that you selected to the device. To check the device’s labels:

Configuring AppConnect container policies

MobileIronCore 11.1.0.0 AppConnectGuide| 62

1. Go to Devices & Users > Devices.

2. Expand the device details panel by clicking the up arrow for the desired device.

3. In the Device Details panel, select Label Membership.

Related topics
For a description of the fields in the AppConnect container policy, see AppConnect container policy field
description.

AppConnect container policy field description

Use the following guidelines to create or edit an AppConnect container policy:

Item Description

Name Enter brief text that identifies this AppConnect container policy.

NOTE: IfMobileIronCoreautomatically created this policy:
• You cannot edit the name.
• The name is not the same as the name that appears in the name column in

Policy & Configs > Configurations.

Description Enter additional text that clarifies the purpose of this AppConnect container policy.

Application Android:

Select an Android AppConnect app from the MobileIron Core App Catalog.

iOS:

Select an iOS AppConnect app from the MobileIron Core App Catalog or enter the
bundle ID of an iOS AppConnect app. A bundle ID is case sensitive.

NOTE: Thedropdown selection includesan iOSAppConnectapponly if both
of the following statements are true:

• The app was added to the Core App Catalog as an in-house app.
• The app specifies default data loss prevention policy settings (copy/paste,

document interaction, print).

Exempt from
AppConnect
passcode policy

iOS only:

Select this option if you want to allow the device user to use the app without
entering the AppConnect passcode or Touch ID / Face ID.

NOTE: Whenyou select this option, situations still occurwhen thedeviceuser
must enter theAppConnectpasscode. For example, if theuser
launchesanAppConnectapp that is not already running, theuser is
prompted toenter theAppConnectpasscode.

iOS Data Loss Prevention

TABLE 9. APPCONNECT CONTAINER POLICY FIELDS

AppConnect container policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 63

Item Description

Allow Print iOS only:

Select Allow Print if you want AppConnect apps to be allowed to use print
capabilities.

Allow Copy/Paste To iOS only:

Select Allow Copy/Paste To if you want the device user to be able to copy content
from the AppConnect app to other apps.

When you select this option, then select either:
• All apps

Select All apps if you want the device user to be able to copy content from the
AppConnect app and paste it into any other app.

• AppConnect apps
Select AppConnect apps if you want the device user to be able to copy
content from the AppConnect app and paste it only into other AppConnect
apps.

Related topics

Comparison with AppConnect for iOS copy/paste policy

Allow Open In iOS only:

Select Allow Open In if you want AppConnect apps to be allowed to use the Open
In (document interaction) feature.

When you select this option, then select either:
• All apps

Select All apps if you want the app to be able to send documents to any other
app.

• AppConnect apps
Select AppConnect apps to allow an AppConnect app to send documents to
only other AppConnect apps.

• Whitelist
SelectWhitelist if you want the app to be able to send documents only to the
apps that you specify.
Enter the bundle ID of each app, one per line, or in a semi-colon delimited list.
For example:
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

Related topics
• Open-In data loss prevention policy details
• Sharing content from AppConnect for Android apps to non-AppConnect apps

TABLE 9. APPCONNECT CONTAINER POLICY FIELDS (CONT.)

AppConnect container policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 64

Item Description

Allow Open From iOS only:

Enabled by default.

Select Allow Open From if you want AppConnect apps to be allowed to use the
Open From (document interaction) feature by default. You can override this option
in each app’s AppConnect container policy.

When you select this option, then select either:

l All apps

Select to allow an AppConnect app to receive documents from any app.

l AppConnect apps

Select AppConnect apps to allow an AppConnect app to receive
documents from only other AppConnect apps.

l Whitelist

SelectWhitelist if you want an AppConnect app to receive documents only
from the apps that you specify.

Enter the bundle ID of each app, one per line, or in a semi-colon delimited
list.

For example:
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

Related topics

l Open From data loss prevention policy

l Sharing content from AppConnect for Android apps to non-AppConnect
apps

Allow Drag and Drop iOS only:

Select Allow Drag and Drop if you want the device user to be able to drag content
from the AppConnect app to other apps.

When you select this option, then select either:
• All apps

Select All apps if you want the device user to be able to drag content from the
AppConnect app and drop it into any other app.

• AppConnect apps
Select AppConnect apps if you want the device user to be able to drag
content from the AppConnect app and drop it only into other AppConnect apps.

TABLE 9. APPCONNECT CONTAINER POLICY FIELDS (CONT.)

AppConnect container policy field description

MobileIronCore 11.1.0.0 AppConnectGuide| 65

Item Description

Android Data Loss Prevention

Allow Screen Capture Android only:

Select Allow Screen Capture if you want the app to allow screen capture.

TABLE 9. APPCONNECT CONTAINER POLICY FIELDS (CONT.)

Enabling secure apps
If you are deploying secure apps developed by MobileIron, you need to enable those products. If you are
deploying secure apps developed by your organization or a third party, you need to enable the additional product
that supports those apps.

1. In the Admin Portal, go to Settings > System Settings > Additional Products > Licensed Products.

2. Select the option for each product, as specified in the following tables.

3. Click Save.

Enabling licensing options for Android secure apps

The following table shows which Android secure apps you can deploy for each option. Select each option only if
your organization has purchased it.

If you enable Docs@Work, you
can deploy:

If you enable AppConnect for
third-party and in-house apps,
you can deploy:

If you enable Web@Work, you
can deploy:

• Docs@Work
• Secure Android Email+
• TouchDown for SmartPhones*

• Web@Work

• Secure Android Email+
• TouchDown for SmartPhones*

• FileManager
• Other third-party AppConnect

apps*

• In-house AppConnect apps

• Web@Work

TABLE 10. ANDROID SECURE APPS YOU CAN DEPLOY WITH EACH LICENSING OPTION

*In addition to purchasing the Additional Products option, these apps have an additional cost.

Enabling licensing options for iOS secure apps

The following table shows which iOS secure apps you can deploy for each option. Select each option only if your
organization has purchased it.

Enabling secure apps

MobileIronCore 11.1.0.0 AppConnectGuide| 66

If you enable Docs@Work, you
can deploy:

If you enable AppConnect for
third-party and in-house apps,
you can deploy:

If you enable Web@Work, you
can deploy:

• Docs@Work
• Web@Work

• Email+ for iOS*
• Insight*

• Other third-party AppConnect
apps*

• In-house AppConnect apps

• Web@Work

TABLE 11. IOS SECURE APPS YOU CAN DEPLOY WITH EACH LICENSING OPTION

*In addition to purchasing the Additional Products option, these apps have an additional cost.

Enabling AppTunnel
If you are deploying secure apps developed by your organization or a third party, you need to enable an
additional product to secure data-in-motion with these apps. Enable this option only if your organization has
purchased AppTunnel.

1. In the Admin Portal, go to Settings > System Settings > Additional Products > Licensed Products.

2. Select AppConnect for Third-party and In-house Apps.

3. Select AppTunnel for Third-party and In-house Apps.

4. Click Save.

NoteTheFollowing:

l Donot select this option if youareusingAppTunnelonly for Docs@WorkorWeb@Work.

l Thedata-in-motion forAppConnect-enabledActiveSyncemail apps suchas TouchDown for
SmartPhones, Email+ forAndroid, andEmail+ for iOS is securewithout usingAppTunnel. However, if
youareusingAppTunnel forMobileIroncloudnotification service (CNS) for Email+ for iOS, select
AppTunnel for Third-party and In-house Apps.

Related topics

MobileIron Email+ for iOS Guide for Administrators

Configuring an AppTunnel service
An AppTunnel service defines the backend service to which an AppConnect AppTunnel is created.

You create the AppTunnel service on the MobileIron Core Admin Portal in Services > Sentry. Edit the
Standalone Sentry entry that is configured for AppTunnel to add the AppTunnel service.

Enabling AppTunnel

MobileIronCore 11.1.0.0 AppConnectGuide| 67

See "Standalone Sentry for AppTunnel" in the Sentry Guide for MobileIron Core for information about
configuring AppTunnel and an AppTunnel service. Standalone Sentry product documentation is available on the
Standalone Sentry Product Documentation Home Page.

About the AppTunnel service name

When you configure an AppTunnel service, you give the service a service name. The service name is used in the
AppConnect app configuration. The app configuration uses the service name to restrict the app to accessing
servers in the Server List field associated with the service name. The service name is similarly used in:

l the Web@Work setting for configuring tunneling for Web@Work for Android or iOS

l the Docs@Work setting for configuring tunneling for Docs@Work

The service name is one of the following:

l A unique name for the service that the AppConnect app on the device accesses
One or more of your internal app servers provide the service. You list the servers in the Server List field
associated with the service name.
For example, some possible service names are:

o SharePoint
o Human Resources

A service name cannot contain these characters: 'space' \ ; * ? < > " |.
Special prefixes:

o For app tunnels that point to CIFS-based content servers, the service name must begin with CIFS_.
o For AppTunnel with TCP tunneling, the name must begin with TCP (case-insensitive).

Example: TCP_Finance

l <ANY>
Select <ANY> for the service name to allow tunneling to any URL that the app requests. Typically, you
select <ANY> if an AppConnect app’s app configuration specifies a URL with wildcards for tunneling,
such as *.myCompany.com. The Sentry tunnels the data for any URL request that the app makes that
matches the URL with wildcards.
The Sentry tunnels the data to the app server that has the URL that the app specified. The Server List
field is therefore not applicable when the Service Name is <ANY>.
For example, consider when the app requests URL myAppServer.mycompany.com, which matches
*.mycompany.com in the app configuration. The Sentry tunnels the data to
myAppServer.myCompany.com
Web@Work typically uses the <ANY> service, so that it can browse to any of your internal servers.

NOTE: Donot select this option for tunneling toCIFS-basedcontent servers. Select<CIFS_ANY>
instead.

l <TCP_ANY>

About the AppTunnel service name

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Sentry&Id=a1s3400000240gYAAQ&Name=MobileIron+Sentry

MobileIronCore 11.1.0.0 AppConnectGuide| 68

Select <TCP_ANY> for the service name to allow AppTunnel with TCP tunneling to any backend server
that the app requests.

l <CIFS_ANY>
Select <CIFS_ANY> or the service name to allow tunneling to any URL for a CIFS-based content server.
Typically, you select <CIFS_ANY> if the URL for a CIFS-based content server contains wildcards for
tunneling, such as *.myCompany.com.

AppConnect app configuration
An AppConnect app configuration specifies:

l app-specific configuration for the app.

l AppTunnel settings for the app.

IMPORTANT: For eachAppConnectapp,make sureonly oneAppConnectappconfigurationapplies to
eachdevice.

The following describe how to configure an AppConnect app configuration:

l Automatically created AppConnect app configuration

l Automatically provided key-value pairs

l Configuring an AppConnect app configuration

l AppConnect app configuration field description

Automatically created AppConnect app configuration

When you upload an AppConnect app to the MobileIron Core App Catalog, Core creates an AppConnect app
configuration automatically as follows:

l For Android AppConnect apps:
Core always takes this automatic action. If the app has specified configuration requirements, Core uses
that configuration. Otherwise, Core creates an AppConnect app configuration with no configuration
values.

l For iOS AppConnect apps built using the AppConnect for iOS SDK or Cordova Plugin:
Core takes this automatic action only if an in-house app has specified configuration requirements in its
IPA file. This automatic action does not occur when you specify an Apple App Store AppConnect app as
a recommended app.

l For wrapped iOS AppConnect apps:
Core does not take this automatic action.

The following table lists the name of the automatically created AppConnect app configuration.

AppConnect app configuration

MobileIronCore 11.1.0.0 AppConnectGuide| 69

OS of the AppConnect app Name of automatically-created AppConnec app
configuration

For iOS AppConnect apps Default <bundle ID of app> Configuration

For Android AppConnect apps Default <package ID of app> Configuration

TABLE 12. NAME OF AUTOMATICALLY-CREATEDAPPCONNECT APP CONFIGURATION

NOTE: In theAdminPortal, on Policies & Configs > Configurations, thenameof theapp, not thenameof
theAppConnectappconfiguration, displays in thenamecolumn.

Automatically provided key-value pairs

MobileIron Core takes a special action for some iOS AppConnect apps in the Apple App Store that you specify
as recommended apps. The special action occurs when you enter the bundle ID of one of these apps in the
Application field of an app configuration and then save the app configuration. Core automatically populates the
key-value pairs for the recommended app. Core does not overwrite any key-value pairs that you manually
added. You can then edit the app configuration to change the provided key-value pairs, if necessary.

Configuring an AppConnect app configuration

If an AppConnect app configuration is not automatically created, create the configuration on the Core Admin
Portal.

Procedure

1. In the Admin Portal, select Policy & Configs > Configurations.

2. Select Add New > AppConnect > App Configuration to create an AppConnect app configuration.

3. Update the form as needed.

4. Click Save.

5. Select the new AppConnect app configuration.

6. SelectMore Actions > Apply To Label.

7. Select the labels to which you want to apply this AppConnect app configuration.

8. Click Apply.

IMPORTANT: Be sure toapplyoneof the labels that you selected to thedevice.

Related topics

l AppConnect app configuration field description

l Checking the device’s labels

l Adding a device to a label

Automatically provided key-value pairs

MobileIronCore 11.1.0.0 AppConnectGuide| 70

Checking the device’s labels

The following describes how to check a device's labels.

Procedure

1. Go to Devices & Users > Devices.

2. Select the device.

3. In the Device Details Pane, select Label Membership.

Adding a device to a label

The following describes how to add a device to a label.

Procedure

1. Go to Devices & Users > Devices.

2. Select the device.

3. SelectMore Actions > Apply To Label.

4. Select the labels to apply to the device.

5. Click Apply.

AppConnect app configuration field description

Use the following guidelines to create or edit an AppConnect app configuration.

Item Description

Name Enter brief text that identifies this AppConnect app configuration.

NOTE: IfMobileIronCoreautomatically created this AppConnect
appconfiguration:

l Youcannot edit thename.

l Thename is not the sameas thename thatappears in the
namecolumn in Policy & Configs > Configurations.

Description Enter additional text that clarifies the purpose of this AppConnect app
configuration.

Application Android:

Select an Android AppConnect app from the MobileIron Core App
Catalog.

iOS:

TABLE 13. APPCONNECT APP CONFIGURATION FIELDS

Checking the device’s labels

MobileIronCore 11.1.0.0 AppConnectGuide| 71

Item Description

Select an iOS AppConnect app from the MobileIron Core App Catalog
or enter the bundle ID of an iOS AppConnect app. A bundle ID that you
enter is case sensitive.

NOTE: Thedropdown selection includesan iOSAppConnectapp
only if bothof the following statements are true:

l The app was added to the Core App Catalog as an in-house
app.

l The app specifies default app-specific configurations.

Client TLS If the app is using certificate pinning, select Enable Client TLS
Configuration and choose the appropriate Client TLS configuration
from the dropdown.

Related topics

Certificate pinning for AppConnect apps

AppTunnel Rules Configure AppTunnel rules settings for this app.

First, configure the Standalone Sentry to support AppTunnel. See
Configuring AppConnect and AppTunnel.

When the app tries to connect to the URL and port configured here, the
Sentry creates a tunnel to the app server.

NOTE: This section is not availablewhen theAppConnectapp
configuration is for the SecureAppsManager. The Secure
AppsManager is theapp required forAndroiddevices
runningAppConnectapps. AppTunnel configuration is not
applicable to the SecureAppsManager.

Enable MobileIron Access The setting is available only if MobileIron Access is configured in the
Admin Portal in Services > Access. Otherwise, the setting is grayed
out.

If the option is selected, MobileIron Access trusts the HTTPS traffic via
AppTunnel. Tunnel is not needed in this setup.

For information about MobileIron Access and how to set up the service
with MobileIron Core, see theMobileIron Access Guide.

NOTE: If Enable Split Tunneling using MobileIron Tunnel is
selected, HTTPSauthentication traffic,whichwouldhave
previously usedAppTunnel toAccess, goes through Tunnel
instead.

TABLE 13. APPCONNECT APP CONFIGURATION FIELDS (CONT.)

AppConnect app configuration field description

MobileIronCore 11.1.0.0 AppConnectGuide| 72

Item Description

Enable Split Tunneling using
MobileIron Tunnel

iOS only. Requires Mobile@Work 12.3.0 and MobileIron Tunnel 4.1.0
for iOS.

Before enabling the option, ensure that MobileIron Tunnel is deployed
and a Tunnel VPN configuration is applied to the AppConnect app. For
information about deploying MobileIron Tunnel for iOS, see the Tunnel
for iOS Guide.

Select the option if the AppConnect app will transition to using
WKWebView or the app currently uses WKWebView and any of the
following is also true:

l AppTunnel rules are configured to tunnel app data.

l Enable MobileIron Access is selected.

Enabling the option allows the configured AppTunnel rules to be
managed through MobileIron Tunnel rather than through AppTunnel

For information about the UIWebView API deprecation, see
UIWebView Deprecation and AppConnect Compatibility.

NOTE: Rules configured in the Tunnel VPNconfiguration impact
whether appdata to theenterprise resource is tunneled.
Consider the followingcase:

l YouhaveanAppTunnel rule set up to tunnel appdata to
anenterprise resource.

l Tunnel VPN is configured todisconnect if theenterpriseWi-
Fi is available.

In theabovecase, data from theapp to theenterprise
resourcewill not be tunneled if thedevice switches to the
enterpriseWi-Fi network.

To add an AppTunnel rule, click Add+ .

To delete an AppTunnel rule, click the X at the end of the row.

Sentry Select a Sentry configured for AppTunnel from the drop-down list.

Service Select a service name from the drop-down list.

This service name specifies an AppTunnel service configured in the
AppTunnel Configuration section of the specified Sentry.

NOTE: If youenteredaURLwithwildcards in theURLWildcard field,
youcanonly select<ANY>or <CIFS_ANY> as the service.
The<ANY>or<CIFS_ANY> servicemust beconfigured in

TABLE 13. APPCONNECT APP CONFIGURATION FIELDS (CONT.)

AppConnect app configuration field description

https://help.mobileiron.com/s/article-detail-page?Id=kA134000000QxD8CAK

MobileIronCore 11.1.0.0 AppConnectGuide| 73

Item Description

theAppTunnel Configuration sectionof the Sentry
configured forAppTunnel.

If the service on the Sentry is configured with its Server Auth set to
Kerberos, the AppConnect app uses Single Sign On. That is, the
device user does not enter any further credentials when the app
accesses its enterprise app server.

URLWildcard Enter one of the following:

l an app server’s hostname
Example: finance.yourcompany.com

l a hostname with wildcards. The wildcard character is *.
Example:*.yourcompanyname.com

If the app requests to access this hostname, the Sentry tunnels the app
data to an app server. The Sentry and Service fields that you specify
in this AppTunnel Rule row determine the target app server.

NoteTheFollowing:

l Theappdata is tunneledonly if theapp’s requestmatches
this hostnameand theport number specified in thePort
fieldof this AppTunnel row.
Exception: For iOSapps usingAppConnect releasesprior to
AppConnect for iOS SDK2.5andAppConnect for iOS
Wrapper 2.7, only thehostname,not theport number
determineswhether theappdata is tunneled.

l Ahostnamewithwildcardsworks onlywith the service
<ANY>,<TCP_ANY>, or<CIFS_ANY>. Unlike serviceswith
specific servicenames, these servicesdonot have
associatedapp servers. The Sentry tunnels thedata to the
app server that has theURL that theapp specified.

l The order of these AppTunnel Rule rowsmatters. If you
specifymore thanoneAppTunnel Rule row, the first row
thatmatches thehostname (andport, for Android) that the
app requested is chosen. That rowdetermines the Sentry
and Service touse for tunneling.

l Donot includeaURI scheme, suchas http:// or
https://, in this field.

Port Enter the port number that the app requests to access.

The app data is tunneled only if the app’s request matches the
hostname in the URLWildcard field and this port number.

TABLE 13. APPCONNECT APP CONFIGURATION FIELDS (CONT.)

AppConnect app configuration field description

MobileIronCore 11.1.0.0 AppConnectGuide| 74

Item Description

Exception: For iOS apps using AppConnect releases prior to
AppConnect for iOS SDK 2.5 and AppConnect for iOSWrapper 2.7,
only the hostname, not the port number determines whether the app
data is tunneled.

NoteTheFollowing:

l If youdonot enter aport number, theport in theapp’s
request is not used todeterminewhether data is tunneled.

l Enteringaport number in this field is requiredwhenbothof
the followingare true:
o Thehostname in theURL Wildcard fielddoes not
containawildcard.

o The service is not<ANY>or<CIFS_ANY>.

Identity Certificate Select the Certificate Enrollment setting that you created for
AppTunnel. This selection determines the certificate that the device
presents to the Standalone Sentry for authentication.

Related topics

“Device and server authentication” in the Sentry Guide for MobileIron
Core

Configurations Specify app-specific configuration settings as key-value pairs.

To add a key-value pair, click Add+ .

To delete a key-value pair, click the X at the end of the row.

TABLE 13. APPCONNECT APP CONFIGURATION FIELDS (CONT.)

AppConnect app configuration field description

MobileIronCore 11.1.0.0 AppConnectGuide| 75

Item Description

Key Enter the key. The key is any string that the app recognizes as a
configurable item.

For example: userid, appURL

Value Enter the value. The value is either:

l a string

Example
$USERID$
https://someEnterpriseURL.com
The string can have any value that is meaningful to the app. It can
also include one or more of these MobileIron Core variables:
$USERID$, $PASSWORD$, $EMAIL$, $USER_CUSTOM1$,
$USER_CUSTOM2$, $USER_CUSTOM3$, $USER_CUSTOM4$,
$GOOGLE_AUTOGEN_PASSWORD$, $FIRST_NAME$,
$LAST_NAME$, $DISPLAY_NAME$, $DEVICE_CLIENT_ID$,
$DEVICE_ID$, $DEVICE_IMEI$, $DEVICE_IMSI$, $DEVICE_
MAC$, $DEVICE_SN$, $DEVICE_UDID$, $DEVICE_UUID$,
$DEVICE_UUID_NO_DASHES$, $MI_APPSTORE_URL$,
$RANDOM_16$, $RANDOM_32$, $RANDOM_64$, $REALM$,
$TIMESTAMP_MS$, $USER_DN$, $USER_LOCALE$, $USER_
UPN$
Custom attribute variables are also supported:
$CUSTOM_DEVICE_<attribute name>$
$CUSTOM_USER_<attribute name>$
If you do not want to provide a value, enter $NULL$. The $NULL$
value tells the app that the app user will need to provide the value.
If you specify $PASSWORD$, also enable Save User Password
under Settings > System Settings > Users & Devices >
Registration. However, only devices that register after you enable
Save User Password will receive the password.

l a Certificate Enrollment or Certificate setting

NOTE: For client-providedcertificateenrollment settings,
Mobile@Work for iOSor SecureAppsManager for
Android, notCore, provides thecertificate to the
app.

Certificate Enrollment and Certificate settings that you configured
in Policy & Configs > Configurations appear in the dropdown
list. When you choose a Certificate Enrollment or Certificate
setting, MobileIron Core sends the contents of the certificate as the
value.

TABLE 13. APPCONNECT APP CONFIGURATION FIELDS (CONT.)

AppConnect app configuration field description

MobileIronCore 11.1.0.0 AppConnectGuide| 76

Item Description

If the certificate is password-encoded, Core automatically sends
another key-value pair. The key’s name is the string <name of key
for certificate>_MI_CERT_PW. The value is the certificate’s
password.

TABLE 13. APPCONNECT APP CONFIGURATION FIELDS (CONT.)

Configuring the OpenWith Secure Email App option
When you use AppConnect for Android, device users can use a secure email app. In this case, you typically
configure Standalone Sentry to deliver email attachments to these Android devices, because the attachments
remain in the secure container.

When you use AppConnect for iOS, you can use the native iOS email client or a third-party AppConnect-enabled
email client. With the native iOS email client, you can configure Standalone Sentry so that attachments open
only with the Docs@Work app. With third-party AppConnect-enabled email clients, you can configure
Standalone Sentry to deliver the emails with attachments to the secure client. In both cases, the attachments can
then only be shared with other apps according to your data loss prevention policies.

Therefore, when using secure email clients, you typically configure Standalone Sentry to use the email
attachment control setting called OpenWith Secure Email App.

Procedure
1. In the Admin Portal, go to Services > Sentry.
2. Select a Standalone Sentry for which you have enabled ActiveSync.
3. Click the Edit icon.
4. Verify that Enable ActiveSync is selected.
5. In the ActiveSync Configuration section, in the Attachment Control Configuration section, select

Enable Attachment Control.
6. For iOS And Android Using Secure Email Apps, selectOpen With Secure Email App.
7. Click Save.

Configuring compliance actions
The security policy that is applied to a device determines what situations make a device non-compliant. For each
situation, the security policy specifies a compliance action. These actions can be either default compliance
actions or custom compliance actions.

Some compliance actions impact AppConnect apps as follows:

Configuring theOpenWith Secure Email App option

MobileIronCore 11.1.0.0 AppConnectGuide| 77

• Immediately block access to the web sites configured to use the AppTunnel feature.
• Unauthorize AppConnect apps.
• Delete (wipe) the secure data of AppConnect apps.

For details about compliance actions that impact AppConnect apps, see “Compliance actions policy violations”
in the Core Device Management Guide for iOS and macOS Devices or the Core Device Management Guide for
Android and Android Enterprise Devices.

Procedure

To specify a compliance action:
1. Go to Policies & Configs > Policies on the Admin Portal.
2. Select a security policy.
3. Click Edit.
4. Select an access control setting in the Access Control section.

For example, selectwhen a compromised iOS device is detected.

5. Select a default or custom compliance action from the dropdown list.
6. Click Save.

Quick start configuration for AppConnect for
Android
Complete these tasks to quickly set up AppConnect for Android on MobileIron Core. However, for more
information about each task, including details about all the settings, see the provided references and also details
in Using AppConnect for Android.

Before you begin

1. Obtain the AppConnect Apps for Android that MobileIron provides.
Download the Secure Apps Manager from:
https://support.mobileiron.com/mi/android-sam/current/

Quick start configuration for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 78

Download Secure Android Email+, Web@Work, Docs@Work, FileManager, and TouchDown for
SmartPhones, from:
https://support.mobileiron.com/support/CDL.html

2. Obtain in-house and third-party AppConnect apps.

3. Put all the APK files where they are available for upload to MobileIron Core.

Procedure

1. Uploading the Secure Apps Manager to Core for Android AppConnect quick start.

2. Uploading the AppConnect apps to Core for Android AppConnect quick start

3. Enabling Core licensing options for Android AppConnect quick start.

4. Configuring the AppConnect global policy for Android AppConnect quick start.

5. Configuring the AppConnect container policy for Android AppConnect quick start.

6. Configuring settings specific to the app for Android AppConnect quick start.

7. Configuring email attachment control for Android AppConnect quick start.

Uploading the Secure Apps Manager to Core for Android
AppConnect quick start
You upload the Secure Apps Manager to MobileIron Core in the same manner you add any in-house app. After
uploading the Secure Apps Manager, you can distribute it to devices by applying the app to labels that contain
the appropriate devices.

Procedure

1. In the MobileIron Core Admin Portal, go to Apps > App Catalog > Add+ > In-House.

2. Click Browse and browse to the Secure Apps Manager.

3. Click Next.

4. Optionally make selections, clicking Next, and then Finish.

5. Select the Secure Apps Manager entry on the Apps > Apps Catalog screen.

6. Click Actions > Apply to Labels.

7. Select the appropriate labels and click Apply.

Next steps

Continue to Uploading the AppConnect apps to Core for Android AppConnect quick start.

Uploading the Secure AppsManager toCore for Android AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 79

Related topics

l “Managing Mobile Apps for Android” in the Core Apps@Work Guide

l The MobileIron client app, the Secure Apps Manager, and the AppConnect wrapper

Uploading the AppConnect apps to Core for Android
AppConnect quick start
You upload Android AppConnect apps to MobileIron Core in the same manner you add any in-house app. After
uploading the apps, you can distribute the apps to devices by applying the apps to labels that contain the
appropriate devices.

Procedure

1. In the MobileIron Core Admin Portal, go to Apps > App Catalog > Add+ > In-House.

2. Click Browse and browse to the AppConnect app.

3. Click Next.

4. Optionally make selections, clicking Next, and then Finish.

5. Select the app entry on the Apps > Apps Catalog screen.

6. Click Actions > Apply to Labels.

7. Select the appropriate labels and click Apply.

8. Repeat for each AppConnect app.

Next steps

Continue to Enabling Core licensing options for Android AppConnect quick start.

Related topics

“Managing Mobile Apps for Android” in the Core Apps@Work Guide.

Enabling Core licensing options for Android AppConnect quick
start
On the Admin Portal, in Settings > System Settings > Additional Products > Licensed Products, you
specify whether you have a license for:

l AppConnect for third-party and in-house apps

l AppTunnel for third-party and in-house apps

Uploading the AppConnect apps toCore for Android AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 80

l Docs@Work

l Web@Work

The following table shows which Android secure apps you can deploy for each option. Select each option only if
your organization has purchased it.

If you enable Docs@Work, you
can deploy:

If you enable AppConnect for
third-party and in-house apps,
you can deploy:

If you enable Web@Work, you
can deploy:

l Docs@Work

l Secure Android Email+

l TouchDown for
SmartPhones*

l Web@Work

l Secure Android Email+

l TouchDown for
SmartPhones*

l FileManager

l Other third-party
AppConnect apps*

l In-house AppConnect
apps

l Web@Work

TABLE 14. ANDROID SECURE APPS YOU CAN DEPLOY WITH EACH LICENSING OPTION

*In addition to purchasing the Additional Products option, these apps have an additional cost.

Procedure

1. In the Admin Portal, go to Settings > System Settings > Additional Products > Licensed Products.

2. Select the appropriate options.

3. Click Save.

Next steps

Continue to Configuring the AppConnect global policy for Android AppConnect quick start.

Configuring the AppConnect global policy for Android
AppConnect quick start
Using AppConnect for Android requires that you configure an AppConnect global policy. This policy specifies
settings that are not specific to a particular AppConnect app. For example, you configure the AppConnect
passcode requirements, data loss protection requirements, and whether device users can use AppConnect apps
that have no AppConnect container policy on the device.

This procedure shows using a new AppConnect global policy, but you can also edit the default AppConnect
global policy.

Configuring the AppConnect global policy for Android AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 81

Procedure

1. In the Admin Portal, select Policies & Configs > Policies.

2. Select Add New > AppConnect.

3. Set the AppConnect field to Enabled.

4. Complete the form.
Most fields default to suitable values.

5. In the Security Policies section, select Authorize for the field Apps without an AppConnect
container policy.

6. Click Save.

NOTE: If youcreatedanewAppConnectglobal policy, continue to thenext step toapply it to the
appropriate labels. Youdonot need toapply thedefault AppConnectglobal policy toa
label.

7. Select the policy.

8. SelectMore Actions > Apply To Label.

9. Select the labels to which you want to apply this policy.

10. Click Apply.

Next steps

Continue to Configuring the AppConnect container policy for Android AppConnect quick start.

Related topics

AppConnect global policy

Configuring the AppConnect container policy for Android
AppConnect quick start
This task is necessary only if:

l You did not select Authorize for the field Apps without an AppConnect container policy in the
AppConnect global policy. When Authorize is not selected, an AppConnect container policy is required
to authorize an AppConnect app on a device.

l You want to apply a different screen capture data loss protection (DLP) setting for this app than the
setting specified in the AppConnect global policy. This setting in the AppConnect container policy
overrides the setting in the AppConnect global policy.

MobileIron Core automatically creates an AppConnect container policy for the Android AppConnect app when
you upload the app to the App Catalog. However, you must also create an additional AppConnect container
policy for the app if you want to apply a different screen capture DLP setting to different devices.

Configuring the AppConnect container policy for Android AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 82

NoteTheFollowing:

l Make sureonly oneAppConnect container policy for a specificapp is applied toeachdevice.

l Core keeps in sync the labels that youapply to theappand the labels that youapply to the
automatically-createdAppConnect container policy.

l Therefore,make sure that the same labels arenotapplied to theautomatically-created
AppConnect container policyand theAppConnect container policy that youmanually create.

Procedure

1. In the Admin Portal, select Policy & Configs > Configurations.

2. Select the automatically-created AppConnect container policy for the app.

3. Click Edit.
Alternatively, to create a new AppConnect container policy for the app:

a. Select Actions > Save as.

b. Enter a name for the AppConnect container policy.

c. Enter a description for the AppConnect container policy.

4. Select Allow Screen Capture if you want to allow screen capture for this app. Your selection overrides
the choice for the screen capture setting on the AppConnect global policy.

NOTE: Noother settingsapply toAndroid. Also, theability toopenadocument is always restricted
to the securecontainer onAndroiddevices.

5. Click Save.

6. If creating a new AppConnect container policy:

a. Select the policy you just created.

b. SelectMore Actions > Apply to Label.

c. Select the labels to which you want to apply this policy.

d. Click Apply.

e. Select the automatically-created AppConnect container policy.

f. SelectMore Actions > Remove from Label.

g. Select the labels that you applied to the policy that you just created.

h. Click Remove.

Next steps

Continue to Configuring settings specific to the app for Android AppConnect quick start.

Related topics

AppConnect container policies

Configuring the AppConnect container policy for Android AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 83

Configuring settings specific to the app for Android
AppConnect quick start
Using an AppConnect app configuration, you can configure settings that are specific to an AppConnect app.
Because MobileIron Core provides these settings to the app, device users do not have to manually enter
configuration details that the app requires. Each AppConnect app’s documentation should specify the necessary
configuration. The configuration uses key-value pairs.

MobileIron Core automatically creates an AppConnect app configuration for the Android AppConnect app when
you upload the app to the App Catalog. However, you can create additional AppConnect app configurations for
the app if you want to apply different configurations to the app on different devices.

NoteTheFollowing:

l Make sureonly oneAppConnectappconfiguration for a specific app is applied toeachdevice.

l Core keeps in sync the labels that youapply to theappand the labels that youapply to the
automatically-createdAppConnectappconfiguration.
Therefore,make sure that the same labels arenotapplied to theautomatically-created
AppConnectappconfigurationand theAppConnectappconfigurations that youmanually
create.

Procedure

1. In the Admin Portal, select Policy & Configs > Configurations.

2. Select the automatically-created AppConnect app configuration for the app.

3. Click Edit.
Alternatively, to create a new AppConnect app configuration for the app:

a. Select Actions > Save as.

b. Enter a name for the app configuration.

c. Enter a description for the app configuration.

4. In the App-specific Configurations section, edit the value of existing key-value pairs.

5. To add a key-value pair:

a. Click Add+.

b. Enter the key name as provided by the app’s documentation.

c. Enter the key value.

6. Click Save.

7. If creating a new AppConnect app configuration:

a. Select the app configuration you just created.

b. SelectMore Actions > Apply to Label.

Configuring settings specific to the app for Android AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 84

c. Select the labels to which you want to apply this app configuration.

d. Click Apply.

e. Select the automatically-created AppConnect app configuration.

f. SelectMore Actions > Remove from Label.

g. Select the labels that you applied to the policy that you just created.

h. Click Remove.

Next steps

Continue to Configuring email attachment control for Android AppConnect quick start.

Related topics

AppConnect app configuration

Configuring email attachment control for Android AppConnect
quick start
This step is required only if:

l You are deploying an AppConnect for Android email app, such as Email+ for Android or Touchdown for
SmartPhones.

l You want to use the email attachment control feature in the Standalone Sentry,

Procedure:

1. Go to Services > Sentry in the Admin Portal.

2. Select the Standalone Sentry that handles ActiveSync for the devices.

3. Select the edit icon.

4. In the section Attachment Control Configuration, select Enable Attachment Control.

5. For iOS And Android Using Secure Email Apps, selectOpen With Secure Email App.

6. Click Save.

Related topics

“Email Attachment Control with Standalone Sentry” in the Sentry Guide for MobileIron Core.

Configuring email attachment control for Android AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 85

Quick start configuration for AppConnect for iOS
Complete these tasks to quickly set up AppConnect for iOS on MobileIron Core. However, for more information
about each task, including details about all the settings, see the provided references and also details in Using
AppConnect for iOS.

These quick start tasks are for adding AppConnect apps from the Apple App Store to the MobileIron Core App
Catalog for distribution to iOS devices using the Apps@Work web clip.

Before you begin

Set up the Apps@Work web clip. See “Setting up Apps@Work for iOS and macOS” in the Core Device
Management Guide for iOS and macOS Devices.

Procedure

1. Adding AppConnect apps to Core for iOS AppConnect quick start.

2. Enabling Core licensing options for iOS AppConnect quick start.

3. Configuring the AppConnect global policy for iOS AppConnect quick start.

4. Configuring the AppConnect container policy for iOS AppConnect quick start.

5. Configuring settings specific to the app for iOS AppConnect quick start.

6. Configuring email attachment control for iOS AppConnect quick start.

Adding AppConnect apps to Core for iOS AppConnect quick
start
Many third-party AppConnect apps are available in the Apple App Store. By adding them to the MobileIron Core
App Catalog, you can distribute them to devices using Apps@Work.

NOTE: Youcanalsoadd in-houseAppConnectapps to theAppCatalog. For details see “Using the
wizard toaddan in-house iOSormacOSapp to theAppCatalog” in theCore Apps@Work Guide.

Procedure

1. In the MobileIron Core Admin Portal, go to Apps > App Catalog.

2. From theQuick Import drop-down list, select iOS.

3. Enter the name of the app in the Application Name text box.

4. Click Search.

5. Select the app from the list that is displayed.

6. Click Import.

Quick start configuration for AppConnect for iOS

MobileIronCore 11.1.0.0 AppConnectGuide| 86

7. ClickOK on the pop-up message, and close the App Store Search dialog.
The app is now listed in the App Catalog. Information included in the app, such as the name, is
automatically configured. All other settings, such as the Apps@Work category for the app, are set to
default settings.
TIP: To viewandedit the settings for theapp, click on theappname in theApp Catalog.

8. Select the app to apply the app to a label:

9. Click Actions > Apply to Labels.

10. Select the appropriate labels.

11. Click Apply.

12. Repeat this procedure for each AppConnect app that you want to distribute.

Next steps

Continue to Enabling Core licensing options for iOS AppConnect quick start.

Related topics

“Managing Mobile Apps for iOS” in the Core Apps@Work Guide.

Enabling Core licensing options for iOS AppConnect quick
start
On the Admin Portal, in Settings > System Settings > Additional Products > Licensed Products, you
specify whether you have a license for:

l AppConnect for third-party and in-house apps

l AppTunnel for third-party and in-house apps

l Docs@Work

l Web@Work

The following table shows which iOS secure apps you can deploy for each option. Select each option only if your
organization has purchased it.

EnablingCore licensing options for iOS AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 87

If you enable Docs@Work, you
can deploy:

If you enable AppConnect for
third-party and in-house apps,
you can deploy:

If you enable Web@Work, you
can deploy:

l Docs@Work

l Web@Work

l Email+ for iOS*

l Insight*

l Other third-party
AppConnect apps*

l In-house AppConnect
apps

l Web@Work

TABLE 15. IOS SECURE APPS YOU CAN DEPLOY WITH EACH LICENSING OPTION

*In addition to purchasing the Additional Products option, these apps have an additional cost.

Procedure

1. In the Admin Portal, go to Settings > System Settings > Additional Products > Licensed Products.

2. Select the appropriate options.

3. Click Save.

Next steps

Continue to Configuring the AppConnect global policy for iOS AppConnect quick start.

Configuring the AppConnect global policy for iOS AppConnect
quick start
Using AppConnect for iOS requires that you configure an AppConnect global policy. This policy specifies
settings that are not specific to a particular AppConnect app. For example, you configure the AppConnect
passcode requirements, data loss protection requirements, and whether device users can use AppConnect apps
that have no AppConnect container policy on the device.

This procedure shows using a new AppConnect global policy, but you can also edit the default AppConnect
global policy.

1. In the Admin Portal, select Policies & Configs > Policies.

2. Select Add New > AppConnect.

3. Set the AppConnect field to Enabled.

4. Complete the form.
Most fields default to suitable values.

5. In the Security Policies section, select Authorize for the field Apps without an AppConnect
container policy.

Configuring the AppConnect global policy for iOS AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 88

6. Click Save.

NOTE: If youcreatedanewAppConnectglobal policy, continue to thenext step toapply it to the
appropriate labels. Youdonot need toapply thedefault AppConnectglobal policy toa
label.

7. Select the policy.

8. SelectMore Actions > Apply To Label.

9. Select the labels to which you want to apply this policy.

10. Click Apply.

Next steps

Continue to Configuring the AppConnect container policy for iOS AppConnect quick start.

Related topics

AppConnect global policy

Configuring the AppConnect container policy for iOS
AppConnect quick start
This task is necessary only if:

l You did not select Authorize for the field Apps without an AppConnect container policy in the
AppConnect global policy. When Authorize is not selected, an AppConnect container policy is required
to authorize an AppConnect app on a device.

l You want to apply different data loss protection (DLP) settings for this app than the settings specified in
the AppConnect global policy. These settings in the AppConnect container policy override the settings in
the AppConnect global policy.

NoteTheFollowing:

l Make sureonly oneAppConnect container policy for a specificapp is applied toeachdevice.

l Although this quick start procedure is for AppleAppStoreapps, note that for some in-house iOS
AppConnectapps,MobileIronCoreautomatically createsanAppConnect container policy.
Core keeps theautomatically-createdpolicy’s labels in syncwith the labels youapply to theapp. If
youcreateadditionalAppConnect container policies for suchapps,make sure to label the
policies so that only onepolicy is applied toeachdevice.

Procedure

1. In the Admin Portal, select Policy & Configs > Configurations.

2. Select Add New > AppConnect > Container Policy.

3. Enter a name for the policy.

Configuring the AppConnect container policy for iOS AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 89

4. Enter a description for the policy.

5. In the Application field, enter the bundle ID for the app. For example, the bundle ID for Email+ for iOS is
com.mobileiron.ios.emailplus.

6. Configure the iOS data loss prevention settings according to your requirements.

7. Click Save.

8. Select the policy you just created.

9. SelectMore Actions > Apply to Label.

10. Select the labels to which you want to apply this policy.

11. Click Apply.

Next steps

Continue to Configuring settings specific to the app for iOS AppConnect quick start.

Related topics

AppConnect container policies

Configuring settings specific to the app for iOS AppConnect
quick start
Using an AppConnect app configuration, you can configure settings that are specific to an AppConnect app.
Because MobileIron Core provides these settings to the app, device users do not have to manually enter
configuration details that the app requires. Each AppConnect app’s documentation should specify the necessary
configuration. The configuration uses key-value pairs.

NoteTheFollowing:

l Make sureonly oneAppConnectappconfiguration for a specific app is applied toeachdevice.

l Although this quick start procedure is for AppleAppStoreapps, note that for some in-house iOS
AppConnectapps,MobileIronCoreautomatically createsanAppConnectappconfiguration.
Core keeps theconfiguration’s labels in syncwith the labels youapply to theapp. If youcreate
additionalAppConnectappconfigurations for suchapps,make sure to label theAppConnect
appconfigurations so that only one is applied toeachdevice.

Procedure

1. In the Admin Portal, select Policy & Configs > Configurations.

2. Click Add New > AppConnect > Configuration to create a new AppConnect app configuration.

3. Enter a name for the app configuration.

4. Enter a description for the app configuration.

Configuring settings specific to the app for iOS AppConnect quick start

MobileIronCore 11.1.0.0 AppConnectGuide| 90

5. In the App-specific Configurations section, add key-value pairs, as specified by the app’s
documentation.

a. Click Add+.

b. Enter the key name as provided by the app’s documentation.

c. Enter the key value.

6. Click Save.

7. Select the app configuration you just created.

8. SelectMore Actions > Apply to Label.

9. Select the labels to which you want to apply this app configuration.

10. Click Apply.

Next steps

Continue to Configuring email attachment control for iOS AppConnect quick start.

Related topics

AppConnect app configuration

Configuring email attachment control for iOS AppConnect
quick start
This step is required only if:

l You are deploying an AppConnect for iOS email app, such as Email+ for iOS.

l You want to use the email attachment control feature in the Standalone Sentry,

Procedure:

1. Go to Services > Sentry in the Admin Portal.

2. Select the Standalone Sentry that handles ActiveSync for the devices.

3. Select the edit icon.

4. In the section Attachment Control Configuration, select Enable Attachment Control.

5. For iOS And Android Using Secure Email Apps, selectOpen With Secure Email App.

6. Click Save.

Related topics

“Email Attachment Control with Standalone Sentry” in the Sentry Guide for MobileIron Core.

Configuring email attachment control for iOS AppConnect quick start

4

MobileIronCore 11.1.0.0 AppConnectGuide| 91

Using AppConnect for Android

l When an Android device user can use AppConnect for Android

l AppConnect for Android apps

l Hybrid web app support

l Fingerprint login for AppConnect apps for Android

l AppTunnel with TCP tunneling support for Android secure apps

l Configuring AppTunnel with TCP tunneling for Android secure apps

l Certificate authentication using AppConnect with TCP tunneling for Android secure apps

l Configuring certificate authentication using AppTunnel with TCP tunneling for Android secure apps

l AppTunnel and TLS protocol versions in Android secure apps

l Lock, unlock, and retire impact on AppConnect for Android

l Lock Android AppConnect apps when screen is off

l Copy/Paste for AppConnect for Android

l Sharing content from AppConnect for Android apps to non-AppConnect apps

l Web-related DLP policies

l DLP policy for media player access

l Device-initiated security controls for AppConnect for Android

l Custom keyboards in AppConnect apps

l Secure File Manager features

l Secure folder access

l About allowing a secure app to ignore the auto-lock time

l Situations that wipe Android AppConnect app data

l Accessible Android apps to preserve the user experience

l Secure Apps Manager Android permissions

l Disabling analytics data collection for AppConnect for Android

Hybrid web app support
Android Secure Apps supports full containerization for AppConnect-enabled hybrid web apps on devices. A
hybrid web app is an Android app (APK file) that the device user installs on the device, unlike a pure web app that
the user accesses through a web browser. A hybrid web app includes at least one screen that displays a web
page. Phonegap apps are a type of hybrid web app.

MobileIronCore 11.1.0.0 AppConnectGuide| 92

NOTE: Web@Work forAndroid, the securebrowser thatMobileIronprovides, allows you to runpureweb
apps in theAppConnect securecontainer.

In a hybrid web app, business logic and content presentation occurs using Android WebView andWebKit
technologies, specifically within an object of the Java class android.Webkit.WebView. TheWebView object
locally renders content using web technologies such as HTML, CSS, and JavaScript. The WebView object can
access the web content from a network resource or from embedded web content.

Like other app data, data related to the android.webkit.WebView class is encrypted. This web-related data can
include cookies, the web cache, and web databases.

The following diagram illustrates a hybrid web app on an Android device.

FIGURE 2. A HYBRID WEB APP ON ANANDROID DEVICE

Fingerprint login for AppConnect apps for Android
Fingerprint login for AppConnect apps gives the device user the convenience of using a fingerprint instead of an
AppConnect passcode to access AppConnect apps. When using fingerprint, a user still creates an AppConnect
passcode. If entering the fingerprint fails, the user enters the AppConnect passcode to access AppConnect
apps.

The Secure Apps Manager gives the device user the choice to use fingerprint or an AppConnect passcode. This
choice is useful when a device is shared among multiple users, such as co-workers or even a family, each of
whom uses a fingerprint to access the device. Although all the users can access the device with fingerprint,
sometimes only one of those users should be allowed to access AppConnect apps. That user can choose to use

Fingerprint login for AppConnect apps for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 93

the AppConnect passcode instead of fingerprint for accessing AppConnect apps. Having a choice therefore
ensures that only an appropriate device user accesses AppConnect apps.

Required product versions for fingerprint login for AppConnect for Android

The following table shows the required product versions for fingerprint login for Android secure apps.

Product Version

Mobile@Work for
Android

9.5.0.0 through the most recently released version as supported by MobileIron.

Secure Apps Manager 8.0 through the most recently released version as supported by MobileIron.

Android 6.0 through the most recently released version as supported by MobileIron

TABLE 16. REQUIRED PRODUCT VERSIONS FOR FINGERPRINT LOGIN FOR SECURE APPS

Requirements for fingerprint login for AppConnect for Android

Device users can use a fingerprint to access AppConnect apps for Android if the following are true:

l The product versions meet the requirements in Required product versions for fingerprint login for
AppConnect for Android.

l The device has a fingerprint reader.

l The fingerprint option is set as follows in the MobileIron UEM:
On the MobileIron Core Admin Portal,

o The fingerprint option is enabled in the AppConnect global policy.
o The block fingerprint option is not enabled in the Security policy.

NOTE: If fingerprint in the security policy is blocked, selecting the fingerprint option in the
AppConnectglobal policy has no impact.

If all of the above are true, Secure Apps Manager gives device users the choice whether to use fingerprint or use
an AppConnect passcode to access AppConnect apps.

NOTE: Inaddition tochoosing fingerprint, deviceusers alsocreateanAppConnectpasscode. The
AppConnectpasscode is necessary if fingerprint login fails.

Configuring fingerprint login for AppConnect for Android (Core)

Configure fingerprint login for AppConnect apps on the MobileIron Core Admin Portal.

Procedure

1. On the Admin Portal, go to Policies & Configs > Policies.

2. Select the appropriate AppConnect global policy.

Required product versions for fingerprint login for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 94

3. Click Edit.
The AppConnect global policy displays.

4. Select Passcode is required for Android devices.

5. Select Use fingerprint authentication when supported.

6. Click Save.

7. Select the appropriate security policy.

8. Scroll down to the Android section.

9. Make sure Block Fingerprint (from Android 5.0 or Samsung MDM 5.3) is not selected.

10. Click Save.

Device User impact of fingerprint login for AppConnect for Android

If the requirements to use fingerprint login for AppConnect apps are fulfilled, the Secure Apps Manager gives
device users the choice to use fingerprint or to use the AppConnect passcode for logging into AppConnect apps.

For more information about device user requirements, see Requirements for fingerprint login for AppConnect for
Android

NOTE: TheAppConnectpasscode is called the secureappspasscode in the SecureAppsManager.

The followig describe the device user experience:

l Device user experience at registration

l Device user experience if already registered

l Device user options for enabling or disabling fingerprint login

Device user experience at registration

The overall device user experience at registration is:

1. The Secure Apps Manager prompts the device user to create a secure apps passcode.

2. After creating the secure apps passcode, the Secure Apps Manager gives the user the option to use
fingerprint to log into secure apps.
If no fingerprint is available, the Secure Apps Manager prompts the user to add a fingerprint in the
device’s settings. The device user can then return to the Secure Apps Manager to enable fingerprint
login.

3. If the user chooses the fingerprint option, he can use any fingerprint on the device for subsequent logins
to secure apps.

4. If the user does not choose the fingerprint option, he will use the secure apps passcode for subsequent
logins to secure apps.

5. The device user can at any time use a menu option in the Secure Apps Manager to change the choice
about using fingerprint.

Device User impact of fingerprint login for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 95

Device user experience if already registered

If you enable fingerprint login on the MobileIron UEM after a device user is registered and has already created a
secure apps passcode:

1. The next time the user logs into secure apps, the Secure Apps Manager prompts the device user to
change the secure apps passcode.

2. After changing the secure apps passcode, the Secure Apps Manager gives the user the option to use
fingerprint to log into secure apps.
If no fingerprint is available, the Secure Apps Manager prompts the user to add a fingerprint in the
device’s settings. The device user can then return to the Secure Apps Manager to enable fingerprint
login.

3. If the user chooses the fingerprint option, he can use any fingerprint on the device for subsequent logins
to secure apps.

4. If the user does not choose the fingerprint option, he will use the secure apps passcode for subsequent
logins to secure apps.

5. The device user can at any time use a menu option in the Secure Apps Manager to change the choice
about using fingerprint.

Device user options for enabling or disabling fingerprint login

When the Secure Apps Manager gives the user the option to use fingerprint to log into secure apps:

l If a fingerprint is available on the device, the user chooses one of the following:
o to enable fingerprint login to secure apps immediately
o to be reminded to enable it later
o to never be reminded again

l If no fingerprint exists on the device, the user can choose to go to the device’s settings to add a
fingerprint. After adding the fingerprint, the user can return to the Secure Apps Manager to enable
fingerprint login.

The device user can:

l At any time, use the options menu in Secure Apps Manager to disable or enable fingerprint login to
secure apps.

l When fingerprint login is disabled, tap on Enable Fingerprint Login on the screen for entering the
secure apps password.

In both of the above cases, the Secure Apps Manager prompts the device user to enter the secure apps
passcode before changing the fingerprint login status.

Device user experience if already registered

MobileIronCore 11.1.0.0 AppConnectGuide| 96

Less common device user scenarios for fingerprint login for AppConnect for
Android

These scenarios describe the device user experience in less common scenarios relating to fingerprint login to
Android secure apps.

Scenario Behavior on the device

Device has more than one fingerprint. Any fingerprint can log into secure apps when fingerprint login is
enabled.

Fingerprint login to secure apps fails
due to too many attempts.

The Secure Apps Manager prompts the user for the secure apps
passcode.

NOTE: TheAndroidOScontrols thenumber of fingerprint login
attempts.

The device user taps Cancel on the
Fingerprint Login dialog for logging
into secure apps.

The Secure Apps Manager prompts the user for the secure apps
passcode.

A device user adds a fingerprint and a
device passcode to the device, but
does not enable fingerprint login for
the device.

NOTE: This scenario is possibleonly
on somedevicemodels,
suchas someSamsung
devices.

Fingerprint login is available for secure apps although it is not
available for device login.

A device user adds a fingerprint to the
device, but does not add a device
passcode.

NOTE: This scenario is possibleonly
on somedevicemodels,
suchas someSamsung
devices.

If you have configured fingerprint login for secure apps, the Secure
Apps Manager prompts the user to go to settings. In the settings, the
user must add a device passcode.

A device user adds a fingerprint to the
device without enabling fingerprint
login for the device.

NOTE: This scenario is not possible
on somedevicemodels.

Fingerprint login is available for secure apps although it is not
available for device login.

The device user changes the secure
apps passcode while fingerprint login

Fingerprint login remains enabled for secure apps.

TABLE 17. LESS COMMON DEVICE USER SCENARIOS RELATING TO FINGERPRINT LOGIN

Less commondevice user scenarios for fingerprint login for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 97

Scenario Behavior on the device

is enabled for secure apps.

The device user changes the secure
apps passcode while fingerprint login
is available, but disabled, for secure
apps.

The Secure Apps Manager gives the device user the option to
enable fingerprint login.

1. Fingerprint login is available for
secure apps.

2. A device user creates a new
secure apps passcode because
the user forgot the passcode.

The device user must again choose whether to enable fingerprint
login.

NOTE: This caseapplieswhen thedeviceuser initiates the
“forgotpasscode” scenarioor theadministrator unlocks
theAppConnect container from theAdminPortal.

The device user restarts the device. The device user must enter the secure apps passcode on the next
secure apps login, even if fingerprint login had been enabled. The
device user can use fingerprint login on subsequent logins to secure
apps.

TABLE 17. LESS COMMON DEVICE USER SCENARIOS RELATING TO FINGERPRINT LOGIN (CONT.)

Less commondevice user scenarios for fingerprint login for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 98

Scenario Behavior on the device

The device user terminates the
Secure Apps Manager.

The device user must enter the secure apps passcode on the next
secure apps login, even if fingerprint login had been enabled. The
device user can use fingerprint login on subsequent logins to secure
apps.

You enable or disable the Use
fingerprint authentication when
supported option on the
AppConnect global policy.

The Secure Apps Manager prompts the device user to change the
secure apps passcode after the user next logs in.

This behavior is similar to changing any of these secure apps
passcode characteristics on the AppConnect global policy:

- passcode type
- minimum passcode length
- minimum number of complex characters
- passcode strength usage or level changes

NOTE: Thedeviceuser canusea fingerprint to log inone last
timewhenyoudisable theUse fingerprint
authentication when supported option.After logging in,
the SecureAppsManager notifies thedeviceuser that
theadministrator disabled fingerprint login.

You change the Block Fingerprint
option on the security policy.

The Secure Apps Manager prompts the device user to change the
secure apps passcode after the user next logs in.

NOTE: If your change is toblock fingerprint,when thedevice
user next logs into secureapps, theuser cannot usea
fingerprint to login. The SecureAppsManager notifies the
deviceuser that theadministrator disabled fingerprint
login.

TABLE 17. LESS COMMON DEVICE USER SCENARIOS RELATING TO FINGERPRINT LOGIN (CONT.)

Security versus convenience of passcode and fingerprint for AppConnect for
Android

AppConnect for Android security involves:

l access to AppConnect apps.

l encrypting AppConnect-related data such as app configurations, certificates, and data that the app
saves on the device.

The following table lists possible passcode and fingerprint choices from most secure to least secure, and
discusses the level of device user convenience. It compares the choices you can make on the MobileIron UEM
involving:

Security versus convenience of passcode and fingerprint for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 99

l Whether you require a device passcode .

l Whether you require an AppConnect passcode.

l When requiring an AppConnect passcode, whether you allow fingerprint login to AppConnect apps.

The security level is impacted by the following:

l An AppConnect passcode ensures that AppConnect app data is encrypted and secure if the device is
compromised (rooted). Without an AppConnect passcode, AppConnect app data is encrypted, but not
secure if the device is compromised.

l A device passcode adds a layer of security.

l Fingerprint login allows all users of the same device who have added fingerprints to access the device
and AppConnect apps. This access is a possible security risk.

NOTE: Inall cases, stronger passcodesaremore secure thanweaker passcodes (suchasa4-digit
number).

Passcode and
fingerprint
configuration on
MobileIron UEM

Security of AppConnect apps Convenience for device user

Device passcode:
Required

AppConnect passcode:
Required

Fingerprint:
Not allowed

Highest Least convenient for accessing both the
device and AppConnect apps.

Device passcode:
Not required

AppConnect passcode:
Required

Fingerprint:
Not allowed

Very High Convenient for accessing the device but
inconvenient for accessing AppConnect
apps.

Device passcode:
Required

AppConnect passcode:
Required

Fingerprint:
Allowed

High Convenient for accessing both the
device and AppConnect apps.

Device passcode:
Not required

Lower Very convenient for accessing the
device, and convenient for accessing

TABLE 18. SECURITY VERSUS DEVICE USER CONVENIENCE OF PASSCODE AND FINGERPRINT OPTIONS

Security versus convenience of passcode and fingerprint for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 100

Passcode and
fingerprint
configuration on
MobileIron UEM

Security of AppConnect apps Convenience for device user

AppConnect passcode:
Required

Fingerprint:
Allowed

AppConnect apps.

Device passcode:
Required

AppConnect passcode:
Not required

Fingerprint:
Not allowed

Low Convenient for accessing AppConnect
apps, but inconvenient for accessing
the device.

No passcodes required Lowest Most convenient for accessing both the
device and AppConnect apps.

However, unauthorized users also have
access.

TABLE 18. SECURITY VERSUS DEVICE USER CONVENIENCE OF PASSCODE AND FINGERPRINT OPTIONS
(CONT.)

Related topics

l The AppConnect passcode

l Data encryption for secure apps for Android

AppTunnel with TCP tunneling support for Android secure
apps
AppTunnel can tunnel HTTP/S requests from an AppConnect app to an enterprise server that is behind the
enterprise firewall. AppTunnel with HTTP/S tunneling is supported with wrapped Java apps that use a specific
set of Java HTTP/S APIs. If a wrapped Java app uses APIs outside of this set, or uses TCP for its network
connections, it can use AppTunnel with TCP tunneling to secure data-in-motion to enterprise servers.
AppTunnel with TCP tunneling therefore expands the set of AppConnect apps that can tunnel data to an
enterprise server.

When an AppConnect app uses AppTunnel with TCP tunneling, the traffic between the device and the
Standalone Sentry is secured using an Secure Sockets Layer (SSL) session, as shown in the following diagram:

AppTunnel with TCP tunneling support for Android secure apps

MobileIronCore 11.1.0.0 AppConnectGuide| 101

FIGURE 3. APPTUNNEL WITH TCP TUNNELING FORANDROID DEVICES

Types of apps that can use AppTunnel with TCP tunneling

The following types of apps can use AppTunnel with TCP tunneling:

l Hybrid web apps, including PhoneGap apps.
Hybrid web apps use Android WebView andWebKit technologies to access and display web content.
WebView does not use one of the Java HTTP/S APIs that Android AppConnect wrapping supports with
AppTunnel with HTTP/S tunneling. Therefore, AppTunnel with TCP tunneling is required.

l Java apps
Java apps that use APIs outside of the set of Java HTTP/S APIs that AppTunnel with HTTP/S tunneling
supports can tunnel the data using AppTunnel with TCP tunneling.

l Java apps which use C or C++ code to access an enterprise server
C or C++ code does not use the set of Java HTTP/S APIs that AppTunnel with HTTP/S tunneling
supports. These apps can tunnel the data using AppTunnel with TCP tunneling.

l React Native apps

l Xamarin apps that use APIs outside the set of APIs that AppTunnel with HTTP/S tunneling supports.

NoteTheFollowing:

l AppTunnel does not support UDP tunneling. For example, apps that requireUDP for streaming
videoarenot supported.

l AppTunnelwith TCP tunnelingdoes not support Kerberosauthentication to theenterprise server. It
supports onlypass throughauthentication.Withpass throughauthentication, the Standalone
Sentrypasses theauthenticationcredentials, suchas theuser IDandpassword (basic
authentication) orNTLM, to theenterprise server.
Therefore, apps thatmust useAppTunnelwith TCP tunneling, suchas hybridapps, cannot use
Kerberosauthentication to theenterprise server. However, theseappscanuse “Certificate
authenticationusingAppConnectwith TCP tunneling forAndroid secureapps.

Types of apps that can use AppTunnel with TCP tunneling

MobileIronCore 11.1.0.0 AppConnectGuide| 102

When to use AppTunnel with HTTP/S tunneling versus TCP tunneling

The following table shows whether to use AppTunnel with HTTP/S tunneling or AppTunnel with TCP tunneling
for an Android secure app. It also shows which generation of the wrapper to use.

AppTunnel with HTTP/S tunneling AppTunnel with TCP tunneling

Java code using
supported HTTP/S APIs *

Supported with Generation 1 or 2
wrapper

Supported

Requires Generation 2 wrapper

Java code using
unsupported HTTP/S
APIs *

Not supported Supported

Requires Generation 2 wrapper

C or C++ code Not supported Supported

Requires Generation 2 wrapper

Hybrid web app, including
Phonegap apps

Not supported Supported

Requires Generation 2 wrapper

Xamarin apps Supported with Generation 1 or 2
wrapper if using supported HTTP/S
APIs

Supported

Requires Generation 2 wrapper

React Native Not supported Supported

Requires Generation 2 wrapper

TABLE 19. APPTUNNEL SUPPORT FORHTTP/S VERSUS TCP TUNNELING ONANDROID SECURE APPS

* The supported HTTP/S Java APIs are listed in theMobileIron AppConnect for Android App Developers Guide.

Contact the application vendor or developer to find out whether to configure AppTunnel with HTTP/S tunneling or
AppTunnel with TCP tunneling.

Configuring AppTunnel with TCP tunneling for Android secure
apps
The procedure to configure AppTunnel with TCP tunneling is mostly the same as the procedure to configure
AppTunnel with HTTP/S tunneling. The difference involves the AppTunnel service that you configure on the
Standalone Sentry. To see just this difference, see Configuring an AppTunnel TCP service.

Before you begin

Ensure that you have a Standalone Sentry configured to support AppTunnel. The required steps include:

When to use AppTunnel with HTTP/S tunneling versus TCP tunneling

MobileIronCore 11.1.0.0 AppConnectGuide| 103

l Setting up the Standalone Sentry connectivity settings, which include the Sentry host name or IP
address, and the port number MobileIron Core uses to access the Sentry.

l Enabling the Standalone Sentry for AppTunnel.

l Configuring the Standalone Sentry for device authentication, which is how the device authenticates to
the Standalone Sentry. This authentication includes setting up certificates if you require them.

For details about these required tasks, as well as optional tasks, see the “Configuring Standalone Sentry for
AppTunnel” in the Sentry Guide for MobileIron Core.

Overview

1. Complete the steps in Basic configuration.

2. Complete the steps in Adding third-party and in-house secure apps, if applicable.

3. Enable AppTunnel on MobileIron Core, if you are deploying third-party or in-house apps.
See Enabling AppTunnel.

4. Configure an AppTunnel TCP service on Standalone Sentry.
See Configuring an AppTunnel TCP service

5. Configure an AppConnect app configuration.
See Configuring the AppTunnel TCP service in the AppConnect app configuration.

6. Control the idle session timeout for the TCP connection between the app and the enterprise server.
See Configuring per-app idle session timeout for AppTunnel with TCP tunneling.

7. Change the TLS protocol version to use TLSv1.2 instead of TLS1.0, if required by the Standalone
Sentry.
See Configuring AppTunnel with TCP tunneling for Android secure apps.

Related topics

“Working with app tunnels” in the Sentry Guide for MobileIron Core for actions you can take on an app tunnel.
For example, you can block an app tunnel, so that an AppConnect app on a device cannot access the backend
resource.

Configuring an AppTunnel TCP service

An AppTunnel TCP service defines the backend service that an AppConnect app tunnels to using TCP
tunneling.

See "Standalone Sentry for AppTunnel" in the Sentry Guide for MobileIron Core for information about
configuring AppTunnel and an AppTunnel service. Standalone Sentry product documentation is available on the
Standalone Sentry Product Documentation Home Page.

Configuring anAppTunnel TCP service

https://help.mobileiron.com/s/mil-productdoclistpage?Label=Sentry&Id=a1s3400000240gYAAQ&Name=MobileIron+Sentry

MobileIronCore 11.1.0.0 AppConnectGuide| 104

About the AppTunnel TCP service name

When you configure an AppTunnel service, you give the service a service name. The service name is used in the
AppConnect app configuration. The app configuration uses the service name to restrict the app to accessing
servers in the Server List field associated with the service name.

The service name is one of the following:
• A unique name for the TCP service that the AppConnect app on the device accesses

One or more of your internal app servers provide the service. You list the servers in the Server List field
associated with the service name.
For AppTunnel with TCP tunneling, the name must begin with TCP (case-insensitive).
Example: TCP_Finance
A service name cannot contain these characters: 'space' \ ; * ? < > " |.

• <TCP_ANY>
Select <TCP_ANY> for the service name to allow AppTunnel with TCP tunneling to any URL that the app
requests. Typically, you select <TCP_ANY> if an AppConnect app’s app configuration specifies a URL with
wildcards for tunneling, such as *.myCompany.com. The Sentry tunnels the data for any URL request that
the app makes that matches the URL with wildcards.
The Sentry tunnels the data to the app server that has the URL that the app specified. The Server List field is
therefore not applicable when the Service Name is <TCP_ANY>.
For example, consider when the app requests URL myAppServer.mycompany.com, which matches
*.mycompany.com in the app configuration. The Sentry tunnels the data to myAppServer.myCompany.com.

Configuring the AppTunnel TCP service in the AppConnect app configuration

The AppConnect app configuration specifies the AppTunnel TCP service that the app uses.

Procedure
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.

Alternatively, edit an existing AppConnect app configuration.
3. Enter a name for the AppConnect app configuration.

For example: My App’s App Configuration
4. In the Application field, select the secure app from the App Catalog.
5. In the AppTunnel Rules section, click Add+ to add a new AppTunnel rule.
6. Set up the TCP tunnel information as described in the following table:

About the AppTunnel TCP service name

MobileIronCore 11.1.0.0 AppConnectGuide| 105

Item Description

Sentry Select a Standalone Sentry configured for app tunneling from the drop-down list.

Service Select a TCP service name from the drop-down list.

This service name specifies an AppTunnel service configured in the AppTunnel
Configuration section of the specified Standalone Sentry.

NOTE: If youenteredaURLwithwildcards in theURL Wildcard field, youcan
only select<TCP_ANY>as the service. The<TCP_ANY> servicemust be
configured in theAppTunnel Configuration sectionof the Standalone
Sentry configured forAppTunnel.

URL Wildcard Enter one of the following:
• an enterprise app server’s hostname

Example: finance.yourcompany.com
• a hostname with wildcards. The wildcard character is *.

Example:
*.yourcompanyname.com

If the app requests to access this hostname, the Sentry tunnels the app data to an
app server. The Sentry and Service fields that you specify in this AppTunnel row
determine the target app server.

NoteTheFollowing:
• The app data is tunneled only if the app’s request matches this hostname and

the port number specified in the Port field of this AppTunnel row.
• The order of these AppTunnel rows matters. If you specify more than one

AppTunnel row, the first row that matches the hostname and port that the app
requested is chosen. That row determines the Sentry and Service to use for
tunneling.

Port Enter the port number that the app requests to access.

The app data is tunneled only if the app’s request matches the hostname in the
URLWildcard field and this port number. If you do not enter a port number, the port
in the app’s request is not used to determine whether data is tunneled.

NOTE: Enteringaport number in this field is requiredwhenbothof the
followingare true:

• The hostname in the URLWildcard field does not contain a wildcard.
• The service is not <TCP_ANY>.

Identity Certificate Select the Certificate Enrollment setting that you created for AppTunnel. This
selection determines the certificate that the device presents to the Standalone
Sentry for authentication.

See “Device and server authentication” in the Sentry Guide for MobileIron Core.

7. Click Save.
8. Select the new AppConnect app configuration.

Configuring the AppTunnel TCP service in the AppConnect app configuration

MobileIronCore 11.1.0.0 AppConnectGuide| 106

9. SelectMore Actions > Apply To Label.
10. Select the labels to which you want to apply this AppConnect app configuration.
11. Click Apply.

Related topics

AppConnect app configuration

Configuring per-app idle session timeout for AppTunnel with TCP tunneling

For an AppConnect app using AppTunnel with TCP tunneling, you can control the idle session timeout for the
TCP connection between the app and the enterprise server. This timeout is useful if the enterprise server takes
more than 60 seconds to respond to a request from the app. The default idle session timeout is 60 seconds.

To specify a idle session timeout for an AppConnect app, provide a key-value pair in the app’s AppConnect app
configuration that specifies the idle session timeout.

Key Value

MI_AC_TCP_IDLE_TIMEOUT_MS An integer greater than 0.

The value is the number of milliseconds in which the
enterprise server must respond to a request when using
AppTunnel with TCP tunneling.

The Standalone Sentry handling the AppTunnel times out if
this value is exceeded.

Default value: 60000

TABLE 20. IDLE SESSION TIMEOUT KEY-VALUE PAIR

Procedure
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect app configuration for the AppConnect app (The Setting Type is AppConfig).
3. In App-specific Configurations, select Add+ to add a key-value pair.
4. EnterMI_AC_TCP_IDLE_TIMEOUT_MS for the key.
5. Enter the idle session timeout value in milliseconds.
6. Click Save.

Certificate authentication using AppConnect with TCP
tunneling for Android secure apps
Android Secure Apps supports certificate authentication using AppTunnel with TCP tunneling. A secure app can
send a certificate to identify and authenticate the app user to an enterprise server. Depending on the server
implementation, this authentication occurs without interaction from the device user beyond entering the
AppConnect passcode. That is, the device user does not need to enter a user name and password to log into
enterprise services. Therefore, this feature provides a higher level of security and an improved user experience.

Configuring per-app idle session timeout for AppTunnel with TCP tunneling

MobileIronCore 11.1.0.0 AppConnectGuide| 107

App and enterprise server requirements

Apps using certificate authentication with AppTunnel with TCP tunneling must initiate a connection that does not
use Secure Socket Layer (SSL) to the enterprise server. For example, the app can initiate the connection with a
HTTP request, but not with an HTTPS request.

Contact the application vendor or developer to find out whether the app meets these requirements.

IMPORTANT: Theconnection that this featuremakes to theenterprise server is secure; it uses SSL.

The enterprise server must use client certificate authentication with Secure Sockets Layer (SSL).

Configuring certificate authentication using AppTunnel with
TCP tunneling for Android secure apps

Overview

The procedure to configure certificate authentication with AppTunnel with TCP tunneling starts with the
procedure to configure AppTunnel with TCP tunneling. In addition, you add key-value pairs to the app’s
AppConnect app configuration that specify:
• The AppTunnel TCP services that you configure on the Standalone Sentry that require certificate

authentication.
• The user certificate for the app to present to the enterprise server.

This certificate can be specifically for the enterprise server only, or a default user certificate if you do not
require a specific certificate for a service. One other option is to use the same certificate that the app
presents to the Standalone Sentry.
The certificate is either an identity certificate or a group certificate.

The following excerpt from the Standalone Sentry configuration and the AppConnect app configuration for a
Finance app and Helpdesk app summarize this additional configuration:

Appand enterprise server requirements

MobileIronCore 11.1.0.0 AppConnectGuide| 108

FIGURE 4. SAMPLE CONFIGURATION FOR CERTIFICATE AUTHENTICATION WITH TCP TUNNELING

The Finance app and the Helpdesk app:
• Authenticate to the Standalone Sentry using the certificate defined by the AppTunnelCert Certificate

Enrollment setting.
This Certificate Enrollment setting is specified as the Identity Certificate in the AppTunnel rules for the
AppConnect app configuration for each app.

• Use AppTunnel with TCP tunneling to access the TCP_FINANCE service and TCP_HELPDESK service,
respectively.

• Use certificate authentication with AppTunnel with TCP tunneling.
In each app’s AppConnect app configuration, the value of ES_CERT_AUTH_SERVICES lists the service
that uses certificate authentication.

The two apps use different certificates to authenticate to their respective enterprise servers. The Finance app
uses a specific certificate, defined in the FinanceCert Certificate Enrollment setting. The Helpdesk app uses a a
default certificate, defined in the DefaultEnterpriseCert Certificate Enrollment setting, to authenticate to its
enterprise server. Other apps that access other enterprise services also can use this certificate.

The following diagram illustrates the use of the certificates:

Overview

MobileIronCore 11.1.0.0 AppConnectGuide| 109

FIGURE 5. CERTIFICATE USAGE IN CERTIFICATE AUTHENTICATION WITH TCP TUNNELING

High-level tasks for certificate authentication using AppTunnel with TCP
tunneling

Do the following tasks to set up certificate authentication using AppTunnel with TCP tunneling:
1. Configure AppTunnel with TCP tunneling for the app.

See Configuring AppTunnel with TCP tunneling for Android secure apps.
2. Setting up the certificate for authenticating the user to the enterprise server
3. Specifying the AppTunnel services that use certificate authentication
4. Specifying which certificate to use to authenticate the user to the enterprise server

Setting up the certificate for authenticating the user to the enterprise server

You specify the certificate that the app uses to authenticate the user to the enterprise server. The certificate is
either an identity certificate or a group certificate.

This certificate can be:
• a specific certificate that is used for a specific enterprise service
• a default certificate used for enterprise services that do not require a specific certificate.
• the same certificate that authenticates the user to the Standalone Sentry.

The app uses the Sentry certificate to authenticate to the enterprise service if you do not specify another
certificate, specific or default, for a service.

High-level tasks for certificate authentication using AppTunnel with TCP tunneling

MobileIronCore 11.1.0.0 AppConnectGuide| 110

If you require a specific certificate or an default certificate other than the certificate you already set up for the
Standalone Sentry, set up the certificate in the Admin Portal:
1. Go to Policies & Configs > Configurations.
2. Select Add New > Certificate Enrollment.
3. Configure the Certificate Enrollment setting as described in detail in “Certificate Enrollment settings” in the

Core Device Management Guide for Android and Android Enterprise Devices.

Specifying the AppTunnel services that use certificate authentication

The AppConnect app configuration specifies the AppTunnel services that your secure app uses. It refers to the
AppTunnel services that you configured on the Standalone Sentry as described in Configuring the AppTunnel
TCP service in the AppConnect app configuration.

You also specify in the AppConnect app configuration which of those AppTunnel services use certificate
authentication. Do the following steps:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect app configuration for your secure app.
3. Click Edit.
4. In the App-specific Configurations section, click Add+ to add a key-value pair.
5. For the key, enter ES_CERT_AUTH_SERVICES, which is case sensitive.
6. For the value, enter the list of AppTunnel services that your app uses. Typically apps use only one

AppTunnel service, but using multiple AppTunnel services is supported. Separate the services with a semi-
colon.
Examples:
TCP_HELPDESK
TCP_HELPDESK;TCP_WIKI;TCP_FINANCE
In these examples, TCP_HELPDESK, TCP_WIKI and TCP_FINANCE are services defined on the
Standalone Sentry in the AppTunnel Configuration section.
Make sure that each listed service exactly matches, including case, the AppTunnel service name.

7. Click Save.

Specifying which certificate to use to authenticate the user to the enterprise
server

To specify the certificate for the user to authenticate to the enterprise server, you add a key-value pair to the
AppConnect app configuration, as described in the following table:

Specifying the AppTunnel services that use certificate authentication

MobileIronCore 11.1.0.0 AppConnectGuide| 111

Key Value

<service_name>_CERT

where <service_name> is one of the
AppTunnel services that the app uses,
which you listed in Specifying the
AppTunnel services that use certificate
authentication.

Example:

TCP_HELPDESK_CERT

NOTE: The key is case sensitive.Make
sure that the<service_name>
exactlymatches, including
case, theAppTunnel service
name.

The Certificate Enrollment setting for a certificate used
specifically for this AppTunnel service.

The configured Certificate Enrollment settings appear in the
value field’s dropdown list.

NoteTheFollowing:
• If you do not add a

<service_name>_CERT key for a service that uses
certificate authentication, the certificate specified for the key
ES_DEFAULT_CERT is used for that service.

• If you do not add the ES_DEFAULT_CERT key, the
certificate that authenticates the user to the Standalone
Sentry is used.

ES_DEFAULT_CERT

NOTE: The key is case sensitive.

The Certificate Enrollment setting for a default certificate used for
services that do not require a specific certificate.

The configured Certificate Enrollment appear in the value field’s
dropdown list.

TABLE 21. CERTIFICATE AUTHENTICATION KEY-VALUE PAIRS

To specify the certificate in the AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect app configuration for your secure app.
3. Click Edit.
4. In the App-specific Configurations section, click Add+ to add a key-value pair.
5. Enter a key named <service_name>_CERT for a certificate used specifically for the AppTunnel service, or

enter a key named ES_DEFAULT_CERT for a default certificate.
6. For the value, select the Certificate Enrollment that you configured for the certificate. The Certificate

Enrollment settings appear in the value field’s dropdown list.
7. Click Save.

AppTunnel and TLS protocol versions in Android secure apps
An AppConnect for Android app uses a TLS protocol version to communicate with:
• the Standalone Sentry for network requests using AppTunnel with HTTP/S tunneling or TCP tunneling
• enterprise servers that use certificate authentication using AppTunnel with TCP tunneling

TLSv1.2 is more secure. Therefore, MobileIron recommends that you configure your Standalone Sentry and
applicable enterprise servers to accept TLSv1.2.

The following table shows the TLS protocol version the app uses, which depends on:
• the version of the AppConnect wrapper

AppTunnel and TLS protocol versions in Android secure apps

MobileIronCore 11.1.0.0 AppConnectGuide| 112

• whether the app is configured for AppTunnel with HTTP/S tunneling or AppTunnel with TCP tunneling
• whether the app is configured with the applicable key-value pair.

IMPORTANT: Inall cases,make sure your Standalone Sentryandapplicableenterprise servers acceptone
of the TLSprotocol versions that theAppConnectwrapper requests.

TABLE 22. TLS PROTOCOL VERSIONS USED BYAPPCONNECTWRAPPER FOR TCP TUNNELING

Wrapper version Default TLS
protocol

Applicable key-value pair in the app's
AppConnect app configuration

8.0 through 8.4

HTTP/S Tunneling

TLSv1.2 falling back
to TLSv1.0 if
required by server

None

8.0 through 8.4

TCP Tunneling

(Generation 2 wrapper only)

TLSv1.0 MI_AC_USE_TLS1.2

Defaults to false

Include this key with the value set to true to make
the AppConnect wrapper in the app use TLSv1.2
instead of TLSv1.0.

Defaults to false

Include this key with the value set to true to make
the AppConnect wrapper in the app use TLSv1.2
instead of TLSv1.0.

8.5 through the most
recently released version as
supported by MobileIron

HTTP/S Tunneling and TCP
Tunneling

TLSv1.2 MI_AC_ENABLE_TLS_FALLBACK KVP

Defaults to false

Include this key with the value set to true if you
want the AppConnect wrapper in the app to
fallback to TLSv1.0 if the TLSv1.2 request is not
accepted by the server.

NOTE: TheAppConnectwrapper is theconsumerof the key-valuepair; theAppConnectapp itself
ignores it.

Related topics

l “Incoming SSL configuration” in theMobileIron Sentry Guide for MobileIron Core

l AppTunnel with TCP tunneling support for Android secure apps

l Certificate authentication using AppConnect with TCP tunneling for Android secure apps

Configuring the TLS protocol for AppTunnel

You can configure an AppConnect app to use a TLS protocol version other than the default versions by using the
key-value pairs described in AppTunnel and TLS protocol versions in Android secure apps .

Configuring the TLS protocol for AppTunnel

MobileIronCore 11.1.0.0 AppConnectGuide| 113

Procedure
1. In the MobileIron Core Admin Portal, go to Policies & Configs > Configurations.
2. Select the appropriate setting for the app.

For Docs@Work, select a Docs@Work setting.
For Web@Work, select a Web@Work setting.
For other secure apps, select an AppConnect app configuration.

3. Click Edit.
4. In the App-specific Configurations section (called Custom Configurations for Docs@Work and

Web@Work settings), click Add+.
5. For apps wrapped with AppConnect wrapper 8.0 through 8.4, add the keyMI_AC_USE_TLS1.2 with the

value true if you want to use only TLSv1.2 instead of TLSv1.0.
6. For apps wrapped with AppConnect wrapper 8.5 through the most recently released version as supported by

MobileIron, add the keyMI_AC_ENABLE_TLS_FALLBACK with the value true if you want to fallback to
using TLSv1.0 if TLSv1.2 is not accepted.

7. Click Save.

Lock, unlock, and retire impact on AppConnect for Android
Locking or retiring an Android device impacts access to AppConnect apps and their associated data. Also,
unlocking the AppConnect container impacts access to AppConnect apps.

Lock impact

When you lock a device from the MobileIron UEM, the device user is also locked out of AppConnect apps. The
user must reenter the secure apps passcode (or fingerprint) to access AppConnect apps. The Secure Apps
Manager prompts the user to reenter the passcode when the user launches:

l the Secure Apps Manager

l any AppConnect app

If the device also uses a device passcode, the user must first reenter the device passcode (or other identification,
such as a fingerprint).

Related topics

l For MobileIron Core deployments: “Lock” in the Core Device Management Guide for Android and
Android Enterprise Devices

Unlock the AppConnect container impact

When you unlock a device from the MobileIron UEM, the device passcode is removed. However, the
AppConnect passcode is not impacted. Unlocking the AppConnect container using the AppConnect Unlock
(Cloud) or the Unlock AppConnect Container (Core) command removes the secure apps passcode. The
Secure Apps Manager notifies the device user to create a new secure apps passcode when the user launches:

Lock, unlock, and retire impact on AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 114

l the MobileIron client (MobileIron Go or Mobile@Work)

l the Secure Apps Manager

l any AppConnect app

No data relating to AppConnect apps is removed when the AppConnect container is unlocked. Once the device
user creates a new secure apps passcode, the data becomes accessible again.

Issuing the AppConnect unlock command is useful in the following scenarios:

l You do not allow self-service AppConnect passcode recovery, and the device user has forgotten their
secure apps passcode.
See "Self-service AppConnect passcode recovery" in Configuring the AppConnect global policy.

l The device user has exceeded the maximum number of failed attempts for the secure apps passcode.

Related topics

l MobileIron Core deployments: “Unlock” in the Core Device Management Guide for Android and Android
Enterprise Devices

Retire impact

Retiring a device unregisters the device from MobileIron UEM.

Retiring a device impacts AppConnect apps as follows:

l The device user cannot open any AppConnect app or the Secure Apps Manager.

l Data that the AppConnect apps saved to device storage is deleted.

However, device users must manually uninstall the AppConnect apps and the Secure Apps Manager.

Retiring a device, therefore, retires the AppConnect apps on the device.

Related topics

l MobileIron Core deployments: "AppConnect app authorization" in Configuring AppConnect container
policies for more information about retiring AppConnect app

Lock Android AppConnect apps when screen is off
You can lock device users out of AppConnect apps when the device screen is turned due to either inactivity or
user action. When locked out of AppConnect apps, the device user must reenter the AppConnect passcode (or
fingerprint) to access AppConnect apps. Locking AppConnect apps when the screen is turned off provides
added security to the device.

Reasons for the screen turning off include:

Retire impact

MobileIronCore 11.1.0.0 AppConnectGuide| 115

l The device user manually turning off the screen, but not locking it.
When the screen is off but not locked, the device user can turn on the screen without entering any
credentials, such as the device password or fingerprint.

l The device user manually locking the screen.

l The device’s automatic lock timeout expires, as set in the device’s settings.

How you configure this feature depends on the version of Secure Apps Manager running on the device:

Secure Apps Manager version Configuration

Secure Apps Manager 8.3.0 through the
most recently released version as
supported by MobileIron

Select Lock AppConnect apps automatically when the
screen is off on the AppConnect global policy.

See Configuring the AppConnect global policy.

TABLE 23. LOCKINGANDROIDAPPCONNECT APPS WHEN SCREEN IS OFF

Copy/Paste for AppConnect for Android
You configure the copy/paste DLP policy for AppConnect for Android in the AppConnect Device configuration on
MobileIron Cloud or in the AppConnect global policy on MobileIron Core. You can choose no restrictions for
copy/paste, copy/paste only among AppConnect apps, or copy/paste only within each AppConnect app.

Each row of the following table summarizes whether copy/paste is allowed for a set of apps depending on the
copy/paste setting:

Copy/Paste setting in AppConnect global policy

No restrictions Among AppConnect
apps

Within an AppConnect
app

Between an
AppConnect app and
an unsecured app

Allowed Not allowed Not allowed

Between different
AppConnect apps

Allowed Allowed Not allowed

Within each
AppConnect app

Allowed Allowed Allowed

Between different
unsecured apps

Allowed Allowed Allowed

Within each unsecured
app

Allowed Allowed Allowed

TABLE 24. APPCONNECT GLOBAL POLICY COPY/PASTEDLP SETTING FORANDROID

Copy/Paste for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 116

Comparison with AppConnect for iOS copy/paste policy

The copy/paste policy behavior differs between AppConnect for Android and iOS. The following table highlights
some differences.

AppConnect for Android AppConnect for iOS

Symmetrical
versus one-
way

Copy/paste restrictions are symmetrical.

For example, if you restrict copy/paste to
among AppConnect apps, you cannot
copy out of an AppConnect app into a
unsecured app, and you cannot copy out
of an unsecured app into an AppConnect
app.

Copy/paste restrictions are one-way.

The iOS Copy/Paste To DLP setting prohibits
copying out of an AppConnect app, or
prohibits copying out of an AppConnect app
into an unsecured app. However, you can
copy from an unsecured app into an
AppConnect app.

Restriction
levels

The copy/paste policy provides these
restriction levels:

l No copy/paste restrictions

l Allow copy/paste only among
AppConnect apps.

l Allow copy/paste only within an
AppConnect app.

The iOS Copy/Paste To DLP setting provides
these restriction levels:

l Do not allow copying from an
AppConnect app.

l Allow copying from an AppConnect
app to any other app.

l Allow copying from an AppConnect
app only to other AppConnect apps.

Default setting
in AppConnect
global policy

The default copy/paste option is no
restrictions. This behavior is consistent
with the behavior of your AppConnect for
Android installed base.

The default option is to not allow the user to
copy data from AppConnect apps.

TABLE 25. COMPARISON WITHAPPCONNECT FOR IOS COPY/PASTE POLICY

Copying from non-AppConnect apps to AppConnect apps

When the Copy/Paste DLP setting is either Among AppConnect Apps orWithin an AppConnect app, you
can also allow device users to copy data from a non-AppConnect app to an AppConnect app. That is, the device
user can copy data into the AppConnect container, but cannot copy data out of the container.

To allow users to copy data from a non-AppConnect app to an AppConnect app, add the following key-value pair

l Key:MI_ALLOW_SECURE_COPY_INBOUND

l Value: true

You add the key-value pair:

l For MobileIron Core deployments, on the AppConnect app configuration for Secure Apps Manager.

Comparisonwith AppConnect for iOS copy/paste policy

MobileIronCore 11.1.0.0 AppConnectGuide| 117

Interaction with Exchange setting

The Exchange setting for a device has a copy/paste option for Email+ for Android. This option allows or disables
the use of copy/paste commands in these apps. The option applies to both the AppConnect-enabled version and
the unsecured version of these apps.

If the Exchange setting disables copy/paste commands, then no copy/paste use is possible in these apps. In this
case, the copy/paste DLP setting in the AppConnect global policy has no impact on these apps.

If the Exchange setting allows copy/paste commands, the copy/paste DLP setting in the AppConnect global
policy determines the extent of copy/paste use in these apps, just as it does with other apps.

The following table summarizes the copy/paste behavior Email+, depending on the Exchange setting and the
AppConnect global policy setting:

Copy/Paste DLP setting on AppConnect global policy

No restrictions Among AppConnect
apps

Within an AppConnect
app

Exchange setting
disables copy/paste

Not allowed for Email+. Not allowed for Email+. Not allowed for sEmail+.

Exchange setting
allows copy/paste

AllowedEmail+. Allowed among
AppConnect apps and
Email+

Allowed among
unsecured apps and
Email+

Allowed within Email+

Allowed among
unsecured appsand
Email+

TABLE 26. EXCHANGE POLICY ANDAPPCONNECT GLOBAL POLICY COPY/PASTE SETTING INTERACTION

Sharing content from AppConnect for Android apps to non-
AppConnect apps
By default, AppConnect apps cannot share content with non-AppConnect apps. However, you can allow content
sharing with non-AppConnect apps. When you allow it, when a device user selects content in an AppConnect
app to share, the user is presented with the list of all apps that can handle the content rather than just a list of
AppConnect apps that can handle the content. The content can be any of the following:

l text

l images

l video

Interactionwith Exchange setting

MobileIronCore 11.1.0.0 AppConnectGuide| 118

You cannot allow sharing only from particular AppConnect apps. Sharing is allowed from either all AppConnect
apps or not at all.

To allow content sharing with non-AppConnect apps, you add the key MI_AC_SHARE_CONTENT with the
value true.

You add the key-value pair:

l For MobileIron Core deployments, on the AppConnect app configuration for Secure Apps Manager.

This feature requires:

l Secure Apps Manager 8.3 through the most recently released version as supported by MobileIron

l Apps wrapped with wrapper version 8.3 through the most recently released version as supported by
MobileIron

Procedure

1. In the MobileIron Core Admin Portal, go to Policies & Configs > Configurations.

2. Select the AppConnect app configuration for the Secure Apps Manager.

3. Click Edit.

4. In the App-specific Configurations section, click Add+.

5. Add the keyMI_AC_SHARE_CONTENT with the value true.

6. Click Save.

Web-related DLP policies
The following describes the web-related DLP policies:

l Web DLP policy for browser launching

l DLP allowing links from non-AppConnect apps to open in Web@Work

l Web DLP versus Non-AppConnect apps can open URLs in Web@Work DLP

Web DLP policy for browser launching

You configure the Web DLP policy for browser launching in the AppConnect global policy. This Web DLP policy
specifies whether an unsecured browser can attempt to display a web page when a device user taps the page’s
URL in a secure app.

For example, consider a device user who is viewing an email in a secure email app, and the email body contains
a URL. The user taps on the URL to view the web page in a browser. The following table describes the behavior
for opening browsers from secure apps:

Web-relatedDLP policies

MobileIronCore 11.1.0.0 AppConnectGuide| 119

Web@Work installed Web@Work not installed

Web DLP policy:
allowed

The user is prompted to choose
betweenWeb@Work and available
unsecured browsers to attempt to
display the web page.

Unsecured browser attempts to display
the web page.

Web DLP policy: not
allowed

Web@Work displays the web page. Web page does not display. An error
message is displayed that indicates that
a secure browser is required but not
installed.

TABLE 27.WEBDLP POLICY BEHAVIOR WITH ANDWITHOUTWEB@WORK

NOTE: If theURLpoints toa server behind theenterprise’s firewall, anunsecuredbrowser’s attempt to
display thewebpage fails.

DLP allowing links from non-AppConnect apps to open in Web@Work

AppConnect supports a data loss prevention policy (DLP) that determines whether device users can choose to
view a web page in Web@Work when they tap a link (URL) in an app that is not AppConnect-enabled. You
specify whether to give device users that choice:

l For MobileIron Core deploymenments, on the AppConnect global policy in the data loss prevention
policies section for Android.

l For MobileIron Cloud deployments, on the AppConnect Device configuration for Android.

NOTE: This DLPalsodetermineswhether deviceusers canchooseAppConnect-enabledbrowsers
besidesWeb@Work.

Allowing links from non-AppConnect apps to open in Web@Work benefits device users who use:

l Apps that are not AppConnect-enabled, especially email apps.

l Web@Work for viewing enterprise web pages.

Without this feature, links to enterprise web pages in email apps that are not AppConnect-enabled do not give
Web@Work as a choice for viewing the web page. To view the web page, device users have to copy the link’s
URL from the email into Web@Work. Now, if you allow it, the user can tap on the link and choose to view the
resulting web page in Web@Work, which results in a simpler user experience.

Web DLP versus Non-AppConnect apps can open URLs in Web@Work DLP

The AppConnect global policy has two similar sounding data loss prevention policies for Android devices:

l Web

l Non-AppConnect apps can open URLs in Web@Work

The following table compares them:

DLP allowing links from non-AppConnect apps to open inWeb@Work

MobileIronCore 11.1.0.0 AppConnectGuide| 120

If you allowWeb... You can tap on a link in
an AppConnect-
enabled app...

and open the web page
in an unsecured
browser.

Therefore, this option is
about data leaving the
AppConnect container.

If you allow
Non-AppConnect apps
can open URLs in
Web@Work....

You can tap on a link in
an app that is not
AppConnect-
enabled....

and open the web page
in Web@Work.

Therefore, this option is
about data coming into
the AppConnect
container.

TABLE 28.WEBDLP VERSUS NON-APPCONNECT APPS CAN OPEN URLS INWEB@WORKDLP

You can allow or not allow these two options in any combination.

DLP policy for media player access
You configure the DLP policy for media player access on the MobileIron UEM. You can choose whether to allow
AppConnect apps to streammedia to media players on the device.

You configure the setting in the following:

l AppConnect global policy on MobileIron Core.

l AppConnect Device configuration for Android on MobileIron Cloud.

Consider these scenarios:

l An AppConnect email app has an email with a voice recording attached. The email app can play the
recording by using a media player on the device.

l An AppConnect app contains video assets for executive communication and training.

If you allow this capability, AppConnect apps can stream the following file types to media players:

l MP3 audio files

l WAV audio files

l MP4 video files

Media file requirements

AppConnect apps optimize media file downloading, encryption, and decryption, while still keeping the data
secure in the AppConnect container. No encrypted copy of the media file is temporarily stored on the device’s
SD card.

This optimization supports streaming larger files, where the supported file size depends on:

l the device specifications

l the Android version on the device

DLP policy formedia player access

MobileIronCore 11.1.0.0 AppConnectGuide| 121

l the apps running concurrently on the device

IMPORTANT: MobileIron recommends that secureappsdevelopers perform tests toprofile app
performancebasedon thedevice,Android version, concurrently runningapps, andmedia
file size.

Device-initiated security controls for AppConnect for Android
You can protect corporate data on devices even when the devices are off-line. If the device is compromised
(rooted) or USB debugging is enabled, Mobile@Work can retire all secure apps on the device. Retiring secure
apps means that they become unauthorized (blocked), and their data is deleted (wiped).

The detection of these two security violations occurs on the device. Furthermore, the decision to retire secure
apps because of these violations also occurs on the device. Connectivity with MobileIron Core is not required for
these security controls.

Configure the actions on the AppConnect global policy

The AppConnect global policy provides settings to specify whether you want to retire all secure apps when the
device is compromised or USB debugging is enabled. However, after the device has checked in and received
the AppConnect global policy, no further interaction is required from Core. Mobile@Work detects the non-
compliant situation and retires the secure apps.

Because Mobile@Work acts independently of Core when these security violations occur, retiring secure apps
occurs before any actions specified on other policies such as the security policy.

To configure that you want the device to detect these security violations and then retire secure apps:

1. In the Admin Portal, go to Policies & Configs > Policies.

2. Select the AppConnect global policy that is applied to the devices of interest.

3. Click Edit.

4. Scroll to the section AppConnect Security Controls on Device.

5. In the Android section, selectWipe AppConnect Data for Device Compromised and USB Debug
Enabled, according to your security requirements.

6. Click Save.

Interaction with the Exchange setting

These compliance actions retire all secure apps, which can include email clients. However, the device user can
still use lower priority email clients, such as the native Samsung email client, if the device’s Exchange setting
allows them.

Device-initiated security controls for AppConnect for Android

MobileIronCore 11.1.0.0 AppConnectGuide| 122

Therefore, if you do not want to allow any email access when the device is compromised or USB debugging is
enabled, modify the Exchange setting:

1. In the Admin Portal, go to Policies & Configs > Configurations.

2. Select the Exchange setting that is applied to the devices of interest.

3. Click Edit.

4. In the Android section, modify the Exchange App Priority so that only AppConnect-enabled email
clients are selected.

1. Click Save.

Custom keyboards in AppConnect apps
Device users often install and use third-party custom keyboards rather than the pre-installed keyboards on a
device. When used in AppConnect apps, custom keyboards have the potential to leak sensitive data. Therefore,
you can:

l Disable the use of all custom keyboards in AppConnect apps.
This action means that if any custom keyboard is enabled on the device, even if it is not currently the
default keyboard, the device user cannot access AppConnect apps.

l Disable the use of all custom keyboards in AppConnect apps except for the keyboards that you specify
in a whitelist.
This action means that the device user can access AppConnect apps only if the custom keyboards on
the whitelist and the pre-installed keyboards are enabled. If any other custom keyboard is enabled on the
device, even if it is not currently the default keyboard, the device user cannot access AppConnect apps.

To disable custom keyboards and set up a whitelist, add the following key-value pair

l Key: MI_DISABLE_CUSTOM_KEYBOARD

l Value: true

To allow only certain custom keyboards, add the following key-value pair:

l Key: MI_CUSTOM_KEYBOARD_WHITELIST

l Value: Package names of the whitelisted keyboard apps, separated by semi-colons.

Example
com.touchtype.swiftkey;com.google.android.inputmethod.latin;com.syntellia.fleksy.keyboard

You add the key-value pair:

l For MobileIron Core deployments, on the AppConnect app configuration for Secure Apps Manager.

Custom keyboards in AppConnect apps

MobileIronCore 11.1.0.0 AppConnectGuide| 123

NoteTheFollowing:

l These actions have no impact on keyboard use in the Secure AppsManager.

l When using this feature, even when the default keyboard is not one of the unallowed keyboards, if any non-
whitelisted, custom keyboards are enabled, the device user cannot access AppConnect apps. Therefore,
instruct your device users to disable non-whitelisted custom keyboards to access AppConnect apps.
In the device’sSettings, in for exampleGeneral Management > Language and input, device users can:
o View the pre-installed keyboards and the custom keyboards that they have installed.

o Manage the custom keyboards, which involves disabling or enabling them.

o Choose the default keyboard from the set of enabled custom keyboards and pre-installed keyboards.

App whitelist
Administrators can configure an app whitelist to control if links in an AppConnect app can be opened in non-
AppConnect apps. The combination of apps and domains configured in the whitelist determine:

l which links can be opened in non-AppConnect apps.

l the non-AppConnect apps presented to the Android device user in which to open the link.

Configuring the whitelist allows device users to choose a non-AppConnect app, such as WebEx or
GoToMeeting, to open from a link in an AppConnect app such as Email+.

NOTE: Thewhitelist is ignored if theWeboption in theAppConnectGlobal policy is enabled. If theWeb
option is enabled, deviceusers canopena link inanynon-AppConnectbrowser on thedevice.

The value in the whitelist is a combination of the application ID and domain and defines which domains can be
opened and the app in which to open the domain. When device users click on a link in an AppConnect app such
as Email+, the device user can choose from the following apps:

l All AppConnect apps installed on the device that can open the link.

l If a whitelist is configured, non-AppConnect apps on the device that can open the link.
The non-AppConnect apps that are presented depends on whether the domain in the link is configured
in the whitelist and if the application ID for a non-AppConnect app is configured in the whiltelist.

Key-value pair for the app whitelist

You create the app whitelist by adding a key-value pair in the AppConnect app configuration for
Secure Apps Manager. To configure the whitelist, add the following key: MI_AC_ALLOW_OPEN. The value is a
matching rule in any of the following formats:

l domain: Specifies the domain that can be opened in non-AppConnect apps. The domain can include the
wildcard character *.

Appwhitelist

MobileIronCore 11.1.0.0 AppConnectGuide| 124

Example :
o Wildcard domain: *.webex.com : Any URL whose host ends with webex.com can be opened in any

compatible non-AppConnect app.
o Multiple domains: *.webex.com webex.com: Any URL whose host ends with webex.com and

WebEx links can be opened in a compatible non-AppConnect app.

l domain in applicationID: Specifies the non-AppConnect app in which the domain can be opened.
Example :
o Wildcard domain in an application ID: *webex.com in com.cisco.webex.meetings: Any URL whose

host ends with webex.com can be opened in the WebEx app.
o Multiple domains in an application ID: *.webex.com webex.com in com.cisco.webex.meetings: Any

URL whose host ends with webex.com andWebEx links can be opened in the WebEx app.

l in applicationID: Specifies the non-AppConnect app in which any link can be opened.
Example :
o Application ID: in com.cisco.webex.meetings: Any URL can be opened in the WebEx app.

The following describes the characteristics of the matching rules:

l The value can configure multiple rules.

l Each rule is separated by a semi colon.

l Each rule can have several domain patterns followed by an optional keyword in.

l The application IDs are listed after the in keyword.

l If an application ID is not configured, device users see all non-AppConnect apps on the device that can
open the link.

l If the rule contains only an application ID, the app is available for selection for any compatible link.

App whitelist examples

The following table provides examples of the value for various scenarios.

Example scenario Value

AllowWebEx links to open in the native WebEx
app

*.webex.com webex.com in com.cisco.webex.meetings

AllowWebEx links to open in any non-
AppConnect browser and in the WebEx app

*.webex.com webex.com

Allow any compatible links to open in the native
WebEx app

in com.cisco.webex.meetings

AllowWebEx links to open in the native WebEx
app and GoToMeeting links to open in Chrome

*.webex.com webex.com in com.cisco.webex.meetings
; www.gotomeeting.com in com.android.chrome

TABLE 29. EXAMPLES OF VARIOUS SCENARIOS

Appwhitelist examples

MobileIronCore 11.1.0.0 AppConnectGuide| 125

How the app whitelist is evaluated
The whitelist is evaluated each time a user opens a link from an AppConnect app. When users open a link in an
AppConnect app:

1. The request is redirected to Secure Apps Manager.

2. The Secure Apps Manager checks whether theWeb option in the Global AppConnect policy is enabled.

3. If theWeb option is enabled, users can open the link in a non-AppConnect browser and the whitelist is
ignored.

4. If theWeb option is not enabled, Secure Apps Manager checks the MI_AC_ALLOW_OPEN key value.

5. The Secure Apps Manager builds a list of external apps that are able to view the link.

6. The Secure Apps Manager filters out the non-AppConnect apps that are not in the whitelist.

NOTE: If anapplication ID is not configured, SecureAppsManagerdoes not filter out anynon-
AppConnectapp.

7. The device user can select from the AppConnect apps and non-AppConnect apps in the whitelist that
can open the link.

NOTE: Whitelist appsareavailable for selection todeviceusers only if thedomainpattern in the link
matchesexactlywith thedomainpatternconfigured in the key-valuepair.

Configuring an app whitelist

You configure the app whitelist in the AppConnect app configuration for Secure Apps Manager.

Procedure

1. In the MobileIron Core Admin Portal, go to Policies & Configs > Configurations.

2. Select the AppConnect app configuration for the Secure Apps Manager.

3. Click Edit.

4. In the App-specific Configurations section, click Add+.
FIGURE 6. ADD KEY-VALUE PAIR TOAPP-SPECIFIC CONFIGURATION

5. Add the keyMI_AC_ALLOW_OPEN.

How the appwhitelist is evaluated

MobileIronCore 11.1.0.0 AppConnectGuide| 126

6. Enter a value for the key.

7. Click Save.

Related topics
For information about the formats supported for the value, see App whitelist

Secure File Manager features
The Secure File Manager allows a user to save, browse, and manage files in the secure container. For example,
the user can browse saved email attachments or SharePoint documents. The user can also save documents
from any other AppConnect app.

The secure File Manager app also supports the following:
• Unzipping files from a secure app

When the device user taps a ZIP file in a secure app, such as when a ZIP file is an email attachment, the File
Manager app opens. The files in the ZIP file are stored in the folder sdcard/UnzippedFiles. If the device user
subsequently unzips a ZIP file containing files with the same name as previously stored files, the files are
overwritten.

• File download using the Android DownloadManager API
Some secure apps use the Android DownloadManager API to download files securely to the device. For
such downloads to be successful, the FileManager that MobileIron provides must also be installed on the
device. The FileManager ensures downloaded files remain in the secure container. Only secure apps in the
container can access the files.

• Opening HTML files
• Opening image files (file types supported by Android)

Secure folder access
AppConnect apps have read-only access to the device’s system folder. The system folder contains, for example,
ringtone files and font files. System folder access means that:

l An AppConnect app can allow a device user to select one of the system folder’s ringtones.

l An AppConnect app can access the system folder’s font files.

l The secure File Manager can display the system folder.

About allowing a secure app to ignore the auto-lock time
You can specify that a particular secure app is allowed to ignore the auto-lock time.

The auto-lock time specifies the length of a period of inactivity. After this period of inactivity, the device user is
prompted to reenter his secure apps passcode to continue accessing secure apps.You configure the auto-lock
time:

Secure FileManager features

MobileIronCore 11.1.0.0 AppConnectGuide| 127

l MobileIron Core deployments: on the AppConnect global policy.

For some apps, staying on a screen is critical. For example, in a navigation app, the device user taps the screen
only infrequently, but the screen must continue displaying. Therefore, the app is designed to ignore the Android
screen timeout setting, which turns off the screen after a period of time.

Such apps also require that when the auto-lock time expires, the app’s screen continues displaying. The normal
behavior of having the Secure Apps Manager prompt for the secure apps passcode is not compatible with the
app’s functionality.

By allowing an app to ignore the auto-lock time for these critical screens, you improve the app’s user experience.
The app’s critical screens are not interrupted by prompting the user to reenter his secure apps passcode.

You specify that a secure app is allowed to ignore the configured auto-lock time by adding the following key-
value pair in the app’s AppConnect app configuration:

l Key: AC_IGNORE_AUTO_LOCK_ALLOWED

l Value: true.

App requirements to ignore the auto-lock time

Only apps that use particular Android APIs to keep a screen active can ignore the auto-lock time. The app
developer or app vendor will inform you if this feature is possible and important for the app.

NOTE: Most appsdonot need to, and shouldnot, ignore theauto-lock time. Even if anappdeveloper
requests that youallow theapp to ignore theauto-lock time, thechoice todo so is yours. Your
choicedependsonwhether your requirements for forcing theuser to reenter the secureapps
passcodeoutweigh your requirements for theapp tohaveanuninterrupted screen.

What the device user sees when an app ignores the auto-lock time

Critical screens of the app are not interrupted by prompting the user to reenter his secure apps passcode.

Although the critical screen is not interrupted, note that the secure apps container is still locked when the auto-
lock time expires.

For example, consider these scenarios:

l The device user leaves the app by selecting the Home button.
If the auto-lock time had expired while the app was displayed, the device user is prompted for the secure
apps passcode when he relaunches the app or any other secure app.

l The device user changes from an app screen that requires continuous display to another app screen that
does not require it.

App requirements to ignore the auto-lock time

MobileIronCore 11.1.0.0 AppConnectGuide| 128

If the auto-lock time had expired while the first screen was displayed, the device user is prompted for the
secure apps passcode when he changes screens.

Situations that wipe Android AppConnect app data
When an AppConnect app is retired, it becomes unauthorized (blocked), and its data is deleted (wiped). The
following situations retire an AppConnect app:

l You disable AppConnect in the AppConnect global policy for the device.

l The device user uninstalls the MobileIron UEM client (MobileIron Go or Mobile@Work) or the Secure
Apps Manager on the device

l You retire the device.

l The number of days specified in the “Wipe AppConnect Data After” field of the device’s AppConnect
global policy has passed.

l You remove the Secure Apps Manager in Apps > App Catalog.

l You remove the label for a device from the Secure Apps Manager in Apps > App Catalog.

l You quarantine the device due to a compliance action.

Accessible Android apps to preserve the user experience
AppConnect apps can share data only with other AppConnect apps.

However, some exceptions exist to this rule to:

l Preserve the device user experience.

l Enable the use of system services, such as making voice calls.

The exceptions are:

l Maps
Tapping a meeting location in an AppConnect email app launches a maps app.

l Phone calls
Tapping a phone number in any AppConnect app will make a phone call.

l SMS
An AppConnect app can allow the device user to send an SMS to a corporate contact.

l Browsers
Tapping a link in an AppConnect app launches a browser. However, you can limit the behavior to
opening the link in Web@Work by using a data loss prevention policy.

Situations that wipeAndroid AppConnect appdata

MobileIronCore 11.1.0.0 AppConnectGuide| 129

Secure Apps Manager Android permissions
When the device user installs a version of the Secure Apps Manager prior to version 8.0, the device user is
presented a list of permissions that the Secure Apps Manager requires. The device user then chooses whether
or not to continue the installation.

Secure Apps Manager 8.0 through the most recently released version as supported by MobileIron behaves
differently. Specifically, on devices running Android 6.0 through the most recently released version as supported
by MobileIron, the device user is not presented a list of permissions when installing the Secure Apps Manager.
Instead, the device user is asked to grant certain permissions when the Secure Apps Manager runs. The
permissions are for accessing:

l SD card storage

l the camera

l the phone

l contacts

NoteTheFollowing:

l On Android versions prior to Android 6.0, regardless of the Secure Apps Manager version, the device
user is presented the list of permissions during installation.The device user then chooses whether or not
to continue the installation.

l On Samsung devices, regardless of the Secure Apps Manager version, the device user is not presented
with a list of permissions at any time (installation time or run-time). The Secure Apps Manager can
access the capabilities without asking the device user for permission.

The following table provides more information about each permission request:

Permission Reason needed Requested at these times Behavior if not granted

Storage To securely store
AppConnect-
related data on the
SD card.

When the device user first launches the
Secure Apps Manager

The device user cannot
login to secure apps.

Camera A secure app
wants to access
the camera.

When both of the following are true:
• A secure app requests access to

the camera
• The device user has not yet granted

access to the camera for secure
apps.

The secure app cannot
access the camera.

Phone A secure app
wants to access
the phone.

When both of the following are true:
• A secure app requests access to

the phone.

The secure app cannot
access the phone.

TABLE 30. SECUREAPPSMANAGER PERMISSION REQUESTS

Secure AppsManager Android permissions

MobileIronCore 11.1.0.0 AppConnectGuide| 130

Permission Reason needed Requested at these times Behavior if not granted

• The device user has not yet granted
access to the phone for secure
apps.

Contacts A secure app
wants to access
the device’s
contacts.

When both of the following are true:
• A secure app requests access to

contacts.
• The device user has not yet granted

access to contacts for secure apps.

The secure app cannot
access contacts.

TABLE 30. SECUREAPPSMANAGER PERMISSION REQUESTS (CONT.)

Disabling analytics data collection for AppConnect for Android
MobileIron collects data to analyze the use of AppConnect for Android apps to help provide customer support,
perform bug fixes, improve product functionality and reliability and fulfill obligations to our customers. The data
collected involving AppConnect apps are the MobileIron key-value pairs set in MobileIron Core in the
AppConnect app configuration of AppConnect apps or the Secure Apps Manager.

For a complete list of these key-value pairs, see AppConnect for Android key-value pairs.

You can disable this analytics data collection by adding the following key-value pair:

l Key: MI_AC_DISABLE_ANALYTICS

l Value: true

You add the key-value pair:

l For MobileIron Core deployments, on the AppConnect app configuration for Secure Apps Manager.

.

Analytics are collected only if the device is using Secure Apps Manager 8.3 through the most recently released
version as supported by MobileIron.

Procedure

1. In the MobileIron Core Admin Portal, go to Policies & Configs > Configurations.

2. Select the AppConnect app configuration for the Secure Apps Manager.

3. Click Edit.

4. In the App-specific Configurations section, click Add+.

5. Add the keyMI_AC_DISABLE_ANALYTICS with the value true.

6. Click Save.

Disabling analytics data collection for AppConnect for Android

5

MobileIronCore 11.1.0.0 AppConnectGuide| 131

Using AppConnect for iOS

• When an iOS device user can use AppConnect for iOS
• AppConnect apps that MobileIron provides for iOS
• MobileIron UEM client for iOS and AppConnect apps
• Dual-mode apps
• Open-In data loss prevention policy details
• Custom keyboard control
• Screen blurring
• Dictation with the native keyboard is not allowed for wrapped apps
• Heightened security for AppConnect apps using the Secure Enclave
• Situations that wipe AppConnect for iOS app data
• Device-initiated (local) compliance for iOS jailbreak detection
• Touch ID or Face ID for accessing secure apps
• Certificate pinning for AppConnect apps
• Certificate authentication from AppConnect apps to enterprise services
• Impact to tunneling when using a global HTTP proxy

Open-In data loss prevention policy details
l Open In behavior in wrapped apps versus SDK apps

l iOS native email use and the Open In DLP policy

l AirDrop use and the Open In DLP policy

l App extension use and the Open In DLP policy

l Whitelisting services integrated into iOS in the Open In DLP policy

l Overriding the Open In policy for an app

Related topics

l Configuring the AppConnect global policy

l Configuring AppConnect container policies

Open In behavior in wrapped apps versus SDK apps

You select an app’s Open In data loss prevention policy:

l MobileIron Core: on the AppConnect global policy or the AppConnect container policy.

MobileIronCore 11.1.0.0 AppConnectGuide| 132

When Open In is allowed, an AppConnect app’s Open In behavior is the same as the behavior of a regular, non-
AppConnect app. However, if Open In is not allowed to some or all apps, the AppConnect app’s behavior
depends on the following:

l whether the AppConnect app requesting Open In is a wrapped app or an SDK app

l the iOS version on which a wrapped app is running

l the AppConnect for iOS SDK version of an SDK app

Open In Not allowed Open In is allowed only to AppConnect apps
or
Open In only to apps on whitelist

Wrapped apps

Wrapped apps
running on iOS
versions prior
to iOS 11

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
No target apps are displayed.

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
Only AppConnect apps or apps in the whitelist are
displayed as possible target apps.

Wrapped apps
running iOS 11
through the
most recently
released
version as
supported by
MobileIron

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
iOS displays all apps that support the
document type as possible target apps.
Because of the AppConnect library’s
enforcement, if the user taps on any of
the apps, nothing happens.

Open In policy enforced by:
AppConnect wrapper in the app.

What if the app initiates Open In?
iOS displays all apps that support the document type
as possible target apps. Because of the AppConnect
library’s enforcement, if the user taps on an app that is
not allowed, nothing happens

SDK apps

TABLE 31. OPEN IN BEHAVIOR IN WRAPPED APPS VERSUS SDK APPS

Open In behavior in wrappedapps versus SDK apps

MobileIronCore 11.1.0.0 AppConnectGuide| 133

Open In Not allowed Open In is allowed only to AppConnect apps
or
Open In only to apps on whitelist

Apps built with
AppConnect 3.0
for iOS and
earlier

Open In policy enforced by:

The app.
App behavior can vary depending on
the app’s implementation.

Open In policy enforced by:
The app.
App behavior can vary depending on the app’s
implementation.

Apps built with
AppConnect 3.1
through 3.1.3
for iOS

Open In policy enforced by: The
AppConnect library, contained in the
AppConnect app.

App is responsible for:
Disabling user interfaces, such a menu
items, that provide the Open In
capability.

What if the app initiates Open In
anyway?
iOS displays all apps that support the
document type as possible target apps.
Because of the AppConnect library’s
enforcement, if the user taps on any of
the apps, that target app cannot open
the file. Target app error handling varies.
For example, some apps display an error
pop-up.

Open In policy enforced by: The AppConnect library,
contained in the AppConnect app.

App is responsible for:
Enabling user interfaces, such as menu items, that
provide the Open In capability.

What happens when the app initiates Open In?
iOS displays all apps that support the document type,
including the apps that are not allowed by the Open In
policy. Because of the AppConnect library’s
enforcement, if the user taps on an app that is not
allowed, that target app cannot open the file. Target
app error handling varies. For example, some apps
display an error pop-up.

Apps built with
AppConnect 3.5
for iOS through
the most
recently
released
version as
supported by
MobileIron

Open In policy enforced by: The
AppConnect library, contained in the
AppConnect app.

App is responsible for:
Disabling user interfaces, such a menu
items, that provide the Open In
capability.

What if the app initiates Open In
anyway?
iOS displays all apps that support the
document type as possible target apps.
Because of the AppConnect library’s
enforcement, if the user taps on any of
the apps, that target app cannot open
the file. In this case:
• Target app error handling varies. For

example, some target apps display

Open In policy enforced by: The AppConnect library,
contained in the AppConnect app.

App is responsible for:
Enabling user interfaces, such as menu items, that
provide the Open In capability.

What happens when the app initiates Open In?
iOS displays all apps that support the document type,
including the apps that are not allowed by the Open In
policy. Because of the AppConnect library’s
enforcement, if the user taps on an app that is not
allowed, that target app cannot open the file. In this
case:
• Target app error handling varies. For example,

some target apps display an error pop-up.
• Error handling also varies for the SDK app that

initiated the Open In. Some apps display an error
message.

TABLE 31. OPEN IN BEHAVIOR IN WRAPPED APPS VERSUS SDK APPS (CONT.)

Open In behavior in wrappedapps versus SDK apps

MobileIronCore 11.1.0.0 AppConnectGuide| 134

Open In Not allowed Open In is allowed only to AppConnect apps
or
Open In only to apps on whitelist

an error pop-up.
• Error handling also varies for the

SDK app that initiated the Open In.
Some apps display an error
message.

Special case for iOS native email app:
For apps using AppConnect 4.0 for iOS through the
most recently released version as supported by
MobileIron, if the user taps to launch the native email
app, but it is not in the whitelist, Email+ for iOS is
launched if it is installed on the device.

TABLE 31. OPEN IN BEHAVIOR IN WRAPPED APPS VERSUS SDK APPS (CONT.)

iOS native email use and the Open In DLP policy

Apps have various ways to launch the iOS native email app, including:

l using the iOS Open In menu in which the native email app is an option

l specifically launching the iOS native email app

l displaying a standard native email interface inside the app

l requesting to launch any app that handles email

The first way, using the iOS Open In menu, is part of the handling described in Open In behavior in wrapped
apps versus SDK apps.

The other ways of invoking the iOS native email app are also impacted by the Open In Data Loss Prevention
(DLP) policy. The impact depends on whether the AppConnect app uses:

l Open In and native email with an AppConnect version prior to AppConnect 4.0 for iOS

l Open In and native email with AppConnect 4.0 for iOS through most recently released version

If you want to include iOS native email in the Open In whitelist, seePutting iOS native email into the Open In
Whitelist .

Open In and native email with an AppConnect version prior to AppConnect 4.0 for iOS

For apps using AppConnect versions prior to AppConnect 4.0 for iOS, the Open In DLP policy does not impact
launching the iOS native email app from an AppConnect app. That is, launching the iOS native email app is
always allowed. However, one exception exists to this rule. Launching the native email app is not allowed when:

l the Open In policy specifies a whitelist, and

l the iOS native email app is not in the whitelist

Therefore, even when you set the Open In policy to, for example, not allowed, launching the iOS native email
app is allowed when the device user taps the app to:

iOS native email use and theOpen In DLP policy

MobileIronCore 11.1.0.0 AppConnectGuide| 135

l specifically launch the iOS native email app

l display a standard native email interface inside the app

l launch any app that handles email

Open In and native email with AppConnect 4.0 for iOS through most recently released version

For apps using AppConnect 4.0 for iOS through the most recently released version as supported by MobileIron,
the Open In DLP policy impacts launching the iOS native email app from an AppConnect app. If Open In is
allowed for all apps, then iOS native email can be launched. However, the behavior for the other Open In policy
settings is described in the following table:

Device user action Open In Not
Allowed

Open In is
allowed only to
AppConnect
apps

Open In is
allowed only to
whitelisted apps,
and iOS native
email is NOT in
the whitelist

Open In is
allowed only to
whitelisted apps,
and iOS native
email is in the
whitelist

Taps to specifically
launch the iOS native
email app

iOS native email is
not launched.

iOS native email is
not launched.

iOS native email is
not launched.

iOS native email is
launched.

Taps to display a
standard native email
interface inside the
app

iOS native email is
not launched.

iOS native email is
not launched.

iOS native email is
not launched.

iOS native email is
launched.

Taps to launch any
app that handles
email

iOS native email is
not launched.

iOS native email is
not launched.

Email+ for iOS is
launched if it is
installed on the
device.

iOS native email is
not launched.

Email+ for iOS is
launched if it is
installed on the
device.

iOS native email is
launched.

TABLE 32. OPEN IN POLICY AND IOS NATIVE EMAIL

For apps built or wrapped with AppConnect 4.1 through the most recently released version supported by
MobileIron, you can override the behavior for the scenario when the user taps to launch any app that handles
email. Specifically, if the Open In policy blocks launching the iOS native email app in this scenario, you can allow
iOS native email to launch. To allow iOS native email to launch, add the key MI_AC_DISABLE_SCHEME_
BLOCKING with the value true to the app’s AppConnect app configuration.

AppConnect apps can also override the Open In policy for this scenario, allowing the iOS native email app to
launch. Contact the application vendor or developer to find out if the app overrides the policy.

Open In and native email with AppConnect 4.0 for iOS throughmost recently released version

MobileIronCore 11.1.0.0 AppConnectGuide| 136

Putting iOS native email into the Open In Whitelist

To put the native iOS mail app is in the whitelist, put both of these bundle IDs in the whitelist:

l com.apple.UIKit.activity.Mail

l com.apple.mobilemail

However, include iOS native email in a whitelist for an AppConnect app only if you understand the
potential impact of leaking secure data.

AirDrop use and the Open In DLP policy

The Open In DLP policy impacts the use of AirDrop as follows:

l A wrapped AppConnect app’s use of AirDrop is behaves according to the Open In DLP policy.

l An AppConnect app built with the AppConnect 3.1 for iOS SDK through the most recently supported
version behaves according to the Open In policy.

l An AppConnect app built with AppConnect 3.0 for iOS SDK or earlier is not impacted by the Open In
policy. Regardless of how you set the policy, AirDrop is allowed.

App extension use and the Open In DLP policy

For apps using AppConnect 4.0 for iOS through the most recently released version as supported by MobileIron,
the Open in data loss protection policy includes restricting access to the iOS extensions that apps provide.
Specifically:

Open In DLP for host
app (the app using
the extension)

Extension behavior

All apps allowed The host app can use any app’s extension for Open In.

Only AppConnect apps
allowed

The host app can use only extensions provided by AppConnect apps for Open In.

Whitelist The host app can use only extensions of apps in the whitelist for Open In.

Whitelisting services integrated into iOS in the Open In DLP policy

When you whitelist apps for the Open In DLP setting, you provide the bundle ID of each whitelisted app in the
AppConnect global policy or AppConnect container policy. Although the bundle ID of apps in the Apple App
Store or your own in-house apps are readily available, the bundle IDs for services integrated into iOS are not well
known.

Putting iOS native email into theOpen InWhitelist

MobileIronCore 11.1.0.0 AppConnectGuide| 137

The following list gives the bundle IDs of some common services integrated into iOS. However, include them
in a whitelist for an AppConnect app only if you understand the potential impact of leaking secure
data.

l com.apple.UIKit.activity.PostToFacebook

l com.apple.UIKit.activity.PostToTwitter

l com.apple.UIKit.activity.PostToWeibo

l com.apple.UIKit.activity.AssignToContact

l com.apple.UIKit.activity.AddToReadingList

l com.apple.UIKit.activity.Quicklook

l com.apple.UIKit.activity.Message

Overriding the Open In policy for an app

In the AppConnect global policy, you can specify that you want to authorize AppConnect apps that do not have
an AppConnect container policy. When an app does not have an AppConnect container policy, the data loss
prevention (DLP) settings in the AppConnect global policy, including the Open In setting are applied to the app.

If you do not want the app to have the same Open In setting as the AppConnect global policy, you have two
choices to override the setting:

l Create an AppConnect container policy for the app and label it appropriately. In it, specify the Open In
and other DLP settings that you want for the app. These DLP settings override the settings in the
AppConnect global policy.

l Create or modify an AppConnect app configuration for the app, and add this key-value pair to its App-
specific Configurations section:
Key: MI_AC_DISABLE_OPEN_IN_ENFORCEMENT
Value: YES
This key-value pair disables Open In enforcement in the AppConnect library of an AppConnect app,
which means that Open In is allowed to all apps.

In both cases, make sure you understand the potential impact of leaking secure data. This leak can
happen:

l directly by an app for which you have configured one of the override choices.

l indirectly by an app that shares a document with an app for which you have configured one of the
override choices.

For the indirect case, consider this scenario:

l The AppConnect global policy authorizes AppConnect apps that do not have an AppConnect container
policy.

l The AppConnect global policy specifies Open In only to AppConnect apps.

l AppConnect App 1 and AppConnect App 2 do not have AppConnect container policies.

Overriding theOpen In policy for an app

MobileIronCore 11.1.0.0 AppConnectGuide| 138

l You add the key MI_AC_DISABLE_OPEN_IN_ENFORCEMENT with the value YES to the AppConnect
app configuration of App 2.

In this case, App 1 can share a document with App 2, and App 2 can share the document with non-AppConnect
apps. Therefore, App 1 can indirectly share secure data with unsecured apps.

Open From data loss prevention policy
You select the Open From data loss prevention policy for an AppConnect app:

l MobileIron Core: in the AppConnect global policy or the AppConnect container policy.

The Open From behavior is the same for AppConnect wrapped or SDK apps. AppConnect version 4.3 through
the latest version as supported by MobileIron is required for the Open From feature.

Related topics

l Configuring the AppConnect global policy

l Configuring AppConnect container policies

Custom keyboard control
Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. This behavior has potential for harmful data loss.

To allow users to use custom keyboards, add the following key-value pair

l Key: MI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS

l Value: true

You add the key-value pair:

l For MobileIron Core deployments, on the AppConnect app configuration for the app..

When the key’s value is true, the AppConnect app is allowed to use custom keyboards. If the value is false, the
app is not allowed to use custom keyboards.

If you do not include the key-value pair for the app, the AppConnect app is allowed to use custom keyboards.
However, when the key is not present, an AppConnect app can override this behavior and not allow some or all
custom keyboards. Check the app’s documentation for its behavior regarding custom keyboards.

The following table summarizes whether an AppConnect app is allowed to use custom keyboards. The behavior
depends on:

Open Fromdata loss prevention policy

MobileIronCore 11.1.0.0 AppConnectGuide| 139

l whether the app is a wrapped app or SDK app

l whether the release of AppConnect that the app uses supports the key MI_AC_IOS_ALLOW_
CUSTOM_KEYBOARDS.

l whether you provide the key-value pair MI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS

Key not provided Key provided and
value is true

Key provided and
value is false

Wrapped apps

Wrapped with
AppConnect 4.0

Custom keyboard use is
allowed, but the app can
override the behavior and not
allow some or all custom
keyboards.

Custom keyboard use
is allowed

Custom keyboard use
is not allowed

Wrapped with versions
of AppConnect prior to
AppConnect 4.0

Custom keyboard use is not
allowed

Key is not applicable.

Custom keyboard use
is not allowed

Key is not applicable.

Custom keyboard use
is not allowed

SDK apps

Built with AppConnect
4.0

Custom keyboard use is
allowed, but the app can
override the behavior and not
allow some or all custom
keyboards.

Custom keyboard use
is allowed.

Custom keyboard use
isnot allowed

Built with versions of
AppConnect prior to
AppConnect 4.0

The app determines whether
custom keyboard use is
allowed.

Key is not applicable.

The app determines
whether custom
keyboard use is
allowed.

Key is not applicable.

The app determines
whether custom
keyboard use is
allowed.

TABLE 33.WHETHER ANAPPCONNECT APP CAN USE CUSTOM KEYBOARDS

Screen blurring
For added security, an AppConnect app’s screen should be blurred whenever the app becomes inactive. This
behavior hides sensitive data.

Wrapped apps always blur the screen when the app becomes inactive. However, for SDK apps, the behavior
changes with AppConnect 4.0 for iOS. Prior to AppConnect 4.0 for iOS, the app itself chose whether to blur the
screen and implemented the behavior. For AppConnect 4.0 for iOS through the most recently released version
as supported by MobileIron, the AppConnect library controls blurring screens. However, the app has to give the

Screen blurring

MobileIronCore 11.1.0.0 AppConnectGuide| 140

AppConnect library this control. Check your AppConnect app’s documentation to see whether it gives screen
blurring control to the AppConnect library.

If the app has given screen blurring control to the AppConnect library, you can disable screen blurring by setting
a key-value pair in your app’s AppConnect app configuration. The key is MI_AC_ENABLE_SCREEN_
BLURRING with the value false.

Dictation with the native keyboard is not allowed for wrapped
apps
Apps wrapped with AppConnect 4.0 for iOS block the use of dictation when using the native iOS keyboard. You
can override this behavior by setting a key-value pair on the app’s configuration. The key is called MI_AC_WR_
ALLOW_KEYBOARD_DICTATION. If you do not include the key, dictation is not allowed. If you set the value to
true, then wrapped AppConnect apps can use dictation with the native keyboard.

NOTE: Appsbuiltwith theAppConnect for iOS SDK, andappswrappedwithwrapper versionsprior to
AppConnect 4.0 for iOSallow theuseofdictationwhenusing thenative iOS keyboard. The keyMI_
AC_WR_ALLOW_KEYBOARD_DICTATIONhas no impacton thoseapps.

Heightened security for AppConnect apps using the Secure
Enclave
For heightened security of especially sensitive data, such as encryption keys and passwords, you can configure
AppConnect apps to use the Apple hardware known as the Secure Enclave. By using the Secure Enclave, the
app reduces the sensitive data’s attack surface, because the sensitive data is stored in the Secure Enclave
rather than in plain-text in memory. When sensitive data is stored in memory, it can be captured in a memory
dump.

For an AppConnect app to use the Secure Enclave, the device must:

l have Apple’s Secure Enclave hardware.

NOTE: Devices that havebiometric security have Secure Enclavehardware

l be running iOS 11 through the most recently released version as supported by MobileIron

l be running Mobile@Work 9.8 for iOS through the most recently released version as supported by
MobileIron

To configure an AppConnect app to use the Apple Secure Enclave, you use the key named MI_AC_
CONTAINER_TYPE in the app’s AppConnect app configuration.

The possible values for MI_AC_CONTAINER_TYPE are:

Dictationwith the native keyboard is not allowed for wrappedapps

MobileIronCore 11.1.0.0 AppConnectGuide| 141

Value Description

ENCLAVE The Secure Enclave is used to store:
• Sensitive data as defined by the app. Check the app’s documentation to see if

the app uses the Secure Enclave.
• encryption keys used by the AppConnect library

LOCAL No data is stored in the Secure Enclave. This value is this default if you do not
include the key.

Related topics

Configuring an AppConnect app configuration

Situations that wipe AppConnect for iOS app data
When an iOS AppConnect app is retired, it becomes unauthorized (blocked), and its data is deleted (wiped). The
following situations retire an AppConnect app:

l In Settings > System Settings > Additional Products > Licensed Products, you disable
AppConnect for third-party and in-house apps.

NOTE: If youdisableWeb@Work,Web@Work is retired. If youdisableDocs@Work, theDocs@Work
app is retired.

l You disable AppConnect in the AppConnect global policy for the device.

l You set the AppConnect global policy for the device to inactive.

l The device’s AppConnect global policy does not have “Apps without an AppConnect container policy”
checked, and you remove the app’s AppConnect container policy from the device. To remove the policy
from the device, you can delete it, or remove the device’s label from it.

l The device has not completed an AppConnect check-in in the number of days specified inWipe
AppConnect Data After in the device’s AppConnect global policy in Core or in the AppConnect
Device configuration for iOS in Cloud.

l You retire the device.

l You quarantine the device due to a compliance action.

l The MobileIron UEM client is not present on the device, or present but not registered to MobileIron UEM.

l The app has retired itself. This action can occur in some apps that behave as either AppConnect apps or
regular, unsecured apps.

Device-initiated (local) compliance for iOS jailbreak detection
MobileIron checks a device for compliance with its security policy each time the device checks in. checks all
devices for compliance at regular intervals to detect out-of-compliance devices that have not checked in. When a

Situations that wipeAppConnect for iOS appdata

MobileIronCore 11.1.0.0 AppConnectGuide| 142

device is out of compliance, initiates the specified compliance actions.

When an iOS device is jailbroken (compromised), some compliance actions can be device-initiated. Device-
initiated compliance (local compliance) for jailbreak detection means:

l The MobileIron client detects the violation.

l The MobileIron client performs one or more of the following: alerts the user, blocks AppConnect apps, or
retires AppConnect apps (blocks access to the apps and wipes their data).

These actions do not depend on connectivity to . However, also continues to enforce compliance actions when
the device is connected.

Therefore, device-initiated compliance (local compliance) for jailbreak detection means that you can protect
corporate data on devices even when the devices are off-line.

Typically, you configure a compliance action for jailbroken devices that occurs locally on the device, such as
making AppConnect apps unauthorized or retired.

Compliance actions for device-initiated jailbreak detection

When Mobile@Work detects that the device is jailbroken, it can take one of the following actions:

l Alert the device user with a banner or notification.

l Block AppConnect apps.
The device user becomes unauthorized to use AppConnect apps.

l Retire AppConnect apps.
The device user becomes unauthorized to use AppConnect apps and the apps’ secure data is deleted.

Configuring device-initiated compliance for jailbreak detection

The following is an overview of the steps for creating a device-initiated compliance for jailbreak detection.

1. Creating a compliance action.

2. Specifying the compliance action in the security policy.

Creating a compliance action

Create a compliance action in the MobileIron Core Admin Portal.

Procedure

1. Go to Policies & Configs > Compliance Actions.

2. Click Add+.

Compliance actions for device-initiated jailbreak detection

MobileIronCore 11.1.0.0 AppConnectGuide| 143

FIGURE 7. COMPLIANCE ACTIONS

3. Enter a name for the compliance action.

4. Select Send a compliance notification or alert to the user if you want the device user to receive a
notification.

5. Select Block email access and AppConnect apps if you want the device user to become
unauthorized to use AppConnect apps when the device becomes non-compliant.

NOTE: If thedevice is on-line, this selectionalso restricts access toemail viaActiveSync if youare
usinga Standalone Sentry for email access. It alsoblocksAppTunnel tunnels that
AppConnectappsand iOSmanagedapps use.

6. SelectQuarantine the device if you want to retire AppConnect apps (blocks access to the apps and
wipes their data) when the device becomes non-compliant.

NOTE: If thedevice is on-line, this selectionalsoblocksAppTunnel tunnels thatAppConnectapps
and iOSmanagedapps use.

7. Select Enforce compliance actions locally on devices.

NOTE: Thecomplianceactionsareenforced locally on thedeviceonly if the security violation is
that thedevice is jailbroken.Complianceactions for other security violations require
interactionwithMobileIronCore.

8. Click Save.

Related topics
“Compliance actions policy violations” in the Core Device Management Guide for iOS and macOS Devices.

Creating a compliance action

MobileIronCore 11.1.0.0 AppConnectGuide| 144

Specifying the compliance action in the security policy

Specify a compliance action in the security policy.

Procedure

1. Go to Policies & Configs > Policies.

2. Select a security policy.

3. Click Edit.

4. In the section Access Control, in For iOS devices, selectWhen a compromised iOS device is
detected.

5. In the drop-down, select the compliance action that you created.

6. Click Save.

Touch ID or Face ID for accessing secure apps
Two options for accessing secure apps using Touch ID or Face ID are available on the AppConnect global
policy:

l Touch ID or Face ID with fallback to device passcode

l Touch ID or Face ID with fallback to AppConnect passcode

Specifying the compliance action in the security policy

MobileIronCore 11.1.0.0 AppConnectGuide| 145

FIGURE 8. OPTIONS FOR USING TOUCH ID OR FACE ID

l Comparison of the two Touch ID or Face ID options

l Security versus convenience of passcode and Touch ID or Face ID options

l Touch ID or Face ID with fallback to device passcode

l Touch ID or Face ID with fallback to AppConnect passcode

l Configuring Touch ID or Face ID

Comparison of the two Touch ID or Face ID options

The following table lists the differences between the Touch ID or Face D options.

Comparison of the two Touch ID or Face ID options

MobileIronCore 11.1.0.0 AppConnectGuide| 146

When using Touch ID or
Face ID,
fall back to Device
Passcode

When using Touch ID or
Face ID,
fall back to AppConnect
Passcode

When prompted for the Touch ID or Face
ID, if users fail to provide an accepted
entry, they are prompted for:

the device passcode the AppConnect passcode

NOTE: After toomany
failures, as controlled
by iOS, iOSprompts
for thedevice
passcode.

Switches to Mobile@Work are eliminated
in some cases when using Touch ID or
Face ID.

Yes No

Require a strong device passcode in the
security policy.

Yes No

Users can use Touch ID or Face ID
whenever authenticating to secure apps,

Yes No

Users can use Touch ID or Face ID only
when authenticating to secure apps due to
the AppConnect auto-lock time expiring.

No Yes

Users can choose whether to use Touch
ID or Face ID for future authentications to
secure apps.

Yes Yes, but the choice only
applies to future
authentications to secure apps
due to the AppConnect auto-
lock time expiring

When prompted for the Touch ID or Face
ID, if users tap Cancel:

Access to AppConnect apps
is denied.

Users are prompted to enter
the AppConnect passcode.

TABLE 34. DIFFERENCES BETWEEN THE TOUCH IDOR FACE IDOPTIONS

The following table lists the differences between the Touch ID or Face D options.

Comparison of the two Touch ID or Face ID options

MobileIronCore 11.1.0.0 AppConnectGuide| 147

When using Touch ID or
Face ID,
fall back to Device
Passcode

When using Touch ID or
Face ID,
fall back to AppConnect
Passcode

Users must have set a device passcode
and added a Touch ID or Face ID on the
device.

Yes Yes

If the device has no Touch ID or Face ID
hardware, users authenticates to
AppConnect apps using an AppConnect
passcode.

Yes Yes

If the device has no fingerprint or Face ID,
or does not have the device passcode
enabled, users authenticate to
AppConnect apps using an AppConnect
passcode.

Yes Yes

If users choose not to use Touch ID or
Face ID, users use an AppConnect
passcode to access secure apps

Yes Yes

In Mobile@Work in Settings > Secure
Apps > Authentication, users can at
anytime change their choice about
whether to use Touch ID/Face ID to
access secure apps.

Yes Yes

TABLE 35. SIMILARITIES OF TOUCH IDOR FACE IDOPTIONS

Security versus convenience of passcode and Touch ID or Face ID options

AppConnect security involves:

l access to AppConnect apps.

l encrypting AppConnect-related data such as app configurations and certificates.

l encrypting data that the app saves on the device.

The following table lists possible passcode and Touch ID/Face ID choices from most secure to least secure,
and discusses the level of device user convenience.

NOTE: Inall cases, stronger passcodesaremore secure thanweaker passcodes (suchasa4-digit
number).

Security versus convenience of passcode and Touch ID or Face ID options

MobileIronCore 11.1.0.0 AppConnectGuide| 148

Passcode and Touch
ID/Face ID
configuration on
MobileIron Core

Security of AppConnect apps Convenience for device user

Require both:
• a device passcode
• an AppConnect

passcode

Highest Least convenient for accessing both the
device and AppConnect apps.

Require only a device
passcode

Very high

NOTE: Once thedevice is unlocked,
unauthorizedusers can
accessAppConnectapps.

Convenient for accessing AppConnect
apps, but inconvenient for accessing
the device.

However, the device user can make
accessing the device more convenient
by setting up Touch ID or Face ID for
unlocking the device.

Require only an
AppConnect passcode

High

NOTE: Data that theapp saves to
thedevice is not encrypted
unless theappuses the secure
file I/Oprovided in the
AppConnect for iOS SDK.

Convenient for accessing the device
but inconvenient for accessing
AppConnect apps.

TABLE 36. SECURITY VS DEVICE USER CONVENIENCE OF PASSCODE AND TOUCH ID/FACE IDOPTIONS

Security versus convenience of passcode and Touch ID or Face ID options

MobileIronCore 11.1.0.0 AppConnectGuide| 149

Passcode and Touch
ID/Face ID
configuration on
MobileIron Core

Security of AppConnect apps Convenience for device user

• Require only a
device passcode
and

• Use Touch ID or
Face ID with
fallback to device
passcode

High

NOTE: Other deviceuserswhohave
added fingerprints or Face
IDs, suchas familymembers,
canalsoaccessAppConnect
apps.

Very convenient for accessing both the
device and AppConnect apps.

• Require an
AppConnect
passcode and

• Use Touch ID or
Face ID with
fallback to
AppConnect
passcode

Lower

NOTE: Although this option is
intended for customerswho
cannot requirea strong
devicepasscode, thedevice
usermust createadevice
passcode touse Touch IDor
Face ID. However, users can
chooseaweakdevice
passcode.Aweakdevice
passcodecreatesa security
risk. The risk is that an
unauthorizeduser canguess
thedevicepasscode, create
a fingerprint or Face ID, and
thenaccessAppConnect
apps.

Very convenient for accessing both the
device and AppConnect apps.

No passcodes required Lowest

NoteTheFollowing:
• Unauthorized users can access the

device and AppConnect apps.
• AppConnect-related data, such as

app configurations and certificates,
is encrypted but the encryption key
is not protected by a passcode.

• Data that the app saves on the
device is encrypted but the
encryption key is not protected by a
passcode.

Most convenient for accessing both the
device and AppConnect apps.

TABLE 36. SECURITY VS DEVICE USER CONVENIENCE OF PASSCODE AND TOUCH ID/FACE IDOPTIONS
(CONT.)

Security versus convenience of passcode and Touch ID or Face ID options

MobileIronCore 11.1.0.0 AppConnectGuide| 150

Related topics

For more information about the use of the device passcode and AppConnect passcode in encrypting
AppConnect-related data and data that the app saves, see:

l The AppConnect passcode

l Data encryption for secure apps for iOS

Touch ID or Face ID with fallback to device passcode

Touch ID or Face ID with fallback to device passcode allows device users to enter their Touch ID (fingerprint) or
Face ID instead of an AppConnect passcode to access secure apps. An AppConnect passcode is not required. If
entering the Touch ID or Face ID fails, users enter (falls back to) the device passcode to access secure apps.
When you use this option, a strong device passcode is required. Make sure the security policy for the applicable
devices requires a strong device passcode. Most customers typically choose the Touch ID or Face ID with
fallback to device passcode option.

Users can use Touch ID or Face ID to access secure apps if:

l You configure the Touch ID or Face ID option in the AppConnect global policy.

l You require strong device code in the security policy.

l The device has Touch ID or Face ID capability.

l The device has a device passcode and Touch ID or Face ID is enabled.

When all of the above are true, Mobile@Work gives users the choice whether to use Touch ID or Face ID. If
users do not set up Touch ID or Face ID, they can authenticate using the device passcode.

Configuring the security policy for strong device passcode

A strong device passcode is required for Touch ID or Face ID to provide security for AppConnect apps. Make
sure the security policy for the applicable devices requires a strong device passcode.

Procedure

1. Go to Policies & Configs > Policies in the MobileIron Core Admin Portal.

2. Select the security policy for the applicable devices.

3. Click Edit.

4. In the Password section, selectMandatory.

5. Select options for a strong password.
These options include Alphanumeric,Minimum Password Length, andMinimum Number of
Complex Characters.

6. Click Save.

Touch ID or Face IDwith fallback to device passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 151

Switches to Mobile@Work eliminated with Touch ID or Face ID with fallback to device
passcode

AppConnect apps prompt for the Touch ID or Face ID without switching to Mobile@Work, in the following cases:

l The device user launched or switched to an AppConnect app after the auto-lock timeout expired.

l The auto-lock timeout expired while the device user was running an AppConnect app.

When these apps prompt for the Touch ID or Face ID, the prompt does not cover the entire screen. The apps,
therefore, make sure sensitive data on the app’s screen is not readable until the device user enters the Touch ID
or Face ID. The following table summarizes this behavior:

Type of app Behavior when displaying Touch ID/Face ID prompt

Wrapped apps Blurs the visible parts of the screen.

SDK apps Hides sensitive data according to the app’s own requirements and user
interface strategies

TABLE 37. BEHAVIOR OF WRAPPED VERSUS SDK APPS WHEN DISPLAYING TOUCH ID/FACE ID PROMPT

Some situations other than the auto-lock timeout cause the app to switch to Mobile@Work. Some of these
situations are:

l The first time an app is launched.

l When the app check-in interval expires while an AppConnect app is running. Mobile@Work gets
AppConnect policy updates for all the AppConnect apps, and then control switches back to the app that
was running.

l After the device is powered on and the device user first launches an AppConnect app.

l After the device user logs out of secure apps in Mobile@Work, and then relaunches an AppConnect
app.

l Device users relaunch an app after they or iOS terminated it.

However, these other reasons for switching are less frequent than the switch due to the auto-lock timeout.

Improved user experience

Using Touch ID or Face ID with fallback to device passcode to access secure apps improves the user
experience as follows:

l Users no longer needs to create, remember, and enter a secure apps passcode to access secure apps.

l Switching to Mobile@Work due to the auto-lock timeout is eliminated. Instead the app itself prompts for
the Touch ID or Face ID, resulting in a simpler experience for users. This switch to Mobile@Work is
eliminated for apps as described in Switches to Mobile@Work eliminated with Touch ID or Face ID with

Switches toMobile@Work eliminatedwith Touch ID or Face IDwith fallback to device passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 152

fallback to device passcode.

l Mobile@Work gives users the choice to use Touch ID/Face ID or a secure apps passcode to access
secure apps. This choice is useful when a device is shared among multiple users, such as co-workers or
even a family, each of whom uses a fingerprint or Face ID to access the device. Although all the users
can access the device with Touch ID/Face ID, sometimes only one of those users should be allowed to
access AppConnect apps. That user can choose to use the AppConnect passcode instead of Touch
ID/Face ID for accessing AppConnect apps. This feature therefore ensures that only an appropriate
device user accesses AppConnect apps.

Device user impact in Mobile@Work

Mobile@Work gives the device user the choice to use Touch ID or Face ID or to use the AppConnect passcode
for accessing secure apps.

Mobile@Work prompts the device user to make the choice when:

l You have selected the option to use Touch ID or Face ID with fallback to device passcode on the
AppConnect global policy.

l The device user has enabled both Touch ID / Face ID and the device passcode on the device in
Settings > Touch ID & Passcode.

l The device user has registered a device and then either
o Accesses secure apps for the first time or
o Taps Log In (to secure apps) on the Mobile@Work home screen

If the device user chooses Touch ID or Face ID, he will use Touch ID/Face ID for all further authentications to
secure apps. If the device user does not choose Touch ID or Face ID, he will use the AppConnect passcode for
all further authentications to secure apps.

NOTE: Thedeviceuser canchange theauthenticationmethodusing Settings > Secure Apps >
Authentication inMobile@Work.

Related topics
Secure apps on iOS Devices - User Perspective

Less common device user scenarios

These scenarios describe the user experience in less common situations when using Touch ID.

Device user impact inMobile@Work

MobileIronCore 11.1.0.0 AppConnectGuide| 153

On the
AppConnect
global policy

On the device Behavior

Touch ID enabled Fingerprint
available

Device passcode
turned off

Consider the case when the device user had accessed secure
apps using Touch ID before turning off the device passcode.
When the device user attempts to access secure apps, the user is
prompted to turn on the device passcode.

Now consider the case when the device user had never accessed
secure apps before turning off the device passcode. The device
user will be prompted to create a secure apps passcode.

Touch ID enabled No fingerprint
available

Regardless whether the device passcode is turned on or off on
the device, the device user is prompted to create a secure apps
passcode when first trying to access secure apps. The device
user then uses that secure apps passcode for all secure apps
access.

If the device user later adds a fingerprint and turns on the device
passcode, he continues to use the secure apps passcode.

Touch ID enabled Fingerprint
available, then
deleted.

Device passcode
turned on.

Consider the case when the device user deletes the fingerprint
after accessing secure apps with Touch ID. The device user will
use the device passcode to access secure apps.

Touch ID enabled Fingerprint
available, then
deleted.

Device passcode
turned on, then
turned off.

Consider the case when the device user deletes the fingerprint
and turns off the device passcode after accessing secure apps
with Touch ID. The device user must turn on the device
passcode, and optionally add a fingerprint, to access secure
apps.

Touch ID enabled
then disabled

Fingerprint
available.

Device passcode
turned on.

Consider the case when you disable Touch ID on the
AppConnect global policy after the device user has accessed
secure apps using Touch ID. The next time the device user
accesses a secure app, he is prompted to create a secure apps
passcode.

TABLE 38. LESS COMMON DEVICE USER SCENARIOS INVOLVING TOUCH ID

Less commondevice user scenarios

MobileIronCore 11.1.0.0 AppConnectGuide| 154

On the
AppConnect
global policy

On the device Behavior

Touch ID enabled,
then passcode
requirement
removed

Fingerprint
available.

Device passcode
turned on.

Consider the case when you remove the passcode requirement
on the AppConnect global policy after device user accessed
secure apps with Touch ID.

The next time the user accesses a secure app, they use Touch ID
one last time. After that, they can access secure apps without a
passcode.

Touch ID not
enabled, then
enabled

Fingerprint
available

Device passcode
turned on

Consider the case when you select the Touch ID option on the
AppConnect global policy after the device user accessed secure
apps using a secure apps passcode.

The device user continues to use the secure apps passcode.

Touch ID enabled Multiple
fingerprints
available

Device passcode
turned on

Any fingerprint available on the device can be used to access
secure apps.

A device user often chooses to use a secure apps passcode
instead of Touch ID in this case. Using a secure apps passcode
ensures other users of the device do not have access to secure
apps.

TABLE 38. LESS COMMON DEVICE USER SCENARIOS INVOLVING TOUCH ID (CONT.)

Touch ID or Face ID with fallback to AppConnect passcode

With this option, when the auto-lock time for AppConnect apps expires, the device user uses Touch ID or Face
ID rather than the AppConnect passcode to re-access AppConnect apps. If entering the fingerprint or Face ID
fails, users enter (falls back to) the AppConnect passcode to access secure apps. The device user also uses the
AppConnect passcode for other situations requiring AppConnect authentication such as the first time an
AppConnect app is launched or when users logs out of secure apps in Mobile@Work.

Therefore, with this option, users must create both a device passcode and an AppConnect passcode. The
AppConnect passcode is necessary for all AppConnect authentications except the auto-lock time expiry. The
device passcode is necessary because iOS requires it for Touch ID to be available. However, the device
passcode does not have to be strong.

Use this option only if you have a compelling reason to not require your device users to have a strong
device passcode. A weak device passcode creates a security risk. The risk is that an unauthorized user can
guess the device passcode, create a fingerprint or Face ID, and then access AppConnect apps.

One situation for choosing this option is if you are required by law to not require a strong device passcode on
employee-owned devices. If you have such a requirement, but still want to give device users the convenience of
using Touch ID to access AppConnect apps, choose this option.

Touch ID or Face IDwith fallback to AppConnect passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 155

Improved user experience

The user experience is improved similarly to when using the option to use Touch ID or Face ID with fallback to
device passcode. The improved user experience includes:

l Improved device user convenience compared with always entering the AppConnect passcode
When using this option, device users can use Touch ID or Face ID to access AppConnect apps when the
auto-lock time expires. For other situations such as when Mobile@Work had been terminated or when a
user used Mobile@Work to log out of secure apps, the user still must enter an AppConnect passcode.
However, since the auto-lock time expiry is the most frequent situation that requires AppConnect
authentication, the device user’s experience is improved.

l Device user choice to use Touch ID or Face ID or to always use a secure apps passcode
Mobile@Work gives the user the choice to use Touch ID or Face ID or an AppConnect passcode to
access secure apps when the auto-lock time expires. This choice is useful when a device is shared
among multiple users, such as co-workers or even a family, each of whom uses a fingerprint or Face ID
to unlock the device. Although all the users can access the device with Touch ID/Face ID, sometimes
only one of those users should be allowed to access AppConnect apps. That user can choose to use the
AppConnect passcode instead of Touch ID/Face ID for accessing AppConnect apps when the auto-lock
time expires.

Device User impact of Touch ID or Face ID with fallback to AppConnect passcode

The following is the device user experience for a newly registered user:

1. After the device user registers with Mobile@Work, Mobile@Work prompts the device user to create an
AppConnect passcode.

2. After creating the AppConnect passcode, Mobile@Work gives the user the option to use Touch ID/Face
ID to access secure apps.

3. If users choose the Touch ID/Face ID option, they can use Touch ID or Face ID when accessing secure
apps after the auto-lock time has expired.

4. The device user can later use Mobile@Work settings to change his choice about using Touch or Face
ID.

Related topics
Touch ID or Face ID with fallback to AppConnect passcode – device user perspective

Configuring Touch ID or Face ID

Do the following to configure the AppConnect global policy to use Touch ID for accessing secure apps.

Procedure

1. On the Admin Portal, go to Policies & Configs > Policies.

2. Select the appropriate AppConnect global policy.

Improved user experience

MobileIronCore 11.1.0.0 AppConnectGuide| 156

3. Click Edit.
The AppConnect global policy displays.

4. Select Passcode is required for iOS devices.

5. Select Use Touch ID or Face ID when supported.
The optionWhen using Touch ID or Face ID, fall back to: appears:

6. Select Device passcode or AppConnect passcode.

7. Click Save.

If you selected fall back to device passcode and you are using an iOS restrictions setting, make sure that it
allows Touch ID to unlock a device. If you are not using an iOS restrictions setting, Touch ID is allowed. You can
skip the following steps.

1. On the Admin Portal, go to Policies & Configs > Configurations.

2. Select the appropriate iOS restrictions setting.

3. Click Edit.

4. The iOS restrictions setting displays.

5. Make sure that Allow Touch ID to unlock device is selected.

6. Click Save.

Certificate pinning for AppConnect apps
You can heighten security for the communication between AppConnect apps and enterprise servers or cloud
services by using certificate pinning. Certificate pinning can protect an AppConnect app from man-in-the-middle
attacks and rogue Certificate Authorities. This protection is possible because in the MobileIron Core Admin
Portal, you configure a set of trusted certificates and domain names for the AppConnect app. When the app
makes a connection request, the AppConnect library within the app makes sure that:

l the certificate presented by the server in response to the connection request is in the trusted set of
certificates, or chains to a certificate in the trusted set.

l the domain in the app's URL request matches a domain name or domain wildcard that you specified for
that certificate.

If either of these requirements is not met, the app's connection request fails.

NoteTheFollowing:

l Donot usecertificatepinningwithAppTunnelwithHTTP/S tunnelingorAppTunnelwith TCP
tunneling (AdvancedAppTunnel).

l Youcanusecertificatepinningwith the featureCertificateauthentication fromAppConnectapps
toenterprise servicesIn this feature, theapp sendsacertificate to identify andauthenticate the
appuser to theenterprise server or cloud service.

Certificate pinning for AppConnect apps

MobileIronCore 11.1.0.0 AppConnectGuide| 157

Certificate pinning for AppConnect apps requires:

l Apps built with AppConnect 4.1 for iOS through the most recently released version as supported
by MobileIron.

l Mobile@Work 10.0.0 for iOS through the most recently released version as supported by MobileIron.

Related topics

l About certificates used in certificate pinning

l About domains in certificate pinning

l Configuring certificate pinning

l Uploading the trusted certificates

l Creating a Client TLS configuration

l Modifying an AppConnect app configuration, Web@Work setting, or Docs@Work setting

l Viewing certificate pinning information in Mobile@Work

About certificates used in certificate pinning

Part of configuring AppConnect apps for certificate pinning is uploading the trusted certificates to MobileIron
Core so that Core can deliver them to AppConnect apps. Each certificate that you upload can be:

l a root CA certificate

l a intermediate CA certificate, which can include chained intermediate CAs with or without a root CA.

l a leaf certificate

NOTE: A trustedcertificateused incertificatepinningcannot includea leaf certificatecombinedwithan
intermediateCAor rootCA.

The certificate must be an X.509 certificate file (.cer, .crt, .pem, or .der) and encoded as binary DER or ASCII
PEM.

About domains in certificate pinning

l Certificate pinning domains for root and intermediate CA certificates

l Certificate pinning domains for leaf certificates

Certificate pinning domains for root and intermediate CA certificates

When you specify root CA and intermediate CA certificates for certificate pinning, you also provide the domains
of the target enterprise server or cloud service allowed in the AppConnect app's URL request. The AppConnect
app's URL request must match one of these domains for the connection to succeed. You can provide specific
domains, or domains using the wildcard character *. The following table provides examples.

About certificates used in certificate pinning

MobileIronCore 11.1.0.0 AppConnectGuide| 158

Domain Description

www.mycompany.com App URL request must match exactly.

*.mycompany.com App URL request must end in mycompany.com.

* App URL request can be anything.

When a domain is the wildcard character * by itself, the field Allow
use of system CA certificates is automatically not selected and
disabled.

TABLE 39. ALLOWED DOMAINS IN CERTIFICATE PINNING

Certificate pinning domains for leaf certificates

When you specify a leaf certificate for certificate pinning, Core extracts the domains from the certificate. The
AppConnect app's URL request must match one of these domains for the connection to succeed. You cannot
add to or modify the list of domains.

Core extracts the domains from these fields in the certificate:

l the CN (Common Name) in the Subject field

l the SAN (Subject Alternative Name) fields, if available

Configuring certificate pinning

The overall tasks to configure certificate pinning are:

1. Uploading the trusted certificates

2. Creating a Client TLS configuration

3. Modifying an AppConnect app configuration, Web@Work setting, or Docs@Work setting

Uploading the trusted certificates

Upload to MobileIron Core the certificate that the enterprise server will present to the app in response to a
connection request. You upload the certificate into a certificate setting.

Procedure

1. In the Admin Portal, go to Policies & Configs > Configurations.

2. Click Add New > Certificates.

3. Fill in the entries:
Name: Enter brief text that identifies certificate setting.
Description: Enter additional text that clarifies the purpose of this certificate setting.
Click Browse to select the X.509 certificate file (.cer, .crt, .pem, or .der) to upload to Core. The certificate

Certificate pinning domains for leaf certificates

MobileIronCore 11.1.0.0 AppConnectGuide| 159

must be encoded as binary DER or ASCII PEM.

4. Click Save.

Do not apply a label to the certificate setting. You will apply a label to the AppConnect app configuration,
Web@Work setting, or Docs@Work setting that refers to a Client TLS configuration that refers to this certificate
setting.

Creating a Client TLS configuration

Create a Client TLS configuration that references the certificate setting.

Procedure

1. In the Admin Portal, go to Policies & Configs > Configurations.

2. Click Add New > Client TLS.

3. For Name, enter a name for the Client TLS configuration.

4. For Description, enter text that clarifies the purpose of this Client TLS configuration.

5. Click Add+.
A row displays in the Trusted Certificates table.

6. For Name, select from the dropdown the certificate setting you added in Uploading the trusted
certificates.Uploading the trusted certificates

7. For the Domain:

l For intermediate and root CA certificates, enter one or more domains, as described in Certificate
pinning domains for root and intermediate CA certificates.
Enter a comma after a domain to make additional entries. Use the Enter key when you have finished
entering domains.

l For leaf certificates, you cannot enter domains. Core automatically extracts the domains from the
certificate and displays them.

8. Select Allow use of system CA certificatesto allow the app to also accept system CA certificates if
presented by the enterprise service.
System CA certificates are the certificates in the device's trusted certificate store.

NOTE: This option is automatically not selectedanddisabledwhenadomain you specify is the
wildcardcharacter * by itself.

9. Click Save.

The Admin Portal does not allow you to apply a label to the Client TLS configuration. You will apply a label to the
AppConnect app configuration, Web@Work setting, or Docs@Work setting that refers to the Client
TLS configuration.

NOTE: Youcannotdeleteacertificate setting if it is referenced fromaClient TLS configuration.

Creating aClient TLS configuration

MobileIronCore 11.1.0.0 AppConnectGuide| 160

Modifying an AppConnect app configuration, Web@Work setting, or
Docs@Work setting

Do the following tasks to reference the Client TLS configuration from the AppConnect app configuration for the
AppConnect app.

l Creating an AppConnect app configuration for the app if one does not already exist

l Configuring the Client TLS configuration in the AppConnect app configuration

NOTE: ForWeb@WorkandDocs@Work, follow similar steps inaWeb@Work settingandDocs@Work
setting. Just as youdo inanAppConnectappconfiguration, you select Enable Client TLS
Configuration, and select theappropriateClient TLS configuration from thedropdownoptions.

Creating an AppConnect app configuration for the app if one does not already exist

Do the following if an AppConnect app configuration does not exist for the app.

Procedure

1. In the Admin Portal, go to Policies & Configs > Configurations.

2. Look for an APPCONFIG setting type for the app.

3. If found, continue to Configuring the Client TLS configuration in the AppConnect app configuration.

4. If not found, click Add New > AppConnect > App Configuration.

5. For Name, enter a name for the AppConnect app configuration.

6. For Description, enter a description for the AppConnect app configuration.

7. For Application, enter the bundle ID of the app, or select the app from the dropdown list if it is in the App
Catalog.

8. Click Save.

Apply the appropriate labels to the new AppConnect app configuration:

1. Select the AppConnect app configuration that you just created.

2. Select Actions > Apply To Label.

3. Select the appropriate labels.

4. Click Apply.

5. Click OK.

Configuring the Client TLS configuration in the AppConnect app configuration

Procedure

1. In the Admin Portal, go to Policies & Configs > Configurations.

2. Select the AppConnect app configuration for the app (the Setting Type is APPCONFIG).

Modifying anAppConnect app configuration,Web@Work setting, or Docs@Work setting

MobileIronCore 11.1.0.0 AppConnectGuide| 161

3. Click Edit.

4. In the Client TLS section, select Enable Client TLS Configuration.

5. From the dropdown, select the Client TLS configuration that you created.

6. Click Save.

NOTE: YoucannotdeleteaClient TLS configuration if it is referenced fromanAppConnectapp
configuration.

Viewing certificate pinning information in Mobile@Work

You can use Mobile@Work to view certificate pinning information for an AppConnect app.

Procedure

1. Open Mobile@Work on the device.

2. Tap Settings.

3. Tap Secure Apps.

4. Tap the app of interest.

5. Tap Client TLS, which is near the bottom of the screen.
The client TLS screen displays the set of trusted certificates.

6. Tap a certificate.
A screen displays with the domains allowed for the certificate.

7. Tap Certificate to see the certificate's details, such as its expiration date.

NOTE: Youcanalso view thecertificate's details inMobile@Work in Settings > Secure Apps > Stored
Certificates.

Certificate authentication from AppConnect apps to enterprise
services
An AppConnect app can send a certificate to identify and authenticate the app user to an enterprise service. The
AppConnect library, which is part of every AppConnect app, makes sure the connection uses the certificate. No
additional development is required for the app.

When an AppConnect app uses a certificate to authenticate the app user to an enterprise service using HTTPS:

l The authentication occurs without interaction from the app user.
The app user does not need to enter a user name and password to log into enterprise services, resulting
in a better user experience.

l Access to the enterprise service is more secure.

Viewing certificate pinning information inMobile@Work

MobileIronCore 11.1.0.0 AppConnectGuide| 162

The AppConnect app must use networking methods that this feature supports. Contact the application vendor or
developer to find out if the app supports certificate authentication to enterprise services.

You configure which certificate to use and when to use it on MobileIron Core as described in Setting up
certificate authentication from an AppConnect app. When using this feature, you can also use Certificate pinning
for AppConnect apps. Certificate pinning ensures that the certificate presented by the enterprise service in
response to the app's connection request is in a trusted set of certificates that you configure.

Certificate authentication from AppConnect apps to enterprise services:

l is for HTTPS connections only.

l does not work if you are using AppTunnel with HTTP/S tunneling for the connection.

l does work if you are using AppTunnel with TCP tunneling for the connection.

NOTE: Authenticatingusers toenterprise servers usingKerberosConstrainedDelegation (KCD)with
AppTunnel hasbeenavailable for some time. This featuredoes not useKCDorAppTunnel.

Impact on AppTunnel use

If an AppConnect app uses a certificate to authenticate the app user to an enterprise service:

l The app can use AppTunnel with TCP tunneling (provided with the Tunnel app) to access an enterprise
service.

l The app cannot use AppTunnel with HTTP/S tunneling for accessing the same URL to which the
certificate authenticates.
The app can use AppTunnel for HTTP/S tunneling for accessing a different URL than the one that the
certificate authenticates to.

Setting up certificate authentication from an AppConnect app

To set up certificate authentication from an AppConnect app to an enterprise service, you configure the app’s
AppConnect app configuration on MobileIron Core. You add sets of two key-value pairs to the AppConnect app
configuration. The two key-value pairs in each set specify:

l a certificate

l a URL matching rule

You can have any number of sets of these key-value pairs, but keep the number to a minimum to preserve Core
performance.

When the app makes a web request to a URL that matches a URL matching rule, the connection uses the
certificate.

Impact on AppTunnel use

MobileIronCore 11.1.0.0 AppConnectGuide| 163

Before you begin

Configure MobileIron Core with the certificate that the app will use to authenticate to the enterprise service. You
specify the certificate in a Certificate Enrollment.

See “Certificate Enrollment settings” in the Core Device Management Guide for iOS and macOS Devices.

NOTE: It is not necessary toassign labels to theCertificate Enrollment setting todistributecertificates to the
appropriatedevices. Youwill configureandapply labels toanAppConnectappconfiguration
that refers to thecertificateenrollment setting. Thatactiondistributes thecertificates to the
appropriatedevices.

Overview

1. Creating an AppConnect app configuration for the app if one does not already exist.

2. Configuring the key-value pairs for the certificate and URL matching rule.

Creating an AppConnect app configuration for the app if one does not already
exist

Check if you already created an AppConnect app configuration for the app. If one does not exist, create an app
configuration for the AppConnect app.

Procedure

1. Go to Policies & Configs > Configurations.

2. Look for an APPCONFIG setting type for the app.

3. If found, continue to Configuring the key-value pairs for the certificate and URL matching rule.

If not found, create the AppConnect app configuration:

1. Click Add New > AppConnect > App Configuration.

2. For Name, enter a name for the AppConnect app configuration.

3. For Description, enter a description for the AppConnect app configuration.

4. For Application, enter the bundle ID of the app, or select the app from the dropdown list if it is in the App
Catalog.

5. Click Save.

6. SelectMore Actions > Apply to Label.

7. Select the appropriate label and click Apply.

Creating anAppConnect app configuration for the app if one does not already exist

MobileIronCore 11.1.0.0 AppConnectGuide| 164

Configuring the key-value pairs for the certificate and URL matching rule

Configure key-value pairs for the certificate and URL matching rule in the AppConnect app configuration in the
Core Admin Portal.

Procedure

1. Go to Policies & Configs > Configurations.

2. Select the AppConnect app configuration for the app (the Setting Type is APPCONFIG).

3. Click Edit.

4. Scroll down to App-specific Configurations.

5. Click Add+.

6. In the KEY field, enter MI_AC_CLIENT_CERT_#, substituting digits of your choice for #. The key is
case-sensitive.

Example
MI_AC_CLIENT_CERT_1
MI_AC_CLIENT_CERT_2
MI_AC_CLIENT_CERT_15

NOTE: YoucanhavemanyMI_AC_CLIENT_CERT_# keys, eachwithadifferent digit substitution.

7. In the VALUE field, select the Certificate Enrollment setting from the dropdown list.

8. Click Add+.

9. In the KEY field, enter MI_AC_CLIENT_CERT_#_RULE, substituting the same digits for # that you used
in MI_AC_CLIENT_CERT_#. The key is case-sensitive.

Example
MI_AC_CLIENT_CERT_15_RULE

10. In the VALUE field, enter the URL that will use the certificate for authentication.

Example
*.mycompany.com/sales
myserver.mycompany.com/hr/benefits

11. Click Save.

Details about MI_AC_CLIENT_CERT_#_RULE

The following describes the rule format and matching logic for the certificate key-value pair.

Configuring the key-value pairs for the certificate and URLmatching rule

MobileIronCore 11.1.0.0 AppConnectGuide| 165

Rule format

The value for the key MI_AC_CLIENT_CERT_#_RULE is a URL matching rule. The rule has one of these
formats:

l <host >

l <host >/<path>

The <host > component specifies a host within a domain. It can include one or more wildcard characters *.

Example

l myserver.mycompany.com

l anotherserver.mycompany.com

l *.mycompany.com

The <path > component specifies a path within the host. It cannot include the wildcard character *. It can contain
multiple <subpath> components.

Example

l sales

l sales/west

l sales/west/california
The <subpath> components are sales, west, and california.

Matching logic

When the app makes a URL request, the AppConnect library within the app compares the URL request with the
values of the MI_AC_CLIENT_CERT_#_RULE keys. If the rule matches the URL request, the connection uses
the certificate.

A match occurs if all of the following are true:

l the rule’s <host>matches the URL request’s <host>.

l Any <subpath> in the rule matches the URL request’s <subpath>, in the same order.
More <subpath> components can be in the URL request than are in the rule.

NOTE: Thematching logic ignoresanyport numberor queryparameters in theURL request.

Rule format

MobileIronCore 11.1.0.0 AppConnectGuide| 166

Example

URL Request Match? Comments

https://myserver.mycompany.com Yes Exact match

https://myserver.mycompany.com/sales Yes Matches <host>

https://myserver.mycompany.com:8080 Yes Matches -- port is ignored

https://myserver.mycompany.com:sales?
range=quarter

Yes Matches -- query parameters are
ignored

https://anotherserver.mycompany.com No <host> does not match

http://anotherserver.mycompany.com No HTTP, not HTTPS

TABLE 40. MATCHING RULE EXAMPLE:MY.SERVER.MYCOMPANY.COM

URL Request Match? Comments

https://myserver.mycompany.com/sales Yes <host> and <subpath>match.

https://myserver.mycompany.com/sales/west Yes <host> and <subpath>match

https://anotherserver.mycompany.com/sales Yes <host> and <subpath>match

https://myserver.mycompany.com/salesmeeting No Entire <subpath>must match.

https://myserver.mycompany.com No Missing required <subpath>

https://myserver.mycompany.com/s No Entire <subpath>must match.

TABLE 41. MATCHING RULE EXAMPLE: *.MYCOMPANY.COM/SALES

If more than one MI_AC_CLIENT_CERT_#_RULE value matches the URL request, the rule with the most
number of non-wildcard characters is chosen.

For example, consider four MI_AC_CLIENT_CERT_#_RULE keys with the following values:

Key Value

MI_AC_CLIENT_CERT_1_RULE *.mycompany.com

MI_AC_CLIENT_CERT_2_RULE *.mycompany.com/sales/west

MI_AC_CLIENT_CERT_3_RULE myserver.mycompany.com/sales

MI_AC_CLIENT_CERT_4_RULE myserver.mycompany.com/sales/west

TABLE 42. EXAMPLE OF SIMILARMI_AC_CLIENT_CERT_#_RULE VALUES

Matching logic

MobileIronCore 11.1.0.0 AppConnectGuide| 167

If the app requests URL https://myserver.mycompany.com/sales/west, the request matches all the values, but
only one match is chosen. The chosen match is myserver.mycompany.com/sales/west, and the connection uses
the corresponding certificate in MI_AC_CLIENT_CERT_4.

Impact to tunneling when using a global HTTP proxy
A global HTTP proxy policy ensures that HTTP traffic is redirected to a proxy server that you specify. Configuring
a global HTTP proxy policy for devices includes specifying the URL for the proxy auto-configuration (PAC) file.
Details are available in “Working with global HTTP proxy policies” in the Core Device Management Guide for iOS
and macOS Devices.

Consider the case in which you have defined an AppTunnel rule in an AppConnect’s AppConnect app
configuration (or Web@Work setting or Docs@Work setting) that includes the URL to the PAC file. That is, the
AppTunnel rule does one of the following:

l Uses a wildcard character in the AppTunnel rule’s URL Wildcard field such that the PAC file URL
matches the rule

l Explicitly names the PAC file URL in the AppTunnel rule’s URL Wildcard field

The impact of this configuration to tunneling varies depending on the AppConnect app’s AppConnect version, as
shown in the following table:

AppConnect for iOS
SDK or Wrapper
version used in the
app

Impact to tunneling of defining an AppTunnel rule that includes the URL to
the PAC file

3.0 and prior • The request to the URL for the PAC file is tunneled.
• Other URL requests are tunneled according to the AppTunnel rules.

3.1.0, 3.1.1, 3.1.2 Tunneling to the URL for the PAC file is not supported. A tunneling attempt to this
URL results in no network access for the app, whether tunneled or not.

3.1.3 through the most
recently released
version as supported by
MobileIron

To support tunneling in these apps, configure a key-value pair in the app’s
AppConnect app configuration (or Web@Work setting or Docs@Work setting) as
follows:
• key name: global_http_proxy_url
• value: the URL of the PAC file, which you also enter in the Proxy PAC URL field

of the global HTTP proxy policy.
Example: http://pac.myproxy.mycompany.com

With this key-value pair:
• the URL request to the PAC file is not tunneled.
• other URL requests are tunneled as specified by the AppTunnel rules.

TABLE 43. IMPACT TO TUNNELINGWHEN USING A GLOBALHTTP PROXY

Impact to tunnelingwhen using a global HTTP proxy

6

MobileIronCore 11.1.0.0 AppConnectGuide| 168

AppConnect Key-value Pairs Summary

Some AppConnect features are configured using key-value pairs on the AppConnect app configuration for an
app, or on the Web@Work setting, the Docs@Work setting, or for Android, on the Secure Apps Manager's
AppConnect app configuration.

The key-value pairs are summarized in the following tables, along with references to the appropriate
documentation with the details.

l AppConnect for Android key-value pairs

l AppConnect for iOS key-value pairs

AppConnect for Android key-value pairs
The following summarizes the AppConnect for Android key-value pairs used to configure various AppConnect
features.

l AppConnect Global policy key-value pairs

l AppConnect app configuration key-value pairs

l Secure Apps Manager app configuration key-value pairs

For key-value pairs used to configure various AppConnect features for AppConnect apps for iOS, see
AppConnect for iOS key-value pairs

AppConnect Global policy key-value pairs

The following table describes the key-value pairs that are configured in the AppConnect Global policy.

MobileIronCore 11.1.0.0 AppConnectGuide| 169

Key name Description Reference

MI_AC_LOGOUT_WHEN_
SCREEN_OFF

When true, device users are locked out
of AppConnect apps when the device
screen is turned off.

Lock Android AppConnect apps when
screen is off

MI_ALLOW_SECURE_COPY_
INBOUND

When true, data can be copied from a
non-AppConnect app to an
AppConnect app even though the
Copy/Paste data loss prevention
setting is Among AppConnect Apps
orWithin an AppConnect app.

Copy/Paste for AppConnect for Android

AC_IGNORE_AUTO_LOCK_
ALLOWED

When true, an AppConnect app
ignores the auto-lock time.

About allowing a secure app to ignore
the auto-lock time

TABLE 44. APPCONNECT FORANDROID KEY-VALUE PAIRS

AppConnectGlobal policy key-value pairs

MobileIronCore 11.1.0.0 AppConnectGuide| 170

AppConnect app configuration key-value pairs

The following table describes the key-value pairs that are configured in the app's AppConnect app configuration.

Key name Description Reference

MI_AC_TCP_IDLE_
TIMEOUT_MS

Specifies the idle session timeout for the
TCP connection between an
AppConnect app and an enterprise
server when using AppTunnel with
TCP tunneling.

Configuring AppTunnel with TCP
tunneling for Android secure apps

MI_AC_DISABLE_
ANALYTICS

When true, analytics about AppConnect
apps are not collected.

Disabling analytics data collection for
AppConnect for Android

MI_AC_USE_TLS1.2 When true, the AppConnect wrapper
uses TLSv1.2 for network requests using
AppTunnel with TCP tunneling.

Applicable only to apps wrapped with
AppConnect wrapper versions 8.0
through 8.4

AppTunnel and TLS protocol versions
in Android secure apps

MI_AC_ENABLE_TLS_
FALLBACK

When true, the AppConnect wrapper
falls back to using TLSv1.0 if TLSv1.2 is
not accepted for network requests using
AppTunnel.

Applicable only to apps wrapped with
AppConnect wrapper versions 8.5
through the most recently released
version as supported by MobileIron.

AppTunnel and TLS protocol versions
in Android secure apps

ES_CERT_AUTH_SERVICES Specifies the list of AppTunnel services
that use certificate authentication using
AppTunnel with TCP tunneling.

Configuring certificate authentication
using AppTunnel with TCP tunneling
for Android secure apps

<service_name>_CERT Specifies the certificate enrollment
setting for the certificate for
authenticating to the enterprise server
when using AppTunnel
with TCP tunneling.

Configuring certificate authentication
using AppTunnel with TCP tunneling
for Android secure apps

ES_DEFAULT_CERT Specifies the certificate enrollment
setting for the default certificate for
authenticating to the enterprise server
when using AppTunnel
with TCP tunneling.

Configuring certificate authentication
using AppTunnel with TCP tunneling
for Android secure apps

TABLE 45. APPCONNECT FORANDROID KEY-VALUE PAIRS

AppConnect app configuration key-value pairs

MobileIronCore 11.1.0.0 AppConnectGuide| 171

Secure Apps Manager app configuration key-value pairs

The following table describes the key-value pairs that are configured in the AppConnect app configuration for
Secure Apps Manager.

Key name Description Reference

MI_DISABLE_CUSTOM_
KEYBOARD

When true, the use of custom
keyboards in AppConnect apps is
disabled.

Custom keyboards in AppConnect
apps

MI_CUSTOM_KEYBOARD_
WHITELIST

Lists the package names of
whitelisted keyboard apps when
custom keyboards are disabled.

Custom keyboards in AppConnect
apps

MI_AC_SHARE_CONTENT When true, AppConnect apps can
share content (text, images, or video)
with non-AppConnect apps.

Sharing content from AppConnect for
Android apps to non-AppConnect apps

MI_AC_ALLOW_OPEN Specifies the domain and the non-
AppConnect app in which to open the
domain.

See App whitelist for format and
examples of the supported values for
the key-value pair.

AC_PUBLIC_KEY Specifies the certificate setting
containing the public certificate that
matches the enterprise private key
used to sign apps wrapped with the
AppConnect wrapping tool.

See "The MobileIron AppConnect for
Android Wrapping Tool" in the
MobileIron AppConnect for Android
App Developers Guide

TABLE 46. APPCONNECT FORANDROID KEY-VALUE PAIRS

AppConnect for iOS key-value pairs
The following table summarizes the AppConnect for iOS key-value pairs used to configure various AppConnect
features.

Key name Description Reference

MI_AC_DISABLE_
OPEN_IN_
ENFORCEMENT

When Yes, Open In is allowed to all apps. Open-In data loss
prevention policy
details

MI_AC_DISABLE_
SCHEME_BLOCKING

When true, Open In is allowed to the iOS native email app
when the user taps the AppConnect app to launch an email
app..

Open-In data loss
prevention policy
details

MI_AC_LOG_LEVEL Specifies the log level for the app: error, info, verbose, or Configuring certificate

TABLE 47. APPCONNECT FOR IOS KEY-VALUE PAIRS

Secure AppsManager app configuration key-value pairs

MobileIronCore 11.1.0.0 AppConnectGuide| 172

Key name Description Reference

debug. authentication using
AppTunnel with TCP
tunneling for Android
secure apps

MI_AC_LOG_LEVEL_
CODE

Specifies the string that the device user enters to activate the
verbose or debug log level.

Logging for
AppConnect apps for
iOS

MI_AC_ENABLE_
LOGGING_TO_FILE

When Yes, an AppConnect app's logs are logged to files on
the device.

Logging for
AppConnect apps for
iOS

MI_AC_WR_ENABLE_
LOG_CAPTURE

When Yes,when emailing AppConnect-related log files
from Mobile@Work, the logs of a wrapped app are emailed
along with the logs of the AppConnect wrapper and the
AppConnect librar

Logging for
AppConnect apps for
iOS

MI_AC_IOS_ALLOW_
CUSTOM_KEYBOARDS

When true, the AppConnect app is allowed to use customer
keyboards.

Custom keyboard
control

MI_AC_WR_ALLOW_
KEYBOARD_
DICTATION

When true,a wrapped app can use dictation with the iOS
native keyboard.

Dictation with the
native keyboard is not
allowed for wrapped
apps

MI_AC_ENABLE_
SCREEN_BLURRING

When false, screen blurring is disabled if the AppConnect
app has given screen blurring control to the AppConnect
library.

Screen blurring

MI_AC_CLIENT_
CERT_#

Used in setting up certificate authentication from an
AppConnect app to an enterprise service.

Certificate
authentication from
AppConnect apps to
enterprise services

TABLE 47. APPCONNECT FOR IOS KEY-VALUE PAIRS (CONT.)

AppConnect for iOS key-value pairs

MobileIronCore 11.1.0.0 AppConnectGuide| 173

Key name Description Reference

MI_AC_CLIENT_
CERT_#_RULE

Used in setting up certificate authentication from an
AppConnect app to an enterprise service.

Certificate
authentication from
AppConnect apps to
enterprise services

MI_AC_CONTAINER_
TYPE

When set to ENCLAVE, sensitive data, such as encryption
keys, is stored in the Apple Secure Enclave on the device.

Heightened security for
AppConnect apps
using the Secure
Enclave

MI_AC_USE_
ORIGINAL_
COOKIES_FOR_
DOMAINS

Some web pages inject custom cookies into web requests.
For example, when an end user taps on a link in a web page,
the page's JavaScript injects a custom cookie. If a user
makes such a request from a web page displayed in an
AppConnect app, by default AppConnect does not include
the injected cookies in the web request, which can cause the
request to fail. AppConnect includes the custom cookies in
the request if you include the following key in the app's app-
specific configuration: MI_AC_USE_ORIGINAL_COOKIES_FOR_
DOMAINS. The value of the key is a comma-separated string
listing the domains for which the custom cookies should be
included. Make sure no spaces are included in the value.

For example:

www.somewebsite.com,somename.someotherwebsite.com

Supported with apps built or wrapped with AppConnect 4.2.1
for iOS through the most recently released version as
supported by MobileIron.

TABLE 47. APPCONNECT FOR IOS KEY-VALUE PAIRS (CONT.)

Related topics

AppConnect for Android key-value pairs

AppConnect for iOS key-value pairs

7

MobileIronCore 11.1.0.0 AppConnectGuide| 174

Troubleshooting AppConnect and AppTunnel
for Android

l Logging for AppConnect apps for Android

l State and encryption mode of Android secure apps

l Status of AppConnect-related policies and configurations for an app

Logging for AppConnect apps for Android
Log files can be emailed by using the Send Log option in Mobile@Work for Android. You can choose whether
the log files are encrypted when they are provided to the email app. The choice affects the log files of the
following:

l Mobile@Work for Android

l Secure Apps Manager

l AppConnect-enabled apps (including what the app logs and what the AppConnect wrapper around the
app logs)

Encrypted log files can be decrypted only by MobileIron Technical Support. The security policy for a device
contains the option for choosing whether the emailed log files are encrypted. The default setting is to not encrypt
the files. Typically, you turn on encryption. However, if you want to troubleshoot issues with Mobile@Work,
Secure Apps Manager, or AppConnect-enabled apps yourself, turn off device log encryption.

NOTE: Regardless of thedevice logencryption setting, the log files never includepasswords, certificate
content, license information, or other sensitiveauthenticationdata.

Turning on device log encryption on Android devices
1. Go to Policies & Configs > Policies.
2. Select the security policy for the appropriate devices.
3. Click Edit.

MobileIronCore 11.1.0.0 AppConnectGuide| 175

4. In the Data Encryption section. for Device Log Encryption, selectOn.
5. Click Save.

State and encryption mode of Android secure apps
To see device details about the state and encryption mode of Android secure apps:

1. On the Admin Portal, go to Devices & Users > Devices.

2. Expand the device details panel of an Android device, by clicking the up arrow next to the checkbox.

3. Select the Device Details tab.
The following details relate to AppConnect apps on the device:

State and encryptionmode of Android secure apps

MobileIronCore 11.1.0.0 AppConnectGuide| 176

Item Description

Secure Apps Enabled true if the AppConnect global policy for the device is enabled. That is, for the
AppConnect field, Enabled is selected.

Otherwise false.

Secure Apps Encryption
Enabled

true if the device user has created a secure apps passcode.

Otherwise, false.

NOTE: This field is applicableonlywhenyouhave selected Passcode is
required for Android deviceson theAppConnectglobal policy.
WhenanAppConnectpasscode is not required, encryption is
always enabled,without dependingon thedeviceuser tocreate
a secureappspasscode.

Secure Apps Encryption
Mode

Displays AES-256

TABLE 48. STATE AND ENCRYPTION MODE OFANDROID SECURE APPS ON DEVICE DETAILS

Status of AppConnect-related policies and configurations for
an app
Information is available on the Admin Portal about the status of AppConnect-related policies and configurations
for AppConnect apps on a device.

To see the information:

1. On the Admin Portal, go to Devices & Users > Devices.

2. Expand the device details panel of an Android device, by clicking the up arrow next to the checkbox.

3. Select the Apps tab.

4. Select an AppConnect app.
Information displays about the policies and configurations on the device for the AppConnect app.

Status of AppConnect-related policies and configurations for an app

8

MobileIronCore 11.1.0.0 AppConnectGuide| 177

Troubleshooting AppConnect and AppTunnel
for iOS

l Logging for AppConnect apps for iOS

l Secure apps status display in Mobile@Work

l AppTunnel configuration troubleshooting display in Mobile@Work

l Status of AppConnect-related policies and configurations for an app

l Viewing certificates stored in Mobile@Work

l AppTunnel diagnostics in SDK-built apps

Logging for AppConnect apps for iOS
l Overview of logging for AppConnect apps for iOS

l Log levels

l How the log level appears in messages

l Log file details

l Log data collection overview

l Configuring logging for an AppConnect app

l Creating a new label

l Applying labels

l Log level configuration impact on the device

l Activating verbose or debug logging on the device

l Emailing log files from Mobile@Work

l Removing log level configuration when no longer needed

Overview of logging for AppConnect apps for iOS

You can collect detailed log data for AppConnect for iOS apps. You specify the AppConnect apps that should log
detailed data. The AppConnect library contained in each specified app also logs detailed data. The log data
provides information to help MobileIron Technical Support troubleshoot issues with the apps.

Depending on your configuration, the data is logged to:

MobileIronCore 11.1.0.0 AppConnectGuide| 178

l the device’s console.

l the device’s console and files on the device.

IMPORTANT: Donotmodify the log level if it impactsmanydevices in your productionconfiguration
because themodificationcan impactCoreperformance.Makemodifications only to
configurations that impactonlya fewdevices.

Log levels

You choose one of four log levels for an AppConnect app. The two highest levels can log sensitive data. To
prohibit unauthorized users from accessing sensitive data, the two highest levels require the device user to enter
a debug code that you specify.

Exactly what sensitive data is logged depends on the app, but can include, for example:

l Device user data, including document names and contents, contact lists, notes, and bookmarks

l Encryption keys, passwords, certificates, signing identities, and cookies

l Complete URLs and URL POST data

l Data that reveals the contents of encrypted data

The following table describes the log levels from lowest (least verbose) to highest (most verbose):

Log levels

MobileIronCore 11.1.0.0 AppConnectGuide| 179

Log level Description Contains
sensitive data?

Requires the
user to enter
the debug
code?

Error Provides error, warning, and status messages.

This level is the default. It is always turned on.

Error messages are for events that block access to
part or all of the app.

Example: Corrupt or missing data

Warning messages are for events that are suspicious,
but not quite failures like errors.

Example: Unexpected data that is ignored

Status messages indicate major changes in the state
of the app.

Example: User successfully logged in

No No

Info Provides error, warning, and status messages, plus
more information.

Info messages indicate minor changes in the state of
the app.

Example: AppConnect app check-in times

No No

Verbose Provides error, warning, status, and info messages,
plus more, possibly sensitive, information.

Verbose messages provide more extensive
information, possibly including sensitive details.

Example: Server URLs

Yes Yes

Debug Provides error, warning, status, info, and verbose
messages, plus further information, which is possibly
sensitive.

Debug messages have the most information, possibly
including sensitive details.

Example: URL request details

Yes Yes

TABLE 49. APPCONNECT LOG LEVELS

How the log level appears in messages

When you set the log level for an app, messages logged by the following components are impacted:
• the AppConnect app
• the MobileIron AppConnect library contained in the AppConnect apps
• the AppConnect wrapper (only applicable for wrapped AppConnect apps)

How the log level appears inmessages

MobileIronCore 11.1.0.0 AppConnectGuide| 180

The messages logged by these components include the log level as shown in the following table:

Component App name in log
message

How the log level appears in messages

An AppConnect
app

The app’s name [Error]

[Warning]

[Status]

[Info]

[Verbose]

[Debug]

NOTE: The value error for theMI_AC_LOG_LEVEL key inan
app’sAppConnectappconfiguration, can result in
messageswith [Error], [Warning], and [Status].

AppConnect
library contained
in an
AppConnect app

The app’s name [AppConnect:Error]

[AppConnect:Warning]

[AppConnect:Status]

[AppConnect:Info]

[AppConnect:Verbose]

[AppConnect:Debug]

NOTE: The value error for theMI_AC_LOG_LEVEL key inan
app’sAppConnectappconfiguration, can result in
messageswith [AppConnect:Error],
[AppConnect:Warning], and [AppConnect:Status].

The AppConnect
wrapper (only
applicable for
wrapped
AppConnect
apps)

The app’s name [AppConnectWrapper:Error]

[AppConnectWrapper:Warning]

[AppConnectWrapper:Status]

[AppConnectWrapper:Info]

[AppConnectWrapper:Verbose]

[AppConnectWrapper:Debug]

NOTE: The value error for theMI_AC_LOG_LEVEL key inan
app’sAppConnectappconfiguration, can result in
messageswith [AppConnectWrapper:Error],
[AppConnectWrapper:Warning], and
[AppConnectWrapper:Status].

TABLE 50. HOW THE LOG LEVEL APPEARS IN MESSAGES

Log file details

Details regarding the log files for each app are:
• The log files for each app are saved to the following directory:

Log file details

MobileIronCore 11.1.0.0 AppConnectGuide| 181

Apps/<app name>/Library/Application Support/AppConnectLogs
• The log file for each app is named appconnect.log.
• The log file is at most 1 MB.
• When appconnect.log exceeds 1 MB:

a. It is renamed to appconnect.log.<timestamp>.
Example: appconnect.log.2015-05-28 15:13:21

b. Logging begins in a new file named appconnect.log.
c. If 20 log files already exist, the oldest file is deleted.

Log data collection overview

To collect log data, you do the following high-level steps:
1. Create an AppConnect app configuration that specifies a non-default log level for the app and specifies

logging to files, if desired.
You create a key-value pair that specifies one of four log levels. For the two highest log levels, verbose and
debug, you create a key-value pair that is the debug code that activates logging.
You create another key-value pair to specify logging to files.
See Configuring logging for an AppConnect app.

2. Create a new label that you apply to the new AppConnect app configuration and no more than a few devices.
See Creating a new label.

3. Apply labels appropriately.
See Applying labels.

4. If you chose one of the two highest log levels, ask the device user to turn on logging for the app on the device,
and to enter the debug code.
See Log level configuration impact on the device and Activating verbose or debug logging on the device.

5. Use Mobile@Work to email the log files.
See Emailing log files from Mobile@Work

6. Revert to the default log level.
See Removing log level configuration when no longer needed

Configuring logging for an AppConnect app

To configure the log level and debug code for an app, and to specify that you want to log to files in addition to the
device console, do the following:
1. In the Admin Portal, select Policies & Configs > Configurations
2. If the app does not already have an AppConnect app configuration, select Add New > AppConnect > App

Configuration. Enter a name and description for the new app configuration and the app’s bundle ID.
Continue to Step 5.

3. If the app does have an AppConnect app configuration, select it.
4. ClickMore Actions > Save As.

A dialog box with a copy of the AppConnect app configuration displays.
5. In App-specific Configurations, click Add+ to add a key-value pair.
6. EnterMI_AC_LOG_LEVEL in the key field.

The key name is case-sensitive.
7. Enter one of the following in the value field: error, info, verbose, or debug.

This value is not case-sensitive.
8. If you entered verbose or debug, click + to add another key-value pair.

Log data collection overview

MobileIronCore 11.1.0.0 AppConnectGuide| 182

9. EnterMI_AC_LOG_LEVEL_CODE in the key field.
The key name is case-sensitive.

10. Enter a string for the value.
The device user will enter this string to activate the verbose or debug log level. You can make up any string.
For example, enter 37!8D. For the most security, use a code that is difficult to guess.
The string is case-sensitive.

11. In App-specific Configurations, click Add+ to add a key-value pair.
12. EnterMI_AC_ENABLE_LOGGING_TO_FILE in the key field.

The key name is case-sensitive.

NOTE: AppsbuiltwithAppConnect for iOS SDKversionsprior to 2.3 orwrappedwithAppConnect for iOS
Wrapper versionsprior to 2.5donot support this key. The logsdonotgetwritten to files.

13. Enter Yes in the value field.
14. Click Save.

Creating a new label

Create a new label for the new AppConnect app configuration.
1. In the Admin Portal, select Devices & Users > Labels.
2. Click Add Label.
3. Enter a name for the label, such as AppConnect for iOS logging.
4. For Type, selectManual.
5. Click Save.

Applying labels

Apply labels so that the AppConnect app configuration with the log level key-value pairs is applied to only a few
devices.

IMPORTANT: ModifyinganAppConnectappconfiguration formanydevices in your production
environment can impactCoreperformance. For this reason, creatinganew label for onlya
fewdevices is necessary.

Apply labels as follows:

1. Apply the new label to the new AppConnect app configuration.

2. Apply the new label to a few test devices.

3. If you copied the AppConnect app configuration, make sure the test devices have only the new label,
and not the label from the copied AppConnect app configuration.

4. If the app has an AppConnect container policy, apply the new label to the policy so that the test devices
receive it.

5. Apply the new label to the AppConnect global policy for the devices, unless the devices use the default
AppConnect global policy.

6. If the test devices depend on other configurations or policies, apply the new label to those configurations
and policies, too.

To apply the new label to a configuration or policy:

Creating a new label

MobileIronCore 11.1.0.0 AppConnectGuide| 183

1. Select the policy or configuration.

2. SelectMore Actions > Apply To Label.

3. Select the new label.

4. Click Apply.

To add the new label to a device:

1. Select the device.

2. SelectMore Actions > Apply To Label.

3. Select the labels to apply to the device.

4. Click Apply.

Log level configuration impact on the device

Error level logging is always on, regardless of whether you have configured the MI_AC_LOG_LEVEL key-value
pair, and it requires no actions from the device user. Info level logging also does not require device user
interaction. However, verbose or debug level logging do not begin until the device user activates debug mode in
Mobile@Work.

The status details for an AppConnect app include a Debug Mode switch only when you have configured both of
the following in the app’s AppConnect app configuration:
• a log level of verbose or debug
• a debug code

In this case, the status details for an AppConnect app shows the Debug Mode switch:

Log level configuration impact on the device

MobileIronCore 11.1.0.0 AppConnectGuide| 184

NOTE: The keysMI_AC_LOG_LEVELandMI_AC_LOG_LEVEL_CODEarenot included in theconfiguration
count onanapp’s detailed statusdisplay.

Activating verbose or debug logging on the device

To activate verbose or debug level logging, instruct the device user to do the following:
1. Open Mobile@Work on the device.
2. Tap Settings.
3. Tap Check For Updates.
4. Tap Secure Apps.
5. Tap the app for which you want verbose or debug level logging.
6. Slide the toggle for Debug Mode.

7. Enter the debug code.
8. Tap Next.

Verbose or debug level logging is activated for 24 hours, after which it is automatically deactivated the next time
that the device user launches or switches to the app. However, the device user can deactivate it any time by
tapping Debug Mode again.

Emailing log files from Mobile@Work

Mobile@Work for iOS can send the log files to an email address of your choice. This feature requires:

l Mobile@Work 9.8 for iOS through the most recently released version as supported by MobileIron

l AppConnect apps using AppConnect 4.0 for iOS

Activating verbose or debug logging on the device

MobileIronCore 11.1.0.0 AppConnectGuide| 185

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

The option is displayed only for apps AppConnect apps using AppConnect 4.0 for iOS. However, the displayed
option is disabled if the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, if you included the following key-value pair for the app in its AppConnect app configuration:
• MI_AC_ENABLE_LOGGING_TO_FILE set to Yes

For wrapped apps, you can also include the keyMI_AC_WR_ENABLE_LOG_CAPTURE set to Yes. This key
causes the app’s logs to be included in the log files along with the logs from the AppConnect wrapper and
AppConnect library.

Removing log level configuration when no longer needed

Once you have collected the logs from the device user, remove theMI_AC_LOG_LEVEL, MI_AC_LOG_
LEVEL_CODE, andMI_AC_ENABLE_LOGGING_TO_FILE key-value pairs from the new AppConnect app
configuration. This best practice ensures the app does not continue logging sensitive data unnecessarily.

Do the following:

1. In the Admin Portal, select Policies & Configs > Configurations

2. Select the app configuration for the app and click Edit.

3. In App-specific Configurations, click X to remove the key-value pairs.

4. Click Save.

Alternatively, you can also return to using the original AppConnect app configuration for the test devices. Do the
following:

1. Remove the new test label from the devices and re-apply the original label.

2. Delete the new AppConnect app configuration.

3. Remove the new label from any configurations or policies that you applied it to.

4. Delete the new label.

Secure apps status display in Mobile@Work
A secure apps status display in Mobile@Work provides detailed information about each secure app, allowing
you to troubleshoot issues more easily.

Removing log level configurationwhen no longer needed

MobileIronCore 11.1.0.0 AppConnectGuide| 186

Navigating to the secure apps status display

To see the secure apps status display:
1. Open Mobile@Work on the device.
2. Tap Settings.
3. Tap Secure Apps.

4. All installed secure apps that have been opened at least once appear under the heading “Secure Apps”.
If no secure apps have been opened at least once, then this list does not appear.

The secure apps status display contents

The secure apps status display shows the following information for each secure app:
• The icon of the secure app
• The name of the secure app
• The version number of the secure app

It is the short version number, followed by the long version number in parenthesis.
• An icon that indicates whether the app is authorized

Status details for a specific secure app

To see status details for one of the secure apps in the secure apps status display, tap the app’s entry.

Navigating to the secure apps status display

MobileIronCore 11.1.0.0 AppConnectGuide| 187

FIGURE 9. STATUS DETAILS FOR A SECURE APP

The following table describes the status details for a secure app:

Field Description

App Version The version number of the secure app.

It is the short version number, followed by the long version number in
parenthesis.

SDK Version The version of the AppConnect for iOS SDK for apps built with the SDK.

The AppConnect for iOSWrapper version for wrapped apps. This version
includes the SDK version used in the Wrapper.

Last Check-in The date and time when Mobile@Work last fetched the AppConnect
policies from MobileIron Core.

Authorization Status Whether the device is authorized to use the app. Possible values are:
• Authorized
• Unauthorized
• Retired

Policies and Configurations

For more information, see AppConnect container policies and AppConnect app configuration.

Open In Whether Open In is allowed for the app in Core configuration. Possible
values are:

TABLE 51. STATUS FIELDS FOR A SECURE APP

Status details for a specific secure app

MobileIronCore 11.1.0.0 AppConnectGuide| 188

Field Description

• Not Allowed
• Allowed (All Apps)
• Allowed (Secure Apps Only)
• Allowed (Whitelisted Apps)

Open From Whether Open From is allowed for the app in Core configuration. Possible
values are:
• Not Allowed
• Allowed (All Apps)
• Allowed (Secure Apps Only)
• Allowed (Whitelisted Apps)

Print Whether print capabilities are allowed for the app in Core configuration.
Possible values are:
• Not Allowed
• Allowed

Copy/Paste Whether the device user can copy from the app to other apps, as specified
in Core configuration. Possible values are:
• Not Allowed
• Allowed
• Secure Apps

TABLE 51. STATUS FIELDS FOR A SECURE APP (CONT.)

Status details for a specific secure app

MobileIronCore 11.1.0.0 AppConnectGuide| 189

Field Description

Drag and Drop Whether the device user can drag content from the app to other apps, as
specified in Core configuration. Possible values are:
• Not Allowed
• Allowed
• Secure Apps

Configuration Count The number of key-value pairs that the Core sent to the app. This value
corresponds to the number of key-value pairs in the AppConnect app
configuration for the app.

NoteTheFollowing:
• If one of the key-value pairs in the AppConnect app configuration is a

Certificate Enrollment or Certificate setting and the certificate is
password-encoded, Core automatically sends another key-value pair
for the password. The configuration count includes that key-value pair.

• The keys that you use to turn on debug level logging for an
AppConnect app are not included in the configuration count. These
keys are MI_AC_LOG_LEVEL and MI_AC_LOG_LEVEL_CODE.

AppTunnel Displays AppTunnel configuration information for the app that it received
from MobileIron Core. This information helps troubleshoot your AppTunnel
configuration when an app is not successfully tunneling to its app server.

Related topics

AppTunnel configuration troubleshooting display in Mobile@Work.

TABLE 51. STATUS FIELDS FOR A SECURE APP (CONT.)

If an app has not applied a policy or configuration, the corresponding field in the display also indicates one of the
following:
• Pending

The app has not yet applied the policy or configuration. The pending status shows until the next time the
device user launches the app.

• Unsupported
The app does not support the policy or configuration.

• Error
The app had an error when applying the policy or configuration.

When you change the policies or configuration on MobileIron Core, Mobile@Work displays the updated status
the next time it fetches the policies from Core. This action occurs when the next time any app checks in, or when
a force device check-in occurs.

Status details for a specific secure app

MobileIronCore 11.1.0.0 AppConnectGuide| 190

AppTunnel configuration troubleshooting display in
Mobile@Work
Mobile@Work displays AppTunnel configuration information for the app that it received from MobileIron Core.
This information helps troubleshoot your AppTunnel configuration when an app is not successfully tunneling
URL requests to its app server. Check the display’s fields to make sure that your AppTunnel configuration has
been sent to the device and is what you intended.

Some highlights of the displayed AppTunnel configuration are:

l Whether Mobile@Work has received the AppTunnel configuration from Core.

l Whether the client certificate, identifying the device user to the Standalone Sentry, has expired.

l The list of AppTunnel rules that indicate which URL requests should be tunneled.

Navigating to the AppTunnel configuration troubleshooting display

Procedure
1. Open Mobile@Work on the device.
2. Tap Settings.
3. Tap Secure Apps. (Screenshots from Mobile@Work 9.1)

4. Tap the secure app you are interested in.

AppTunnel configuration troubleshooting display inMobile@Work

MobileIronCore 11.1.0.0 AppConnectGuide| 191

5. Tap AppTunnel.

NOTE: IfAppTunnel isNone, noAppTunnel configuration is available for theapponMobile@Work. See
AppTunnel configuration troubleshootingchecklist.

Navigating to the AppTunnel configuration troubleshooting display

MobileIronCore 11.1.0.0 AppConnectGuide| 192

Troubleshooting with the AppTunnel configuration display fields

Use the AppTunnel configuration display if URL requests that you configured for AppTunnel are not being
tunneled. Check the display’s fields to make sure that your AppTunnel configuration has been sent to the device
and is what you intended.

NOTE: Some screenshots are fromMobile@Work 9.1.

FIGURE 10. APPTUNNEL DISPLAY

Field name Description Troubleshooting actions

Header Line Count HTTP/S request header
information for Sentry

If the value is zero, the device is not receiving the
AppTunnel information from MobileIron Core.

Verify your AppTunnel configuration as specified in
AppTunnel configuration troubleshooting checklist.

If the value is still zero, contact MobileIron Technical
Support.

Client Certificate
Password

Whether the client
certificate that identifies
the device user to Sentry
is password-enabled.

When using a SCEP certificate, the value should be
YES.

Client Certificate Whether a valid client Tap to see the identity’s certificate information,

TABLE 52. APPTUNNEL DISPLAY FIELDS AND TROUBLESHOOTING ACTIONS

Troubleshootingwith the AppTunnel configuration display fields

MobileIronCore 11.1.0.0 AppConnectGuide| 193

Field name Description Troubleshooting actions

identity is available. This
client identity is used to
authenticate the app to
the Sentry.

including whether the certificate has expired.

If the value is None, check the AppConnect app
configuration for the app. Make sure you specified an
identity certificate.

In the Admin Portal for MobileIron Core:
1. Go to Policies & Configs > Configurations.
2. Select the AppConnect app configuration for the

app (Setting Type is APPCONFIG) and Click
Edit.

3. If you have not created an AppConnect app
configuration, select Add New > AppConnect >
Configuration.

4. In the AppTunnel Rules section, in the Identity
Certificate field, specify a valid client certificate.

5. Click Save.

Make sure you have applied the appropriate labels to
the AppConnect app configuration.

Sentries The Sentries that are
configured for AppTunnel
for this app.

Tap to see the list of Sentries. Make sure they are
what you expect this app to use for AppTunnel.

Rules The AppTunnel rules
configured on the app’s
AppConnect app
configuration.

If None, you have not configured AppTunnel rules on
the AppConnect app configuration.

In the Admin Portal for MobileIron Core:
1. Go to Policies & Configs > Configurations.
2. Select the AppConnect app configuration for the

app (Setting Type is APPCONFIG) and Click
Edit.

3. If you have not created an AppConnect app
configuration, select Add New > AppConnect >
Configuration.

4. Edit the AppTunnel Rules section.
5. Click Save.

Make sure you have applied the appropriate labels to
the AppConnect app configuration.

TABLE 52. APPTUNNEL DISPLAY FIELDS AND TROUBLESHOOTING ACTIONS (CONT.)

Client Certificate display

Check the client certificate fields, including whether the certificate has expired.

Client Certificate display

MobileIronCore 11.1.0.0 AppConnectGuide| 194

NOTE: If necessary, tapona field to view theentire string.

Field name Description Troubleshooting actions

Subject You can compare the certificate values to the values on the
Core Admin Portal:
1. Go to Logs > Certificate Management.
2. Select the certificate of interest for the user.
3. Click View.

Related topics
• Specifying a trusted root certificate in the Standalone

Sentry
• Specifying a valid client certificate in the AppConnect app

configuration

Common Name

Organizational
Unit

Issuer

Common Name

Serial Number

Version

Validity

Not Valid After Expiration date Make sure that the certificate has not expired.

Not Valid Before Initial date Make sure that the certificate is valid.

TABLE 53. CLIENT CERTIFICATE DISPLAY FIELDS AND TROUBLESHOOTING ACTIONS

Client Certificate display

MobileIronCore 11.1.0.0 AppConnectGuide| 195

Specifying a trusted root certificate in the Standalone Sentry

The client identity is issued from a Trusted Root Certificate.The Standalone Sentry must be configured with the
Trusted Root Certificate for device authentication to the Sentry.

To configure Standalone Sentry with the Trusted Root Certificate, in the Admin Portal for MobileIron Core:
1. Go to Services > Sentry.
2. Select the Standalone Sentry.
3. Click Edit.
4. Make sure Enable AppTunnel is selected.
5. In the Device Authentication Configuration section, select Identity Certificate.
6. Click Choose File to navigate to and select the Trusted Root Certificate.
7. Click Upload Certificate.
8. Click View Certificate to verify the certificate.
9. Click Save.

Related topics
• “Device and server authentication support for Standalone Sentry” in the Sentry Guide for MobileIron Core.

Specifying a valid client certificate in the AppConnect app configuration

If the client certificate is not valid, specify a valid client identity certificate in the AppConnect app configuration.

In the Admin Portal for MobileIron Core:
1. Go to Policies & Configs > Configurations.
2. Select the AppConnect app configuration for the app (Setting Type is APPCONFIG) and Click Edit.
3. If you have not created an AppConnect app configuration, select Add New > AppConnect >

Configuration.
4. In the AppTunnel Rules section, in the Identity Certificate field, specify a valid client certificate.
5. Click Save.

Make sure you have applied the appropriate labels to the AppConnect app configuration.

Specifying a trusted root certificate in the Standalone Sentry

MobileIronCore 11.1.0.0 AppConnectGuide| 196

Rules display

This display shows each AppTunnel rule configured on the app’s AppConnect app configuration. The following
table shows the display fields for each rule and the corresponding fields in the AppConnect app configuration:

Rules display

MobileIronCore 11.1.0.0 AppConnectGuide| 197

Field name Description Troubleshooting actions

Pattern Corresponds to the URL
Wildcard field of the
AppConnect app
configuration.

Make sure the field contains the hostname that the
app is trying to access. The pattern can contain the
wildcard *.

The app data is tunneled only if the hostname and
port number in the app’s request matches the Pattern
field and Port field.

Exception: For iOS apps using AppConnect releases
prior to AppConnect for iOS SDK 2.5 and AppConnect
for iOSWrapper 2.7, only the request’s hostname,
not the port number, determines whether the app
data is tunneled.

Port Corresponds to the Port
field of the AppConnect
app configuration.

Make sure the field contains the port number that the
app is trying to access.

The app data is tunneled only if the hostname and
port number in the app’s request matches the Pattern
field and Port field.

Exception: For iOS apps using AppConnect releases
prior to AppConnect for iOS SDK 2.5 and AppConnect
for iOSWrapper 2.7, only the request’s hostname,
not the port number, determines whether the app
data is tunneled.

Service Corresponds to the
Service field of the
AppConnect app
configuration.

The value specifies an
AppTunnel service
configured in the
AppTunnel
Configuration section of
the specified Sentry.

Make sure the service corresponds to an AppTunnel
service on the Sentry that accesses the intended app
server.

In the Admin Portal for MobileIron Core:
1. Go to Services > Sentry.
2. Select the appropriate Sentry and click Edit.
3. In the AppTunnel Configuration section, make

sure the Server List for the service includes the
intended app server.

Sentry ID The MobileIron Core
internal ID for the Sentry.

Only for use by MobileIron Technical Support.

TABLE 54. APPTUNNEL RULES DISPLAY FIELDS AND TROUBLESHOOTING ACTIONS

Sentry display

This display lists the Sentries that are configured for AppTunnel for this app. Make sure they are what you
expect.

Sentry display

MobileIronCore 11.1.0.0 AppConnectGuide| 198

Field name Description Troubleshooting actions

ID The MobileIron Core
internal ID for the Sentry.

For use only by MobileIron Technical Support.

Host Sentry host name Make sure this Sentry is one you intended for
AppTunnel for this app.

Port Port opened to MobileIron
Core.

Protocol Version Protocol version between
the Sentry and MobileIron
Core

For use only by MobileIron Technical Support.

Certificate This is the certificate that
the AppConnect Library
in the app uses to know
that the Sentry used for
AppTunnel is a trusted
server.

A valid pinned Sentry
certificate must be
available for tunneling.

Tap to see certificate information, including whether
the certificate has expired.

To view the Sentry certificate in the Admin Portal for
MobileIron Core.
1. Go to Services > Sentry.
2. Find the line for the appropriate Sentry.
3. Click View Certificate.

TABLE 55. SENTRIES DISPLAY FIELDS AND TROUBLESHOOTING ACTIONS

Sentry display

MobileIronCore 11.1.0.0 AppConnectGuide| 199

Related topics

“Managing certificates for Standalone Sentry” in the Sentry Guide for MobileIron Core.

Sentry Certificate display

Make sure this is the certificate you intended for devices to use to know that the Sentry used for AppTunnel is a
trusted server. Check the certificate fields, including whether the certificate has expired. You sometimes have to
scroll down the screen to see all the fields.

NoteTheFollowing:
• If necessary, tap on a field to view the entire string.
• Scroll down to see additional fields.

Sentry Certificate display

MobileIronCore 11.1.0.0 AppConnectGuide| 200

TABLE 56. SENTRY CERTIFICATE DISPLAY FIELDS AND TROUBLESHOOTING ACTIONS

Field name Description Troubleshooting actions

Subject You can compare the certificate values to the values on
the Core Admin Portal:
1. Go to Services > Sentry.
2. Find the line for the appropriate Sentry.
3. Click View Certificate.

Related topics

Uploading a valid Sentry certificate to Standalone
Sentry

Common Name

Country

Email Address

Organization

Organizational Unit

State/Province

Issuer

Common Name

Country

Organization

Organizational Unit

Serial Number

State/Province

Version

Validity

Not Valid After Expiration date Make sure that the certificate has not expired.

Not Valid Before Initial date Make sure that the certificate is valid.

Uploading a valid Sentry certificate to Standalone Sentry
If the certificate is not valid, upload a valid certificate.

In the Admin Portal for MobileIron Core:
1. Go to Services > Sentry.
2. Find the line for the appropriate Sentry.
3. ClickManage Certificate.
4. Select Upload Certificate.
5. Click Browse.
6. Select the certificate and click Upload Certificate.
7. Click View Certificate to verify the certificate.

Uploading a valid Sentry certificate to Standalone Sentry

MobileIronCore 11.1.0.0 AppConnectGuide| 201

Related topics

“Standalone Sentry certificate” in the Sentry Guide for MobileIron Core.

AppTunnel configuration troubleshooting checklist

If an app is not successfully tunneling to its app server, check the following in the MobileIron Core Admin Portal:

Admin Portal location Troubleshooting actions

Settings > Additional
Products > Licensed
Products

Make sure you have enabled the appropriate products.

Make sure you have selected App Tunnel for Third-party and In-house apps, if
you are using AppTunnel for any app besides Docs@Work.

Policies & Configs >
Policies

AppConnect global
policy

Check the AppConnect global policy configuration:
1. In the AppConnect field, make sure you have selected Enabled.
2. Make sure AppConnect global policy is applied to a label belonging to the

device. If you are using the default AppConnect global policy, this step is not
necessary.

3. If you do not create an AppConnect container policy for the app, select
Authorize for Apps without an AppConnect container policy.

Services > Sentry Make sure the Standalone Sentry is configured with a certificate that devices use
to know that the Sentry used for AppTunnel is a trusted server.

To view the Sentry certificate in the Admin Portal for MobileIron Core.
1. Go to Services > Sentry.
2. Find the line for the appropriate Sentry.
3. Click View Certificate.

TABLE 57. APPTUNNEL CONFIGURATION TROUBLESHOOTING CHECKLIST

AppTunnel configuration troubleshooting checklist

MobileIronCore 11.1.0.0 AppConnectGuide| 202

Admin Portal location Troubleshooting actions

Services > Sentry Make sure the Standalone Sentry is configured for AppTunnel for the app:
1. Make sure Enable AppTunnel is selected.
2. In Device Authentication Configuration, make sure the correct, valid

Trusted Root Certificate is uploaded.
3. In AppTunnel Configuration, make sure you have configured the Services.

Policies & Configs >
Configurations

AppConnect
container policy

Check the AppConnect container policy for the app. Make sure it is applied to a
label belonging to the device.

You do not need an AppConnect container policy if the AppConnect global policy
selects Authorize for Apps without an AppConnect container policy.

Policies & Configs >
Configurations

AppConnect app
configuration

Check the AppConnect app configuration for the app:
1. Make sure the AppTunnel Rules point to the intended Sentry and service.
2. For Identity Certificate,make sure you have selected the correct certificate,

issued from the trusted root Certificate Authority indicated by the Trusted Root
Certificate uploaded to the Sentry.

3. Make sure the certificate has not expired and that its initial validity date is in the
past.

4. Make sure AppConnect app configuration is applied to a label belonging to the
device.

TABLE 57. APPTUNNEL CONFIGURATION TROUBLESHOOTING CHECKLIST (CONT.)

Related topics

l Enabling AppTunnel

l AppConnect global policy

l Configuring an AppTunnel service

l Configuring the OpenWith Secure Email App option

l AppConnect container policies

l AppConnect app configuration

l “Standalone Sentry certificate” and “Device and server authentication” in the Sentry Guide for MobileIron
Core

Status of AppConnect-related policies and configurations for
an app
Information is available on the Admin Portal about the status of AppConnect-related policies and configurations
for AppConnect apps on a device.

To see the information:
1. On the Admin Portal, go to Devices & Users > Devices.
2. Expand the device details panel of an Android device, by clicking the up arrow next to the checkbox.

Status of AppConnect-related policies and configurations for an app

MobileIronCore 11.1.0.0 AppConnectGuide| 203

3. Select the Apps tab.
4. Select an AppConnect app.

Information displays about the policies and configurations on the device for the AppConnect app.

Viewing certificates stored in Mobile@Work
Mobile@Work for iOS stores AppConnect-related certificates which you can view in Mobile@Work at Settings >
Secure Apps > Stored Certificates. The following table describes the types of certificates stored.

TABLE 58. CERTIFICATES STORED INMOBILE@WORK FOR IOS

Mobile@Work version Types of certificates stored in Mobile@Work

9.5 through 9.8 • Identity certificates for which all of the
following are true:
- You configured a certificate enrollment

setting on MobileIron Core that is
referenced by an AppConnect app
configuration, Web@Work setting, or
Docs@Work setting.

- Core has delivered the identity certificate
to Mobile@Work.

10.0 through the most recently released version as
supported by MobileIron

• The types of certificates stored in
Mobile@Work 9.5 through 9.8

• Certificates pinned to an AppConnect app
using a Client TLS configuration in the app's
AppConnect app configuration, Web@Work
setting, or Docs@Work.

NOTE: Mobile@Workalso stores certificates fromderivedcredentials but derivedcredential certificates
arenotdelivered fromCore.Mobile@Workdisplays derivedcredentials separately, if applicable.
See theCore Derived Credentials Guide formore information.

Procedure
1. In Mobile@Work, tap Settings.
2. Tap Secure Apps.
3. Tap Stored Certificates.

A screen displays a list of internal identifiers for the certificates.
4. Tap on an internal identifier.

A screen displays the following information about the certificate:
- the subject name
- the issuer
- When the certificate is valid (initial date and expiration date)
- the serial number

Viewing certificates stored inMobile@Work

MobileIronCore 11.1.0.0 AppConnectGuide| 204

Related topics
• “Certificate delivery time for AppConnect-related certificates” in the Core Derived Credentials Guide.
• Certificate pinning for AppConnect apps

AppTunnel diagnostics in SDK-built apps
Some AppConnect for iOS apps provide a user interface option to display or log AppTunnel diagnostic
information. Apps can provide this functionality only if they are built with the AppConnect for iOS SDK.

Contact the application vendor or developer to find out whether the app can provide this information.

AppTunnel diagnostics in SDK-built apps

9

MobileIronCore 11.1.0.0 AppConnectGuide| 205

Secure Apps on Android Devices - User
Perspective

From a device user perspective, AppConnect apps are called secure apps. You configure whether a device uses
secure apps, and you determine which secure apps are downloaded and installed on the device. From the
device user’s perspective, a secure app:

l keeps its data secure.
A secure app can share its data and files only with other secure apps.

l requires the device user to log in with a secure apps passcode, if you require one.
Logging in one time with the secure apps passcode allows the device user to access all the secure apps.

l overlays its icon with a special badge that indicates it is a secure app.

The MobileIron UEM client app works with the Secure Apps Manager app to download, install, and manage the
secure apps. The Secure Apps Manager is downloaded and installed along with the secure apps.

The device user does the following tasks relating to secure apps:

1. Downloading and installing the secure apps

2. Creating the secure apps passcode

3. Choosing a more complex AppConnect passcode

4. Recovering the AppConnect passcode when forgotten

Also related to secure apps, the device user sees:

l Secure apps notifications

l Secure apps status bar icons

l Camera, gallery, and media player warning messages

Downloading and installing the secure apps
To download and install the secure apps on Android devices, the device user:
1. Starts the Mobile@Work app.

If the device user does not see Secure Apps in the Mobile@Work menu, you have not configured the device
to use secure apps.

2. Follows the instructions to install secure apps, including the Secure Apps Manager.
3. Continues to Creating the secure apps passcode.

MobileIronCore 11.1.0.0 AppConnectGuide| 206

Creating the secure apps passcode
After the device user downloads and installs all his secure apps, he creates a passcode for the secure apps if
you require one. Logging in one time provides access to all the secure apps.

NOTE: The secureappspasscode is not the samepasscodeas thedevicepassword, if thedevicehas
one. Thedeviceuser canchoose the samevalues for both the secureappspasscodeand the
devicepassword, or chooseadifferent value for eachof them.

To create the secure apps passcode, the device user:
1. Completes the steps in Downloading and installing the secure apps.
2. Follows the instructions on the Passcode Setup screen, entering a new secure apps passcode, and then

reentering it.
The device user must adhere to the passcode requirements that are stated on the screen.

After creating the secure apps passcode, a lock icon appears in the status bar.

Related topics

Device User impact of fingerprint login for AppConnect for Android

Choosing a more complex AppConnect passcode
Secure Apps Manager allows the device user to create a more complex AppConnect passcode than you require.
This capability gives device users more flexibility in their passcode choice while still meeting your minimum
security requirements.

Specifically, the feature works as follows. In the AppConnect global policy, you specify whether the type of the
AppConnect passcode must be numeric or alphanumeric. Secure Apps Manager allows the device user to enter
non-numeric characters when you specify the type as numeric.

The following table shows Secure Apps Manager behavior depending on the specified AppConnect passcode
type and minimum length specified in the AppConnect global policy:

Creating the secure apps passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 207

AppConnect
passcode type

AppConnect
passcode length

Secure Apps Manager behavior

Numeric 4 Numeric keypad with the option Create more complex
passcode.

When the user taps the option, an alphanumeric
keyboard displays.

Numeric Anything except 4 Alphanumeric keyboard

Alphanumeric Any Alphanumeric keyboard

TABLE 59. SECUREAPPSMANAGER BEHAVIOR WHEN PROMPTING FORAPPCONNECT PASSCODE

NoteTheFollowing:
• Because using a length of 4 with type numeric is the most common use of numeric passcodes, it is the only

case when Secure Apps Manager displays a numeric keypad.
• Consider the case when the device user switches from the numeric keypad to the alphanumeric keyboard to

create the AppConnect passcode. Even if the created passcode contains only digits, when the device user
needs to enter the passcode again, Secure Apps Manager will present the alphanumeric keyboard.

Recovering the AppConnect passcode when forgotten
When you allow self-service AppConnect passcode recovery for Android devices in the AppConnect global
policy, the Secure Apps Manager menu has an option Forgot Passcode.

NOTE: Theoption is availableonlywhen thedeviceuser is loggedout ofAppConnectapps.

To create a new AppConnect passcode, device users:
1. Open the Secure Apps Manager.
2. Tap the menu for Secure Apps Manager (in its upper right corner).
3. Tap Forgot Passcode.
4. Enter their MobileIron Core registration credentials.
5. Create a new secure apps passcode, confirming it by reentering it.

NOTE: Deviceuserswho leave this flowwithout creatinganewAppConnectpasscodewill have to
reenter theirMobileIroncredentials beforecreatinganewAppConnectpasscode.

See also "Self-service AppConnect passcode recovery" in AppConnect global policy.

Secure apps notifications
Throughout the steps for setting up secure apps on a device, and after the steps are completed, the device user
receives notifications about the status of the MobileIron UEM client and secure apps. For example, a notification
indicates whether the device user has logged in with the secure apps passcode.

Recovering the AppConnect passcodewhen forgotten

MobileIronCore 11.1.0.0 AppConnectGuide| 208

When the device user powers on the device, a notification indicates that the user has not logged in with his
secure apps passcode, and that the user has no email connection. The device user must log in to access secure
apps.

To log in, the device user:

1. Opens any secure app or the Secure Apps Manager.

2. Enters his secure apps passcode.

Some secure apps, such as the email app, are active even when the device user is not using them. For example,
the email app syncs email and calendar items. Until the device user logs in with his secure apps passcode, these
apps cannot do their jobs.

Secure apps status bar icons
A secure apps icon appears in the status bar of the device.

When the device user has entered his secure apps passcode, the icon looks like a lock that is unlocked, because
the user has unlocked the AppConnect container and can access AppConnect apps:

When logged out of secure apps, the icon looks like a lock that is locked, because the user is locked out of the
AppConnect container. To unlock the container and access AppConnect apps, the user must enter his secure
apps passcode.

For example, the device user is logged out when he has not used a secure app for five minutes.

The secure apps icon turns into a warning icon in some situations:

The warning icon appears when the device user needs to reenter his secure apps passcode, such as after
powering on the device.

Camera, gallery, and media player warning messages
You can allow or prohibit secure apps on a device to do the following:
• access camera photos from the app

Secure apps status bar icons

MobileIronCore 11.1.0.0 AppConnectGuide| 209

• access gallery images from the app
• streammedia from the app to a media player

If a capability is prohibited, if an app attempts to use the capability, a message displays indicating that the
administrator has disabled the capability.

If you allow accessing camera photos from secure apps, when an app accesses the camera, the app displays a
warning. The warning indicates that the photo will not be secured, and that a photo from an unsecured camera
app may compromise secure data.

If you allow accessing gallery images from secure apps, when an app accesses an image, the app displays a
warning. The warning indicates that the image will not be secured and that an image from an unsecured app may
compromise secure data.

If you allow media streaming from secure apps, when an app is about to streammedia, the app displays a
warning. The warning indicates that media will be streamed outside the secure container.

The warnings also provide the option to turn off future warnings.

Camera, gallery, andmedia player warningmessages

10

MobileIronCore 11.1.0.0 AppConnectGuide| 210

Secure apps on iOS Devices - User
Perspective

From a device user perspective, AppConnect apps are called secure apps. Secure apps on iOS devices allow
the device user to securely access sensitive work documents and data on the device. The device user
perspective includes the following:

l Secure apps passcode management
Device users use a secure apps passcode to access secure apps. They use Mobile@Work to manage
their secure apps passcode.

l Touch ID or Face ID with fallback to device passcode – device user perspective
Device users sometimes use Touch ID or Face ID to access secure apps. Most customers use Touch ID
or Face ID with fallback to device passcode.

l Touch ID or Face ID with fallback to AppConnect passcode – device user perspective
Some customers with restrictions on requiring device passcodes want to allow device users to access
secure apps with Touch ID or Face ID. These customers use Touch ID or Face ID with fallback to
AppConnect passcode.

The MobileIron UEM client app also provides displays to help you troubleshoot secure apps and AppTunnel. End
users typically do not use these displays. For information on these displays, see:

l Secure apps status display in Mobile@Work

l AppTunnel configuration troubleshooting display in Mobile@Work

Secure apps passcode management
Typically, you configure AppConnect to require the device user to use a secure apps passcode to use secure
apps. The device user creates and uses a secure apps passcode as follows:

l Creating a secure apps passcode

l Creating a more complex secure apps passcode

l Logging in with the secure apps passcode

l Logging out or resetting passcode for secure apps

l Resetting the secure apps passcode - administrator initiated

MobileIronCore 11.1.0.0 AppConnectGuide| 211

Creating a secure apps passcode

If a secure apps passcode is required, Mobile@Work prompts device users to create a secure apps passcode
when they:

l Access secure apps for the first time or

l Tap Log In (to secure apps) on the Mobile@Work home screen

FIGURE 11. SECURE APPS PASSWORD PROMPT

Device users can also create a secure apps password in Mobile@Work without first having to launch a secure
app.

Creating a secure apps passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 212

Procedure

1. Launch Mobile@Work.
FIGURE 12. ENTER NEW PASSCODE

2. Enter a passcode according to the specified instructions.

3. Tap Done.

Creating a secure apps passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 213

FIGURE 13. RE-ENTER THE NEW PASSCODE

4. Tap Done and Done again.

Creating a more complex secure apps passcode

Mobile@Work chooses which keyboard to display for entering a secure apps passcode based on the passcode
requirements in the AppConnect global policy. For example, on an iPhone, when the AppConnect global policy
requires a numeric passcode, Mobile@Work displays a numeric keypad. However, Mobile@Work gives the
device user the option to enter a more complex secure apps passcode. Some users may want to choose to
exceed the secure apps passcode requirements because:

l they value stronger security against guessing and brute force attacks

l they do not mind the reduced convenience of entering a more complex passcode.

If the secure apps passcode requirements in the AppConnect global policy are 4 numeric digits, Mobile@Work
displays the following:

Creating amore complex secure apps passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 214

FIGURE 14. NUMERIC PASSCODE REQUIREMENT

Mobile@Work presents a QWERTY keyboard when you tap Create more complex passcode.

FIGURE 15. ALPHA NUMERIC PASSCODE REQUIREMENT

The device user uses this screen to create a secure apps passcode that is more complex than required by the
AppConnect global policy.

Creating amore complex secure apps passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 215

The device user has the option to create a more complex passcode when:

l Creating the secure apps passcode for the first time.

l Changing the secure apps passcode.

l After tapping Forgot Passcode and reentering their user name and password for MobileIron Core.

l After exceeding the maximum number of failed passcode attempts and reentering their user name and
password for MobileIron Core.

NOTE: The last twooptions involve self-service secureappspasscode recovery,which is availableonly if
you selectAllow iOS users to recover their passcodeon theAppConnectglobal policy.

Logging in with the secure apps passcode

After a period of time in which the device user uses no secure apps, Mobile@Work automatically logs the device
user out of secure apps. When the user once again launches a secure app or taps Log In in Mobile@Work,
Mobile@Work prompts the user to log in with the secure apps passcode:

The device user does the following:

1. Enters the secure apps passcode.

2. Taps Done.

The device user can now continue with the secure app.

Logging in with the secure apps passcode

MobileIronCore 11.1.0.0 AppConnectGuide| 216

Logging out or resetting passcode for secure apps

The device user can log out of secure apps or reset the secure passcode. Logging out is useful, for example, if
the user is lending the mobile device to a family member for a few minutes.

NOTE: Theuser is automatically loggedoutafter aperiodof inactivity.

To log out of secure apps or reset the secure apps passcode, in Mobile@Work go to Settings > Secure Apps >
Authentication.

FIGURE 16. SECURE APPS LOG OUT OR CHANGE PASSCODE

Mobile@Work prompts the device user for the secure apps passcode the next time the user launches a secure
app or taps Log In in Mobile@Work.

Resetting the secure apps passcode - administrator initiated

You can change the secure apps passcode requirements on MobileIron Core by modifying the AppConnect
global policy. When Mobile@Work checks in with Core, Mobile@Work prompts the device user as follows:

Logging out or resetting passcode for secure apps

MobileIronCore 11.1.0.0 AppConnectGuide| 217

FIGURE 17. RESET PASSCODE PROMPT

TapOK and follow the prompts to reset the passcode.

Touch ID or Face ID with fallback to device passcode – device
user perspective
You can allow device users to use Touch ID or Face ID instead of a secure apps passcode to access secure
apps with the following fallback option:

l Touch ID or Face ID with fallback to device passcode

Most customers use Touch ID or Face ID with fallback to device passcode. An AppConnect passcode is not
required when using Touch ID or Face ID with fallback to device passcode. With this option, the device user can
do the following tasks using Mobile@Work:

l Choosing Touch ID or Face ID with fallback to device passcode to access secure apps

See Touch ID or Face ID for accessing secure apps for the administrative perspective.

NOTE: Screenshots showonly Touch ID, not Face ID, but Face IDbehavior is similar.

Choosing Touch ID or Face ID with fallback to device passcode to access
secure apps

The device user is prompted to choose whether to use Touch ID or Face ID to access secure apps when:

Touch ID or Face IDwith fallback to device passcode – device user perspective

MobileIronCore 11.1.0.0 AppConnectGuide| 218

l On the AppConnect global policy, you have selected Use Touch ID or Face ID when supported and
forWhen using Touch ID or Face ID, fall back to you have selected Device passcode.

l The device user has enabled the device passcode and at least one of Touch ID or Face ID.

l The device user has registered a device and then either

o Accesses secure apps for the first time or

o Taps Log In (to secure apps) on the Mobile@Work home screen

Mobile@Work does not present this choice on devices on which the user has not enabled both Touch ID or Face
ID and the device passcode, or the device does not support Touch ID or Face ID. For those devices,
Mobile@Work prompts the device user to enter a strong device passcode.

Device users choose Touch ID or Face ID

1. Mobile@Work prompts device users to choose whether to use Touch ID or Face ID to access secure
apps. Device users are not prompted for an AppConnect passcode.

2. If the device users tap Yes, they are prompted for their fingerprint or Face ID.

3. Device users enter their Touch ID or Face ID and are logged into secure apps.

Device users use Touch ID for authenticating to secure apps, unless the device user changes the authentication
method using Settings > Secure Apps > Authentication in Mobile@Work.

Device users choose passcode

1. Mobile@Work prompts device users to choose whether to use Touch ID or Face ID to access secure
apps.

2. If device users tap No, they are prompted to enter a strong device passcode.

Device users use the device passcode for authenticating to secure apps, unless they change the authentication
method using Settings > Secure Apps > Authentication in Mobile@Work.

Touch ID or Face ID with fallback to AppConnect passcode –
device user perspective
You can allow device users to use Touch ID or Face ID instead of a secure apps passcode to access secure
apps with the following fallback option:

Device users choose Touch ID or Face ID

Added [MS]
2/18/2021 2:18:34 PM

MobileIronCore 11.1.0.0 AppConnectGuide| 219

l Touch ID or Face ID with fallback to AppConnect passcode

Although not the common choice, some customers use Touch ID or Face ID with fallback to AppConnect
passcode when they have a compelling reason to not require a strong device passcode for device users.

NOTE: Screenshots in this chapter arebasedonMobile@Work 9.1 for iOS. Therefore, the screenshots show
only Touch ID, not Face ID, but Face IDbehavior is similar.

<can you provide updated screen captures?>

The overall device user experience for a newly registered user is:

1. Choose whether to use Touch ID or Face ID.
Mobile@Work prompts device users to choose whether to use Touch ID or Face ID to access secure
apps. Device users are not prompted for an AppConnect passcode.

2. Use Touch ID or Face ID when the auto-lock time expires
When the auto-lock time has expired, and device users can use Touch ID or Face ID when re-accessing
secure apps.

3. Change whether to use Touch ID or Face ID.
Device users can later change their choice about using Touch ID or Face ID:

l Changing from secure apps passcode to Touch ID or Face ID

l Changing from Touch ID or Face ID to secure apps passcode

See also: Touch ID or Face ID for accessing secure apps for the administrative perspective.

Choose whether to use Touch ID or Face ID

After creating the AppConnect passcode, Mobile@Work gives device users the choice to use Touch ID or Face
ID with fallback to the AppConnect passcode, or to use only the AppConnect passcode for accessing secure
apps. However, Mobile@Work gives this choice only if the device user has already done the following in the
device’s Settings > Touch ID & Passcode:

l Turned on the device passcode.

l Enabled Touch ID or Face ID on the device.

Choosewhether to use Touch ID or Face ID

Added [MS]
2/18/2021 2:19:36 PM

Added [MS]
2/22/2021 9:42:56 PM

MobileIronCore 11.1.0.0 AppConnectGuide| 220

FIGURE 18. TOUCH IDOR FACE ID PROMPT

If device users tap

l Yes, they will use Touch ID or Face ID when re-accessing secure apps after the auto-lock time expires.
In all other cases for accessing secure apps, they will enter the AppConnect passcode. These other
cases include, for example, the first time an AppConnect app is launched or when the user logs out of
secure apps in Mobile@Work.

l No, they will use the AppConnect passcode for all further authentications to secure apps.

Use Touch ID or Face ID when the auto-lock time expires

Mobile@Work displays the following prompt for Touch ID or Face ID when device users attempt to re-access
secure apps and the auto-lock time has expired.

If Touch ID or Face ID authentication fails, device users are prompted to try again and given the option to use
(fallback to) the secure apps passcode:

Use Touch ID or Face IDwhen the auto-lock time expires

MobileIronCore 11.1.0.0 AppConnectGuide| 221

Tapping Use Secure Apps passcode causes Mobile@Work to prompt the device user for the secure apps
passcode. Tapping Cancel terminates the operation.

Changing from secure apps passcode to Touch ID or Face ID

Device users can change the authentication method for accessing secure apps to Touch ID or Face ID when
both of the following are true:

l You have selected Use Touch ID or Face ID when supported on the AppConnect global policy.

l Device users have enabled the device passcode and at least one of Touch ID or Face ID.

To change from secure apps passcode to Touch ID or Face ID, in Mobile@Work:

1. Navigate to Settings > Secure Apps > Authentication.

2. Tap Enable Touch ID.
Users see the following prompt to authenticate only if they were not already authenticated.

Changing from secure apps passcode to Touch ID or Face ID

Added [MS]
2/22/2021 5:30:34 PM

MobileIronCore 11.1.0.0 AppConnectGuide| 222

If users are already authenticated, they are prompted use Touch ID or Face ID.

Device users continue to use Touch ID or Face ID for all further authentications to secure apps, unless they
change the authentication method using Settings > Secure Apps > Authentication in Mobile@Work.

Changing from Touch ID or Face ID to secure apps passcode

Device users can change the authentication method for accessing secure apps to the secure apps passcode
using the following steps in Mobile@Work:

Changing from Touch ID or Face ID to secure apps passcode

Added [MS]
2/22/2021 5:31:49 PM

Added [MS]
2/22/2021 5:32:50 PM

MobileIronCore 11.1.0.0 AppConnectGuide| 223

1. Navigate to Settings > Secure Apps > Authentication.

2. Tap Disable Touch ID.
Users see the following prompt to authenticate only if they were not already authenticated.

If users are already authenticated, they are prompted to enter a new secure apps passcode.

Changing from Touch ID or Face ID to secure apps passcode

Added [MS]
2/22/2021 5:28:24 PM

MobileIronCore 11.1.0.0 AppConnectGuide| 224

3. Enter a new secure apps passcode and tap Done.

4. Reenter the new passcode and tap Done.

Device users continue to use the secure apps passcode for all further authentication to secure apps, unless they
change the authentication method using Settings > Secure Apps > Authentication in Mobile@Work.

Changing from Touch ID or Face ID to secure apps passcode

Added [MS]
2/22/2021 5:32:50 PM

	Contents
	Revision history
	New features and enhancements
	AppConnect overview
	What are AppConnect-enabled apps?
	AppConnect apps from MobileIron
	Third-party and in-house AppConnect apps

	AppTunnel overview
	HTTP/S tunneling
	TCP tunneling (also known as Advanced AppTunnel)

	The AppConnect passcode
	AppConnect apps and authentication to enterprise app servers
	Authentication using Kerberos Constrained Delegation
	Certificate authentication for Android AppConnect apps
	Certificate authentication for iOS AppConnect apps
	Authentication through MobileIron Access

	App-specific configuration for AppConnect apps
	AppConnect for Android overview
	Wrapping modes
	The MobileIron client app, the Secure Apps Manager, and the AppConnect wrapper
	Supported Android device processors
	Supported Android operating systems
	Samsung Knox container (Knox Workspace) and AppConnect apps
	AppConnect for Android component support and compatibility
	Data loss prevention for secure apps for Android
	Data encryption for secure apps for Android
	Special badging for secure apps for Android
	AppConnect for Android apps
	Types of AppConnect Apps
	AppConnect apps that MobileIron provides for Android
	Docs@Work
	Email+
	Web@Work
	File Manager

	Other documentation about MobileIron-provided AppConnect apps

	When an Android device user can use AppConnect for Android

	AppConnect for iOS overview
	Component support and compatibility
	Wrapping support for mobile development platforms
	Data loss prevention for secure apps for iOS
	Data encryption for secure apps for iOS
	AppConnect-related data
	App-specific data

	MobileIron UEM client for iOS and AppConnect apps
	App check-in and MobileIron UEM client
	The AppConnect passcode auto-lock time and MobileIron UEM client

	Dual-mode apps
	AppConnect apps that MobileIron provides for iOS
	When an iOS device user can use AppConnect for iOS

	Configuring AppConnect and AppTunnel
	Configuration overview
	Basic configuration
	Adding third-party and in-house secure apps
	Adding AppTunnel support
	Adding compliance actions

	AppConnect configuration tasks
	Adding secure apps for deployment
	AppConnect global policy
	AppConnect passcode requirements
	Configuring the AppConnect global policy
	AppConnect global policy field description
	Self-service AppConnect passcode recovery
	AppConnect passcode strength
	Mechanism to force all device users to change their AppConnect passcodes
	Interaction with the lockdown policy regarding Android camera access

	AppConnect container policies
	AppConnect app authorization
	Data loss prevention settings
	Automatically created AppConnect container policies
	Configuring AppConnect container policies
	AppConnect container policy field description

	Enabling secure apps
	Enabling licensing options for Android secure apps
	Enabling licensing options for iOS secure apps

	Enabling AppTunnel
	Configuring an AppTunnel service
	About the AppTunnel service name

	AppConnect app configuration
	Automatically created AppConnect app configuration
	Automatically provided key-value pairs
	Configuring an AppConnect app configuration
	Checking the device’s labels
	Adding a device to a label

	AppConnect app configuration field description

	Configuring the Open With Secure Email App option
	Configuring compliance actions

	Quick start configuration for AppConnect for Android
	Uploading the Secure Apps Manager to Core for Android AppConnect quick start
	Uploading the AppConnect apps to Core for Android AppConnect quick start
	Enabling Core licensing options for Android AppConnect quick start
	Configuring the AppConnect global policy for Android AppConnect quick start
	Configuring the AppConnect container policy for Android AppConnect quick start
	Configuring settings specific to the app for Android AppConnect quick start
	Configuring email attachment control for Android AppConnect quick start

	Quick start configuration for AppConnect for iOS
	Adding AppConnect apps to Core for iOS AppConnect quick start
	Enabling Core licensing options for iOS AppConnect quick start
	Configuring the AppConnect global policy for iOS AppConnect quick start
	Configuring the AppConnect container policy for iOS AppConnect quick start
	Configuring settings specific to the app for iOS AppConnect quick start
	Configuring email attachment control for iOS AppConnect quick start

	Using AppConnect for Android
	Hybrid web app support
	Fingerprint login for AppConnect apps for Android
	Required product versions for fingerprint login for AppConnect for Android
	Requirements for fingerprint login for AppConnect for Android
	Configuring fingerprint login for AppConnect for Android (Core)
	Device User impact of fingerprint login for AppConnect for Android
	Device user experience at registration
	Device user experience if already registered
	Device user options for enabling or disabling fingerprint login

	Less common device user scenarios for fingerprint login for AppConnect for An...
	Security versus convenience of passcode and fingerprint for AppConnect for An...

	AppTunnel with TCP tunneling support for Android secure apps
	Types of apps that can use AppTunnel with TCP tunneling
	When to use AppTunnel with HTTP/S tunneling versus TCP tunneling

	Configuring AppTunnel with TCP tunneling for Android secure apps
	Configuring an AppTunnel TCP service
	About the AppTunnel TCP service name

	Configuring the AppTunnel TCP service in the AppConnect app configuration
	Configuring per-app idle session timeout for AppTunnel with TCP tunneling

	Certificate authentication using AppConnect with TCP tunneling for Android se...
	App and enterprise server requirements

	Configuring certificate authentication using AppTunnel with TCP tunneling for...
	Overview
	High-level tasks for certificate authentication using AppTunnel with TCP tunn...
	Setting up the certificate for authenticating the user to the enterprise server
	Specifying the AppTunnel services that use certificate authentication
	Specifying which certificate to use to authenticate the user to the enterpris...

	AppTunnel and TLS protocol versions in Android secure apps
	Configuring the TLS protocol for AppTunnel

	Lock, unlock, and retire impact on AppConnect for Android
	Lock impact
	Unlock the AppConnect container impact
	Retire impact

	Lock Android AppConnect apps when screen is off
	Copy/Paste for AppConnect for Android
	Comparison with AppConnect for iOS copy/paste policy
	Copying from non-AppConnect apps to AppConnect apps
	Interaction with Exchange setting

	Sharing content from AppConnect for Android apps to non-AppConnect apps
	Web-related DLP policies
	Web DLP policy for browser launching
	DLP allowing links from non-AppConnect apps to open in Web@Work
	Web DLP versus Non-AppConnect apps can open URLs in Web@Work DLP

	DLP policy for media player access
	Media file requirements

	Device-initiated security controls for AppConnect for Android
	Configure the actions on the AppConnect global policy
	Interaction with the Exchange setting

	Custom keyboards in AppConnect apps
	App whitelist
	Key-value pair for the app whitelist
	App whitelist examples
	How the app whitelist is evaluated
	Configuring an app whitelist

	Secure File Manager features
	Secure folder access
	About allowing a secure app to ignore the auto-lock time
	App requirements to ignore the auto-lock time
	What the device user sees when an app ignores the auto-lock time

	Situations that wipe Android AppConnect app data
	Accessible Android apps to preserve the user experience
	Secure Apps Manager Android permissions
	Disabling analytics data collection for AppConnect for Android

	Using AppConnect for iOS
	Open-In data loss prevention policy details
	Open In behavior in wrapped apps versus SDK apps
	iOS native email use and the Open In DLP policy
	Open In and native email with an AppConnect version prior to AppConnect 4.0 f...
	Open In and native email with AppConnect 4.0 for iOS through most recently re...
	Putting iOS native email into the Open In Whitelist

	AirDrop use and the Open In DLP policy
	App extension use and the Open In DLP policy
	Whitelisting services integrated into iOS in the Open In DLP policy
	Overriding the Open In policy for an app

	Open From data loss prevention policy
	Custom keyboard control
	Screen blurring
	Dictation with the native keyboard is not allowed for wrapped apps
	Heightened security for AppConnect apps using the Secure Enclave
	Situations that wipe AppConnect for iOS app data
	Device-initiated (local) compliance for iOS jailbreak detection
	Compliance actions for device-initiated jailbreak detection
	Configuring device-initiated compliance for jailbreak detection
	Creating a compliance action
	Specifying the compliance action in the security policy

	Touch ID or Face ID for accessing secure apps
	Comparison of the two Touch ID or Face ID options
	Security versus convenience of passcode and Touch ID or Face ID options
	Touch ID or Face ID with fallback to device passcode
	Configuring the security policy for strong device passcode
	Switches to Mobile@Work eliminated with Touch ID or Face ID with fallback to ...
	Improved user experience
	Device user impact in Mobile@Work
	Less common device user scenarios

	Touch ID or Face ID with fallback to AppConnect passcode
	Improved user experience
	Device User impact of Touch ID or Face ID with fallback to AppConnect passcode

	Configuring Touch ID or Face ID

	Certificate pinning for AppConnect apps
	About certificates used in certificate pinning
	About domains in certificate pinning
	Certificate pinning domains for root and intermediate CA certificates
	Certificate pinning domains for leaf certificates

	Configuring certificate pinning
	Uploading the trusted certificates
	Creating a Client TLS configuration
	Modifying an AppConnect app configuration, Web@Work setting, or Docs@Work set...
	Creating an AppConnect app configuration for the app if one does not already ...
	Configuring the Client TLS configuration in the AppConnect app configuration

	Viewing certificate pinning information in Mobile@Work

	Certificate authentication from AppConnect apps to enterprise services
	Impact on AppTunnel use
	Setting up certificate authentication from an AppConnect app
	Creating an AppConnect app configuration for the app if one does not already ...
	Configuring the key-value pairs for the certificate and URL matching rule
	Details about MI_AC_CLIENT_CERT_#_RULE
	Rule format
	Matching logic

	Impact to tunneling when using a global HTTP proxy

	AppConnect Key-value Pairs Summary
	AppConnect for Android key-value pairs
	AppConnect Global policy key-value pairs
	AppConnect app configuration key-value pairs
	Secure Apps Manager app configuration key-value pairs

	AppConnect for iOS key-value pairs

	Troubleshooting AppConnect and AppTunnel for Android
	Logging for AppConnect apps for Android
	Turning on device log encryption on Android devices

	State and encryption mode of Android secure apps
	Status of AppConnect-related policies and configurations for an app

	Troubleshooting AppConnect and AppTunnel for iOS
	Logging for AppConnect apps for iOS
	Overview of logging for AppConnect apps for iOS
	Log levels
	How the log level appears in messages
	Log file details
	Log data collection overview
	Configuring logging for an AppConnect app
	Creating a new label
	Applying labels
	Log level configuration impact on the device
	Activating verbose or debug logging on the device
	Emailing log files from Mobile@Work
	Removing log level configuration when no longer needed

	Secure apps status display in Mobile@Work
	Navigating to the secure apps status display
	The secure apps status display contents
	Status details for a specific secure app

	AppTunnel configuration troubleshooting display in Mobile@Work
	Navigating to the AppTunnel configuration troubleshooting display
	Troubleshooting with the AppTunnel configuration display fields
	Client Certificate display
	Specifying a trusted root certificate in the Standalone Sentry
	Specifying a valid client certificate in the AppConnect app configuration
	Rules display
	Sentry display
	Sentry Certificate display
	Uploading a valid Sentry certificate to Standalone Sentry

	AppTunnel configuration troubleshooting checklist

	Status of AppConnect-related policies and configurations for an app
	Viewing certificates stored in Mobile@Work
	AppTunnel diagnostics in SDK-built apps

	Secure Apps on Android Devices - User Perspective
	Downloading and installing the secure apps
	Creating the secure apps passcode
	Choosing a more complex AppConnect passcode
	Recovering the AppConnect passcode when forgotten
	Secure apps notifications
	Secure apps status bar icons
	Camera, gallery, and media player warning messages

	Secure apps on iOS Devices - User Perspective
	Secure apps passcode management
	Creating a secure apps passcode
	Creating a more complex secure apps passcode
	Logging in with the secure apps passcode
	Logging out or resetting passcode for secure apps
	Resetting the secure apps passcode - administrator initiated

	Touch ID or Face ID with fallback to device passcode – device user perspective
	Choosing Touch ID or Face ID with fallback to device passcode to access secur...
	Device users choose Touch ID or Face ID
	Device users choose passcode

	Touch ID or Face ID with fallback to AppConnect passcode – device user perspe...
	Choose whether to use Touch ID or Face ID
	Use Touch ID or Face ID when the auto-lock time expires
	Changing from secure apps passcode to Touch ID or Face ID
	Changing from Touch ID or Face ID to secure apps passcode

