
MobileIron AppConnect 4.7.0 for iOS
AppWrapping Developers Guide
AppConnect for iOSWrapper Library and
Wrapping Tool

October 20, 2020

For complete product documentation see:
MobileIron AppConnect for iOS Product Documentation HomePage

Proprietary and Confidential | Do Not Distribute

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 2

Copyright © 2013 - 2020MobileIron, Inc. All Rights Reserved.

Any reproduction or redistribution of part or all of thesematerials is strictly prohibited. Information in this publication
is subject to change without notice. MobileIron, Inc. does not warrant the use of this publication. For some phone
images, a third-party database and image library, Copyright © 2007-2009 Aeleeta's Art and Design Studio, is used.
This database and image library cannot be distributed separate from theMobileIron product.

“MobileIron,” theMobileIron logos and other trade names, trademarks or servicemarks of MobileIron, Inc.
appearing in this documentation are the property of MobileIron, Inc. This documentation contains additional trade
names, trademarks and servicemarks of others, which are the property of their respective owners. We do not
intend our use or display of other companies’ trade names, trademarks or servicemarks to imply a relationship
with, or endorsement or sponsorship of us by, these other companies.

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 3

Contents
Contents 3

New features and enhancements 9

Introducing AppConnect for iOS wrapped apps 10

AppConnect for iOS wrapped app overview 11

Wrapped app features 11

App requirements 12

Supported programming languages 12

Supportedmobile development platforms 12

MobileIron AppConnect components for wrapped apps 13

Using a wrapped app 14

Product versions required 14

Securing and managing a wrapped iOS AppConnect app 16

Authorization 16

AppConnect passcode and Touch ID/Face ID policy 17

Tunneling 18

AppTunnel supports only NSURLConnection and NSURLSession 18

Accessing sockets directly does not use AppTunnel 18

AppTunnel supports redirects and authentication requests on HTTP/S upload 19

AppTunnel support in Xamarin apps 19

AppTunnel with TCP tunneling 19

When tomake network requests when using AppTunnel 20

Certificate authentication to enterprise services 20

Supported networkingmethods 20

Unsupported networkingmethods 20

Data loss prevention policies 21

Custom keyboard control 21

Contents

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 4

Logmessages based on log levels 22

App-specific configuration from theMobileIron server 22

Data encryption 22

AppConnect-related data 22

App data files 23

Optional: Avoid pasteboard notifications 24

Configuring an AppGroup on the Apple Developer portal 25

AppConnect wrapper callback methods 26

App-specific configuration callback methods 26

Overview of app-specific configuration from theMobileIron server 26

Methods for receiving app-specific configuration from theMobileIron server 27

When to use -appConnectConfigIs: versus -appConnectConfigChangedTo: 27

When to use -appConnectConfigIs: 27

When to use -appConnectConfigChangedTo: 28

Details about when eachmethod is called 28

Handling app-specific configuration in Xamarin apps 29

Callback method involving network requests with AppTunnel 29

Wrapper callback method for when to send network requests 30

When in the app life cycle the AppConnect library calls -appConnectStateChangedTo: 30

The -appConnectStateChangedTo: method parameter 31

AppConnectStateChangedTo callback method in Xamarin apps 31

How to wrap an iOS app 33

Re-signing an app before wrapping it 33

Using the AppConnect Wrapping Portal 34

Before you begin 35

Login to help.mobileiron.com 35

Upload an unwrapped app and wrap it 36

Download the wrapped app and signing script 36

Re-signing the wrapped app 37

Contents

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 5

Specifying custom entitlements 38

Specifying a new provisioning profile 39

Specifying new version numbers 39

Specifying a different bundle ID 39

Troubleshooting the signed wrapped app 40

Specifying AppConnect AppGroup ID 40

Using the AppConnect AppWrapper (wrapping tool) 40

Before you begin 40

System requirements 40

Install Xcode 41

Before you run the wrapping tool 41

Get the wrapping tool and signing script 41

Unlock the keychain containing the signing identity 41

Run the wrapping tool using its graphical user interface 42

Run the separate signing script, if necessary 42

Run the wrapping tool using a command-line interface 42

Command-line argument usage 43

Command-line argument descriptions 43

Command-line usage examples 45

Command-line command exit status 46

AppConnect for iOS Wrapper Library and Wrapping Tool revision history 47

AppConnect 4.7.0 for iOS Wrapper Library andWrapping Tool revision history 47

New features and enhancements summary 48

Known issues 48

Limitations 48

AppConnect 4.6.0 for iOS Wrapper Library andWrapping Tool revision history 48

New features summary 48

AppConnect 4.5.3 for iOS Wrapper Library andWrapping Tool revision history 49

Resolved issues 49

Contents

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 6

AppConnect 4.5.2 for iOS Wrapper Library andWrapping Tool revision history 49

Resolved issues 49

AppConnect 4.5.1 for iOS Wrapper Library andWrapping Tool revision history 49

Resolved issues 50

AppConnect 4.5.0 for iOS Wrapper Library andWrapping Tool revision history 50

Resolved issues 50

Known issues 50

Limitations 51

AppConnect 4.4.1 for iOS Wrapper Library andWrapping Tool revision history 51

Resolved issues 51

Known issues 51

AppConnect 4.4.0 for iOS Wrapper Library andWrapping Tool revision history 51

New features summary 52

Resolved issues 52

Limitations 52

AppConnect 4.3.1 for iOS Wrapper Library andWrapping Tool revision history 53

Resolved issues 53

AppConnect 4.3.0 for iOS Wrapper Library andWrapping Tool revision history 53

New features 53

Resolved issues 53

AppConnect 4.2.1 for iOS Wrapper Library andWrapping Tool revision history 53

New features 53

Resolved issues 54

Known issues 54

Limitations 54

AppConnect 4.2 for iOS Wrapper Library andWrapping Tool revision history 54

Resolved issues 54

Known issues 54

AppConnect 4.1.1 for iOS Wrapper Library andWrapping Tool revision history 55

Contents

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 7

Resolved issues 55

Known issues 55

AppConnect 4.1 for iOS Wrapper Library andWrapping Tool revision history 55

New features 55

Certificate pinning support 55

Lock AppConnect apps when screen is off 56

Overriding the Open In Policy for openURL: with themailto: scheme 56

Resolved issues 56

AppConnect 4.0 for iOS Wrapper Library andWrapping Tool revision history 56

New features 56

iOS 8 no longer supported 57

Swift support for callback methods 57

Native email control using the Open In DLP policy 57

App extension control using the Open In DLP policy 57

Custom keyboard use controlled by MobileIron server 57

Dictation with the native keyboard is not allowed 58

Support for sending AppConnect logs fromMobile@Work 58

Drag and Drop data loss prevention policy support 58

Automatic policy status updates sent to MobileIron server 58

Support for storing AppConnect library encryption keys in the Secure Enclave 59

Resolved issues 59

Known issues 59

Limitations 59

AppConnect 3.5 for iOS Wrapper Library andWrapping Tool revision history 60

New features 60

iOS 11 compatibility 60

Callback method involving network requests with AppTunnel 60

Open In changes 60

Resolved issues 60

Contents

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 8

Limitations 61

AppConnect 3.1.3 for iOS Wrapper Library andWrapping Tool revision history 61

Resolved issues 61

AppConnect 3.1.2 for iOS Wrapper Library andWrapping Tool revision history 61

Resolved issues 61

AppConnect 3.1.1 for iOS Wrapper Library andWrapping Tool revision history 62

Resolved issues 62

AppConnect 3.1 for iOS Wrapper Library andWrapping Tool revision history 62

New features 62

Update to OpenSSL 1.0.2h 62

Resolved issues 62

Known issues 62

Limitations 62

AppConnect 3.0 for iOS Wrapper Library andWrapping Tool revision history 63

Resolved issues 63

Known issues 63

Releases prior to AppConnect 3.0 for iOS Wrapper library andWrapping Tool revision history 63

Contents

1

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 9

New features and enhancements

This guide documents the following new features and enhancements:

l Avoid pasteboard notifications: To avoid pasteboard notifications on users' devices when using
AppConnect apps, set up an AppGroup for your AppConnect apps. Setting up an AppGroup reduces the
amount of flipping between the AppConnect app and theMobileIron client and avoids pasteboard
notifications. For more information, seeOptional: Avoid pasteboard notifications.

For new known and resolved issues and limitations, see AppConnect for iOS Wrapper Library andWrapping Tool
revision history.

2

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 10

Introducing AppConnect for iOS wrapped
apps

MobileIron AppConnect secures andmanages enterprise apps onmobile devices. These secure enterprise apps
are calledAppConnect apps or secure apps.

You can create an AppConnect app for iOS two ways:

l Wrapping the app
TheMobileIron AppConnect wrapping technology creates a secure app without any further app
development.

l Using the AppConnect for iOS SDK (software development kit)
An app developer uses the SDK to create a secure app, or turn an existing app into a secure app.

For information about choosing between wrapping and the SDK, seeChoosingWrapping or SDK Development to
Create AppConnect for iOS Apps.

Note The Following:

l Youcannotwrapanapp if you got the app (IPA file) from theAppleAppStore.

l Wrappedapps arenot compliant withApple’s terms and conditions, andcannotbedistributed using theApple
AppStore. Theappmust be distributed using theMobileIron server’s enterprise app storefront.

l If your app is wrappedwith an older version of theAppConnect for iOSWrapper Library, MobileIron
recommends that you always rewrap the appwith the current version. Using the current version ensures the
app contains all new features, improvements, and resolved issues.

l Legal notices are onhttps://support.mobileiron.com/copyrights/ACe.

l AnAppleDeveloperEnterpriseProgram account is required to distribute in-house apps. SeeAppleDeveloper
EnterpriseProgram.

Related topics

For information about AppConnect for iOS from the perspective of aMobileIron server administrator:

l MobileIron Core or Connected Cloud: TheMobileIron Core AppConnect and AppTunnel Guide

l MobileIron Cloud: TheMobileIron Cloud Administrator Guide

https://support.mobileiron.com/copyrights/ACe
https://developer.apple.com/programs/enterprise/
https://developer.apple.com/programs/enterprise/

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 11

AppConnect for iOS wrapped app overview
l Wrapped app features

l App requirements

l Supported programming languages

l Supportedmobile development platforms

l MobileIron AppConnect components for wrapped apps

l Using a wrapped app

Wrapped app features

Secure enterprise apps that are created using the AppConnect wrapping technology can:

l Tunnel network connections to servers behind an enterprise’s firewall.
This capability means that device users do not have to separately set up VPN access on their devices to
use the app.

l Authenticate an app user to an enterprise service.
This capability means that AppConnect app users do not have to enter login credentials to access
enterprise resources.

l Enforce data loss prevention.
TheMobileIron server administrator decides whether an app can:

o copy to the iOS pasteboard

o use drag and drop

o use the document interaction feature (Open In andOpen From)

o use print capabilities

o use dictation with the native iOS keyboard
AppConnect for iOS uses these server settings to limit the app’s functionality to prevent data loss through
these features.

l Control custom keyboard use by your app
TheMobileIron server administrator can choose whether an app can use custom keyboards, and the
AppConnect library enforces the choice.. If the administrator does not configure this choice, your app can
choose to reject custom keyboard use.

l Block dictation from the native iOS keyboard
By default, the AppConnect wrapping technology blocks using dictation from the native iOS keyboard. The
MobileIron server administrator can override this behavior by adding a key-value pair to the app’s
configuration. The key is calledMI_AC_WR_ALLOW_KEYBOARD_DICTATION. By default, the value is

AppConnect for iOSwrappedappoverview

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 12

false. If the administrator sets the value to true, then wrapped AppConnect apps can use dictation with the
native keyboard.

l Receive app-specific configuration information from theMobileIron server.
This capability requires some additional app development. It means that device users do not have to
manually enter configuration details that the app requires. By automating this process for the device users,
each user has a better experience when installing and setting up apps. Also, the enterprise has fewer
support calls.

l Protect AppConnect-related data on the device, such as configuration and certificates, using encryption.
If an app enables iOS data protection on its files, and the device has a device passcode, then the app’s
data is also encrypted.

l Blur the app’s screens when the app is not in the foreground.
The AppConnect wrapping technology enforces this behavior.

App requirements

l You can wrap any iOS app (IPA file) as long as you did not get the IPA file from the Apple App
Store. The app can have been built as a 64-bit app or as a 32-bit app.

l Wrapped apps are not compliant with Apple’s terms and conditions, and cannot be distributed using the
Apple App Store. The appmust be distributed using theMobileIron server’s enterprise app storefront.

NOTE: You canwrapanapponly if it supports fast app switching, an iOS feature added in iOS 4.0. Fast
app switchingmeans that the appcango into the background for a short time without iOS
terminating it. AppConnect for iOS requires that apps support this feature. Most apps support fast
app switching. To ensure that anapp supports fast app switching, a developer can remove the
UIApplicationExitsOnSuspend key if it is present in the app’s Info.plist.

Supported programming languages

You can wrap apps written in either Objective-C or Swift.

Related topics

AppConnect wrapper callback methods

Supportedmobile development platforms

Many iOS apps are created usingmobile development platforms, rather than using the Apple environment that
targets only iOS devices. You can wrap iOS apps that were created using thesemobile development platforms:

l PhoneGap

l IBMWorklight

l Xamarin

App requirements

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 13

NOTE: Tunneling support for Xamarin apps has restrictions as described inAppTunnel support in
Xamarin apps .

MobileIron AppConnect components for wrapped apps

Wrapped AppConnect apps work with the followingMobileIron components:

MobileIron
component

Description

MobileIron Core TheMobileIron on-premise server which provides security andmanagement for an
enterprise’s devices, and for the apps and data on those devices. An administrator
configures the security andmanagement features using a web portal.

MobileIron Connected
Cloud

MobileIron’s cloud offering that has the same functionality as MobileIron Core.

MobileIron Cloud MobileIron’s cloud offering that provides similar functionality as MobileIron Core.
However, it does not support all the AppConnect features that MobileIron Core
supports.

Standalone Sentry TheMobileIron server which provides secure network traffic tunneling from your app
to enterprise servers.

Mobile@Work for iOS A MobileIron client app that runs on an iOS device. It interacts with MobileIron Core
or Connected Cloud to get current security andmanagement information for the
device. It interacts with the AppConnect library to communicate necessary
information to your app.

TheMobileIron Go app A MobileIron client app that runs on an iOS device. It interacts with MobileIron Cloud
to get current security andmanagement information for the device. It interacts with
the AppConnect library to communicate necessary information to your app.

TheMobileIron
AppStation app

A MobileIron client app that runs on an iOS device. It interacts
with MobileIron Cloud. It can be used on the device instead of MobileIron Gowhen
theMobileIron Cloud tenant supports Mobile Apps Management (MAM) but not
Mobile DeviceManagement (MDM). It interacts with the AppConnect library to
communicate necessary information to your app.

AppConnect for iOS
Wrapper Library

Provided by the AppConnect wrapping technology, the wrapper library provides
AppConnect capabilities to your app. It provides your AppConnect appmanagement
and security capabilities, and facilitates communication between your app and the
MobileIron client app.

Note The Following:

l MobileIronCore, MobileIronConnectedCloud, andMobileIronCloudare eachalso referred to
as aMobileIron server.

l Mobile@Work, MobileIronGo, andMobileIron AppStation are eachalso referred to as a
MobileIron client app.

MobileIronAppConnectcomponents for wrappedapps

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 14

IMPORTANT: Some AppConnect features dependon the version ofMobileIronCore, MobileIron Cloud,
Standalone Sentry, and theMobileIron client app.

Using a wrapped app

An iOS device user can use a wrapped AppConnect app only if:

l The device user has been authenticated through theMobileIron server.
The user must use theMobileIron client app to register the device with theMobileIron server. Registration
authenticates the device user. Once registered, the device user can use a secured enterprise app.

l TheMobileIron server administrator has authorized the device user to use the app.

l The device user has entered a secure apps passcode or Touch ID/Face ID.
TheMobileIron server administrator configures whether a secure apps passcode, also called the
AppConnect passcode, is required, and configures its complexity rules. The administrator also configures
whether using Touch ID/Face ID, if available on the device, is allowed instead of the AppConnect
passcode.

NOTE: The AppConnect passcode is not the same as the passcode used to unlock the device.

Product versions required
To develop a wrapped AppConnect app, you need certain products. MobileIron supports a set of product versions,
and a larger set of product versions are compatible with apps wrapped with this version of the AppConnect for iOS
Wrapping Library.

l Supported product versions: The functionality of the product and version with currently supported
releases was systematically tested as part of the current release and, therefore, will be supported.

l Compatible product versions: The functionality of the product and version with currently supported
releases has not been systematically tested as part of the current release, and therefore not supported.
Based on previous testing (if applicable), the product and version is expected to function with currently
supported releases.

The following table summarizes supported and compatible product versions. This information is current at the time
of this release. For MobileIron product versions released after this release, see that product version's release notes
for themost current support and compatibility information.

Usingawrappedapp

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 15

Product Supported versions Compatible versions

iOS 11.0.0 - 14.0.0 9.0 and lower are not supported

MobileIron Core and
Connected Cloud

10.5.0.0, 10.6.0.0, 10.7.0.0 10.3.0.0 - 10.4.0.0

MobileIron Cloud 72 Not applicable

MobileIron Go 5.5.1 4.0.0 - 5.5.0

Standalone Sentry 9.7.3, 9.8.1 9.5.0 - 9.6.0

Mobile@Work for iOS 12.3.0, 12.4.1 12.1.0 - 12.2.2

MobileIron AppStation 1.3.0 Not applicable

Xcode

(Xcode command-line tools are
used for re-signing the wrapped
app and also used by the
wrapping tool)

11 10

OS X

(OS X is used for re-signing the
wrapped app and for running the
wrapping tool)

10.13 10.10.5 - 10.14.3

Xamarin

(Indicates support and
compatibility for wrapping apps
built with specific Xamarin
versions)

8.4.0 Between 7.2.1 and 8.4.0

After 8.4.0

TABLE 1. SUPPORT AND COMPATIBILITY

IMPORTANT: Some AppConnect features dependon the version ofMobileIronCore, MobileIron Cloud,
Standalone Sentry, and theMobileIron client app.

Related topics

For information about AppConnect for iOS and available features from the perspective of aMobileIron server
administrator:

l MobileIron Core or Connected Cloud: TheMobileIron Core AppConnect and AppTunnel Guide

l MobileIron Cloud: TheMobileIron Cloud Administrator Guide

Product versions required

3

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 16

Securing and managing a wrapped iOS
AppConnect app

A MobileIron server administrator configures how mobile device users can use secure enterprise applications. The
administrator sets the following app-related settings that impact your wrapped app’s behavior:

l Authorization

l AppConnect passcode and Touch ID/Face ID policy

l Tunneling

l Certificate authentication to enterprise services

l Data loss prevention policies

l Custom keyboard control

l Logmessages based on log levels

l App-specific configuration from theMobileIron server
This capability requires some additional app development.

Additionally, the AppConnect passcode and the device passcode impact data encryption of AppConnect-related
data such as configurations and certificates, and app-specific data. SeeData encryption.

The following steps show the flow of information from theMobileIron server to a wrapped app:

1. TheMobileIron server administrator decides which app-related settings to apply to a device or set of
devices.

2. The server sends the information to theMobileIron client app on the device.

TheMobileIron client app passes the information to the wrapped AppConnect app. TheMobileIron client app and
the AppConnect for iOS Wrapper Library enforce the app-related settings.

Authorization
TheMobileIron server administrator determines:

l whether or not each device user is authorized to use each secure enterprise app.
When an unauthorized user launches the app, theMobileIron client app displays amessage to the user,
and the app exits.

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 17

l the situations that cause an authorized device user to become unauthorized.
These situations include, for example, when the device OS is compromised. TheMobileIron client app
reports device information to theMobileIron server. The server then determines whether to change the user
to unauthorized based on security policies on the server.

l When a user becomes unauthorized, theMobileIron client app displays amessage to the user, and the app
exits.

l the situations that retire the app.
Retiring an appmeans that the user is not authorized to use it and the app’s data is deleted. TheMobileIron
client app displays amessage to the user, and the app exits. Furthermore, the AppConnect for iOS
Wrapper Library removes data associated with the app. Specifically, the wrapper library removes all data in
the application’s sandbox and in the application’s keychain. It also resets the application’s default settings.

NOTE: Whenanapp is retired, the wrapper library removes the app’s data. Whenauser is unauthorized
but the app is not retired, the appcannot run, so the user cannot access the data. However, the
wrapper library does not remove the data. The reason is that an unauthorized user canbecome
authorizedagain, and therefore the data should become available again.

AppConnect passcode and Touch ID/Face ID policy
TheMobileIron server administrator determines:

l whether the AppConnect passcode or Touch ID/Face ID is required, which requires the device user to
enter a passcode or Touch ID/Face ID to access any secure enterprise apps.

l the complexity of the AppConnect passcode.

l the auto-lock time for the AppConnect passcode or Touch ID/Face ID. After this period of inactivity in
AppConnect apps, the device user is locked out of the apps until he enters the AppConnect passcode or
Touch ID/Face ID.

The AppConnect for iOS Wrapper Library and theMobileIron client app enforce the AppConnect passcode or
Touch ID/Face ID policy as follows:

l TheMobileIron server notifies theMobileIron client app when the server administrator has enabled an
AppConnect passcode or Touch ID/Face ID. The client app prompts the user to set the AppConnect
passcode or enter the Touch ID/Face ID the next time that the device user launches or switches to a
secure enterprise app.

l The client app prompts the user to set the AppConnect passcode the next time the device user launches or
switches to a secure enterprise app after the server has notified the client app that the passcode’s
complexity rules have changed.

l The user is prompted to enter the AppConnect passcode or Touch ID/Face ID when the user subsequently
launches or switches to a secure enterprise app but the auto-lock time has expired.

AppConnectpasscodeandTouch ID/Face IDpolicy

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 18

l The user is prompted to enter the passcode or Touch ID/Face ID when the auto-lock time expires while the
user is running a secure enterprise app.

Tunneling
UsingMobileIron’s AppTunnel feature, a secure enterprise app can securely tunnel HTTP and HTTPS network
connections from the app to servers behind a company’s firewall. A Standalone Sentry is necessary to support
AppTunnel with HTTP/S tunneling. TheMobileIron server administrator handles all HTTP/S tunneling configuration
on the server. Once the administrator has configured tunneling for the app on the server, the AppConnect for iOS
Wrapper Library, theMobileIron client app, and a Standalone Sentry handle tunneling for the app.

Consider the following information to ensure that your wrapped app can successfully tunnel network connections:

l AppTunnel supports only NSURLConnection and NSURLSession

l Accessing sockets directly does not use AppTunnel

l AppTunnel supports redirects and authentication requests on HTTP/S upload

l AppTunnel support in Xamarin apps

l AppTunnel with TCP tunneling

l When tomake network requests when using AppTunnel

AppTunnel supports only NSURLConnection and NSURLSession

An app accesses its enterprise servers as it normally would using URL requests, using the iOS APIs
NSURLConnection and NSURLSession.

Note The Following:

l AppTunnel with HTTP/S tunneling does not support using NSURLSession in abackground session.
The traffic does not reach its destination.

l Apps canalso use networking libraries that use NSURLConnection or NSURLSession. For example,
apps can use AFNetworking 3.0because it uses NSURLSession.

l Anapp that usesWKWebViewcannot use AppTunnel with HTTP/S tunneling.

Accessing sockets directly does not use AppTunnel

AppTunnel with HTTP/S tunneling is not supported if the app:

l accesses sockets directly.

l uses APIs that access sockets directly.

Tunneling

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 19

In these cases, the app cannot access a host behind the enterprise’s firewall using AppTunnel with HTTP/S
tunneling.

For example, AppTunnel with HTTP/S tunneling is not supported with the following APIs:

l Apple’s reachability APIs that detect network and host connectivity

l CFNetwork APIs

l ASIHTTPRequest

NOTE: Network connections using sockets for TCP connections can tunnel databy using AppTunnel
with TCP tunneling. See AppTunnel with TCP tunneling.

AppTunnel supports redirects and authentication requests on HTTP/S upload

When an app uses AppTunnel with HTTP/S tunneling, AppTunnel handles the following HTTP/S upload scenarios:

l HTTP/S redirect responses from the network server (HTTP/S 3XX status code).
If a network server redirects an HTTP/S upload request (tunneled or not) to another URL that the
MobileIron server administrator has configured for tunneling, the request is tunneled.

l Authentication required response from the network server (HTTP/S 401 status code).
The AppTunnel feature handles sending a second HTTP/S request with authentication credentials.

AppTunnel support in Xamarin apps

Apps built with the Xamarin development platform are written in C#. They can access network servers various
ways. AppTunnel with HTTP/S tunneling is supported only as follows:

l The app uses the NSURLConnection or NSURLSession APIs exposed to C# through the Xamarin.iOS
binding.

l The app uses theModernHttpClient library with NSURLSession. TheModernHttpClient library with
CFNetwork will not work.
For example, the app initializes the instance of theModernHttpClient as follows:

var httpClient = new HttpClient (new NativeMessageHandler ());

AppTunnel with TCP tunneling

AppTunnel can tunnel TCP traffic between an app and a server behind the company’s firewall. AppTunnel with
TCP tunneling does not require an app to be an AppConnect app; both AppConnect apps and standard apps can
use AppTunnel with TCP tunneling. TheMobileIron server administrator configures AppTunnel with TCP tunneling,
including installingMobileIron Tunnel (an iOS app) on the device.

AppTunnel supports redirects andauthentication requests onHTTP/S upload

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 20

When tomake network requests when using AppTunnel

If a wrapped appmakes HTTP/S network requests before the AppConnect library in the app has received the
AppTunnel rules from theMobileIron server, the network requests will fail for URLs behind the enterprise’s firewall.

When this occurs, an app should try the request again. For example, the app can try the request again after some
time has elapsed, or the next time it becomes active.

Alternatively, an app can wait to make a network request until after the AppConnect library has received the
AppTunnel rules. An AppConnect wrapper callback method is available for the app to know when the rules have
been received. See Callback method involving network requests with AppTunnel.

Certificate authentication to enterprise services
An AppConnect app can send a certificate to identify and authenticate the app user to an enterprise service when
the app uses an HTTPS connection. TheMobileIron server administrator configures on the server which certificate
for the app to use, and which connections use it. The AppConnect library, which is part of every AppConnect app,
makes sure the connection uses the certificate. No additional development is required for the app.

Supported networkingmethods

Certificate authentication to enterprise services is supported only if your app uses one of the following to access
the enterprise service:

l NSURLConnection

l NSURLSession

Certificate authentication to enterprise services does not support using NSURLSession in a background session.

l Networking libraries that use NSURLConnection or NSURLSession.

l UIWebView

Unsupported networkingmethods

Certificate authentication to enterprise services using other networkingmethods is not supported. For example, the
following are not supported:

l accessing sockets directly

l WKWebView and other APIs that access sockets directly
For example, these APIs are not supported: CFNetwork, ASIHTTPRequest, and Apple's reachability APIs
that detect network and host connectivity.

Whentomakenetwork requests whenusingAppTunnel

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 21

Data loss prevention policies
An app can leak data if it uses iOS features such as copying to the iOS pasteboard, document interaction (Open
In), and print capabilities. A MobileIron server administrator specifies on the server whether each app is allowed to
use each of these features. The AppConnect for iOS Wrapper Library enforces the policies in the app.

Specifically:

l the print policy indicates whether the app is allowed to use: AirPrint, any future iOS printing feature, any
current or future third-party libraries or apps that provide printing capabilities.

l The pasteboard policy specifies whether your app is allowed to copy content to the iOS pasteboard. If
copying content is allowed, the policy specifies whether all apps, or only AppConnect apps, can paste the
copied content from the pasteboard.

l The drag and drop policy specifies whether AppConnect apps can drag content to all other apps, to only
other AppConnect apps, or not at all.

l TheOpen In policy specifies the apps, including the extensions that apps provide, with which your app can
share documents. The policy specifies no apps, all apps, all AppConnect apps, or a set of apps. A set of
apps is called the whitelist. Whether your app can share documents with the native iOS mail app is also
controlled by the Open In policy.

In iOS 11 through themost recently released version as supported by MobileIron, regardless of the Open In policy,
iOS always displays all apps that support the document type as possible target apps. However, if a user taps on an
app that is not allowed based on theOpen In policy, nothing happens. On iOS versions prior to iOS 11, only allowed
apps are displayed. The iOS behavioral change impacts all wrapped apps, regardless what version of the wrapper
they are wrapped with.

l TheOpen From policy specifies the apps, including the extensions that apps provide, from which your app
can receive documents when the other app uses the Open In iOS feature. The policy specifies no apps, all
apps, all AppConnect apps, or a set of apps. A set of apps is called the whitelist.

The administrator applies the appropriate policies to a set of devices. Sometimes more than one set of policies
exists on theMobileIron server for an app if different users require different policies.

Custom keyboard control
Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. To stop this potentially harmful data loss, the
MobileIron server administrator configures whether custom keyboards are allowed for an app by setting a key-value
pair in the app’s configuration. The key is calledMI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS. The key-value
pair is consumed by the AppConnect library; your app does not receive it.

Data loss preventionpolicies

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 22

When the key is present, the AppConnect library controls custom keyboard use according to the key’s value. If the
value is true, the AppConnect library allows the AppConnect app to use custom keyboards. If the value is false, the
AppConnect library does not allow custom keyboard use.

If the server administrator does not include the key-value pair for your app, the AppConnect library allows the app to
use custom keyboards. However, in this case, the AppConnect library gives precedence to the behavior your app
specifies in its implementation of the -shouldAllowExtensionPointIdentifier: method on your AppDelegate.
For example, your-shouldAllowExtensionPointIdentifier: can reject all custom keyboards.

Logmessages based on log levels
In a wrapped app, the AppConnect for iOS Wrapper Library supports loggingmessages according to the log level
that theMobileIron server administrator specifies for the app. The wrapper library logs thesemessages to the
device’s console. It also logs themessages to log files if specified by the administrator. The log data provides
information to help troubleshoot issues with the apps.

App-specific configuration from theMobileIron server
Handling app-specific configuration from theMobileIron server requires some application development before
wrapping the app. If you do not use this feature, the app continues to set up its configuration as it always has.

Typically, wrapped apps do not use this feature. However, if you have application developer resources, you can
take advantage of this feature.

You determine the app-specific configuration that your app requires from theMobileIron server. Examples are:

l the address of a server that the app interacts with

l whether particular features of the app are enabled for the user

l user-related information from LDAP, such as the user’s ID and password

l certificates for authenticating the user to the server that the app interacts with

For details about how to receive app-specific configuration from theMobileIron server, see App-specific
configuration callback methods.

Data encryption

AppConnect-related data

TheMobileIron client app and theWrapper library work together to use encryption to protect AppConnect-related
data, such as configurations and certificates, on the device.

Logmessages basedon log levels

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 23

The encryption key is not stored on the device. It is either:

l Derived from the device user’s AppConnect passcode.

l Protected by the device passcode if the administrator does not require an AppConnect passcode.

l Protected by the device passcode if the device user uses Touch ID/Face ID to access AppConnect apps.

If no AppConnect passcode or device passcode exists, the data is encrypted, but the encryption key is not
protected by either passcode.

App data files

The AppConnect passcode does not impact encryption of the app’s data. The app’s data is encrypted only if both of
the following are true:

l the device has a device passcode.
TheMobileIron server administrator determines whether a device passcode is required.

l the app enables iOS data protection on its files.
The wrapper ensures that data that the app writes with the following APIs has a data protection level of
either NSFileProtectionCompleteUntilFirstUserAuthentication or NSFileProtectionComplete:

o NSArray

o NSData

o NSDictionary

o NSFileManager

o NSFileWrapper

o NSKeyedArchiver

o NSString

o UIDocument

o NSPersistentStoreCoordinator

Note that Apple defines the data protection levels as follows:

l NSFileProtectionCompleteUntilFirstUserAuthentication
The file is stored in an encrypted format on disk and cannot be accessed until after the device has booted.
After the user unlocks the device for the first time, your app can access the file and continue to access it
even if the user subsequently locks the device.

l NSFileProtectionComplete
The file is stored in an encrypted format on disk and cannot be read from or written to while the device is
locked or booting.

Appdata files

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 24

Optional: Avoid pasteboard notifications
To avoid pasteboard notifications on users' devices when using AppConnect apps, set up an AppGroup for your
AppConnect apps. AppGroups are an iOS mechanism to share data between apps. Setting up an AppGroup also
reduces the amount of switching between the AppConnect app and theMobileIron client. The following is an
overview of the setup needed to avoid pasteboard notifications.

IMPORTANT: Set up your app to use AppGroups as described in this section before youwrap the app.

Overview

1. In the Apple Developer portal,

a. Create an AppGroup.

b. Add the AppGroup to your AppConnect app's App ID.

c. Update and download the Provisioning Profile.

2. Update the app to use the new Provisioning Profile.

3. Configure AppGroup capability and AppGroup for the app in Xcode.

NOTE: Ensure that the appgroup name configured in Xcodematches the AppGroup name
that you configured in the Apple Developer Portal.

For detailed instructions for each step, see the links in the following related topics.

Next steps

l Wrap the app as usual. If you are using an AppGroup to avoid pasteboard notifications, then after you have
wrapped the app, run the sign_wrapped_app.sh script with at least the -g and -i options to specify the App
Group name. See Specifying AppConnect AppGroup ID

NOTE: If youare using anAppGroup, youmust run the script to add the AppGroup name
irrespective ofwhether the appwaswrappedon theWrapping portal or using the
Wrapping tool. Wrapping the appdoes not add the AppGroup name.

Related topics

l For information about how to create an AppGroup, add it to your AppConnect app's App ID, and save and
download the updated Provisioning Profile for your app on the Apple Developer portal, see Configuring an
AppGroup on the Apple Developer portal

l For information about configuring AppGroup capability and AppGroup for you app, see the following Apple
documentation:

o Adding Capabilities to Your App

o Configure app groups

Optional:Avoidpasteboardnotifications

https://developer.apple.com/documentation/xcode/adding_capabilities_to_your_app
https://help.apple.com/xcode/mac/current/#/dev8dd3880fe

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 25

l For information about adding the AppGroup to the app's Info.plist, see Specifying AppConnect AppGroup
ID.

The feature is available if the components are at the following version through the latest as supported by
MobileIron:

l The AppConnect app uses AppConnect 4.7.0 SDK.

l The iOS device uses iOS 14.

l TheMobileIron client is one of the following
o MobileIron Go 5.5.1
o Mobile@Work 12.4.1

NOTE: AppConnect apps continue to use the pasteboard if anAppGroup, as described in this section,
is not set up.

Configuring an AppGroup on the Apple Developer portal

You create an AppGroup, add it to your AppConnect app's App ID, and save and download the updated
Provisioning Profile for your app on the Apple Developer portal.

Procedure

1. On the Apple Developer portal, go toCertificates, Identifiers & Profiles > Identifiers.

2. Select App Groups, and create an AppGroup.
When you create an AppGroup, you add a name and an Identifier for the AppGroup. The name can be
anything, as long as it is unique.

3. After you create the AppGroup, go toCertificates, Identifiers & Profiles > Identifiers.

4. Select App IDs, and click the AppConnect app.

5. Select App Groups > Configure, and select the AppGroup to assign to the AppConnect app.

6. After you update the AppGroup for the AppConnect app, toCertificates, Identifiers & Profiles >
Identifiers.

7. Select Profiles, and click the provisioning profile for your app to edit.

8. Click Edit > Save > Download.

9. Double-click the Provisioning Profile in the Finder to import it into Xcode.

ConfiguringanAppGroupontheAppleDeveloper portal

4

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 26

AppConnect wrapper callback methods

Typically, you can wrap apps without any changes to the app. However, the following AppConnect wrapper
callback methods are available to wrapped apps:

l App-specific configuration callback methods
Thesemethods are necessary for apps that want to receive app-specific configuration from theMobileIron
server.

l Callback method involving network requests with AppTunnel
This method is a convenient way tomake sure your app does not make network requests that depend on
AppTunnel until the AppConnect library in the app has received the AppTunnel rules.

App-specific configuration callback methods

Overview of app-specific configuration from theMobileIron server

Handling app-specific configuration from theMobileIron server requires some application development before
wrapping the app. If you do not use this feature, the app continues to set up its configuration as it always has.

Typically, wrapped apps do not use this feature. However, if you have application developer resources, you can
take advantage of this feature.

You determine the app-specific configuration that your app requires from theMobileIron server. Examples are:

l the address of a server that the app interacts with

l whether particular features of the app are enabled for the user

l user-related information from LDAP, such as the user’s ID and password

l certificates for authenticating the user to the server that the app interacts with

Each configurable item is a key-value pair. Each key and value is a string. A MobileIron server administrator
specifies on the server the key-value pairs for each app. The administrator applies the appropriate set of key-value
pairs to a set of devices. Sometimes more than one set of key-value pairs exists on the server for an app if different
users require different configurations. For example, the administrator can assign a different server address to users
in Europe than to users in the United States.

NOTE: When the value is a certificate, the value contains the base64-encodedcontents of the
certificate, which is a SCEP or PKCS-12certificate. If the certificate is password encoded, the

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 27

MobileIron server automatically sends another key-value pair. The key’s name is the string <name
of key for certificate>_MI_CERT_PW. The value is the certificate’s password.

Methods for receiving app-specific configuration from theMobileIron server

To receive app-specific configuration from theMobileIron server, the developer implements one or both of the
following callback methods on the class that implements the UIApplicationDelegate protocol:

In Objective-C:

-(NSString *)appConnectConfigIs:(NSDictionary *)config;

-(NSString *)appConnectConfigChangedTo:(NSDictionary *)config;

In Swift:

@objc func appConnectConfigIs(_ config: [String : Any]) -> String?

@objc func appConnectConfigChangedTo(_ config: [String : Any]) -> String?

Bothmethods:

l Have a config parameter.
The parameter is an NSDictionary object which contains the current key-value pairs for the app-specific
configuration. The app applies the values according to its requirements and logic.

l Return the value nil if the configuration was successfully applied. Otherwise, return a string that
describes the error that occurred in applying the configuration.

When to use -appConnectConfigIs: versus -appConnectConfigChangedTo:

When to use -appConnectConfigIs:

Use -appConnectConfigIs: to find out what the app-specific configuration is. The AppConnect library calls -
appConnectConfigIs: when:

l the app is launched or relaunched.

l the configuration changes on theMobileIron server.

When using -appConnectConfigIs:, the app can depend on the configuration values being available in memory
at any time.

Some examples for using -appConnectConfigIs: to get app-specific configuration from theMobileIron server:

l User permissions that are accessed throughout the life of the app.

l A server address that the app uses to connect to a server, or reconnect after losing network connectivity.

Methods for receivingapp-specific configuration fromtheMobileIron server

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 28

When to use -appConnectConfigChangedTo:

Use -appConnectConfigChangedTo: when the app needs to take some action when the app-specific
configuration changes. The AppConnect library calls -appConnectConfigChangedTo: when the configuration
changes on theMobileIron server.

When using -appConnectConfigChangedTo:, the app knows when configuration values change, and should take
the appropriate action immediately. The configuration values are not available in memory after an app relaunch, but
because the app already took the necessary actions, the unavailability does not matter.

Some examples for using-appConnectConfigChangedTo: to receive changes to theMobileIron server app-
specific configuration are:

l A setting indicating whether the user can access certain data.
If access is denied, the app removes that data immediately. Once the app has removed the data, the app
will not use the setting again. Therefore, the setting’s availability in memory does not matter.

l User registration information
If the app requires that the user registers to a server one time, the app registers the user when it receives
the registration information. Once registered, the app will not use the registration information again.
Therefore, the information’s availability in memory does not matter.

Details about when each method is called

The following table provides the details about when eachmethod is called, with the differences in behavior shown
in bold.

Action -appConnectConfigChangedTo: -appConnectConfigIs:

The app is launched for the first time and
theMobileIron server has app-specific
configuration.

NOTE: In this case, the app-specific
configuration changes from
nil to some values.

Called Called

The app is launched for the first time and
theMobileIron server has no app-specific
configuration.

Not called Not called

The app is re-launched after being
terminated and the configuration has not
changed since the app last ran.

(Termination is due to, for example, a
force-close by the user, an iOS
termination, or an app crash).

Not called Called

Whento use -appConnectConfigChangedTo:

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 29

Action -appConnectConfigChangedTo: -appConnectConfigIs:

The app is re-launched after being
terminated and the configuration has
changed since the app last ran.

Called Called

A change has occurred to the app-specific
configuration on theMobileIron server
while the app is running.

Called Called

Handling app-specific configuration in Xamarin apps

Wrapped Xamarin apps can handle app-specific configuration from theMobileIron server.

The developer implements one or both of the followingmethods in the UIApplicationDelegate class or subclass:

[Export ("appConnectConfigIs:")]

public string AppConnectConfigIs (NSDictionary config) {

// The config parameter contains the current key-value pairs for the
// app-specific configuration.
// Apply the configuration according to the application’s requirements and logic.

return null; // Return null on success. If a error occurs, return a string
// describing the error.

}

[Export ("appConnectConfigChangedTo:")]

public string AppConnectConfigChangedTo (NSDictionary config) {

// The config parameter contains the current key-value pairs for the
// app-specific configuration.
// Apply the configuration according to the application’s requirements and logic.

return null; // Return null on success. If a error occurs, return a string
// describing the error.

}

Related topics

When to use -appConnectConfigIs: versus -appConnectConfigChangedTo:.

Callback method involving network requests with AppTunnel

Overview of network requests when using AppTunnel

Handlingapp-specific configuration inXamarinapps

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 30

A wrapped app can useMobileIron AppTunnel, as described in Tunneling, to securely tunnel HTTP and HTTPS
network connections from the app to servers behind a company’s firewall. An administrator configures the
MobileIron server with the AppTunnel rules for the app. The AppTunnel rules specify which URL requests to tunnel.

When an app first launches:

1. Control switches to theMobileIron client app (Mobile@Work for MobileIron Core, MobileIron Go for
MobileIron Cloud).

2. TheMobileIron client app gets the configuration and policy settings for the app, including the AppTunnel
rules, from theMobileIron server.

3. TheMobileIron client app delivers the settings to the AppConnect library in the app.

4. Control switches back to the app.

When the appmakes a network request, such as when loading a web view, the AppConnect library determines if
the URLmatches one of the AppTunnel rules. If a match is found, the AppConnect library tunnels the request.

Therefore, if an app makes network requests before the AppConnect library has received the AppTunnel
rules, the network requests will fail for URLs behind the enterprise’s firewall.

When this occurs, an app should try the request again. For example, the app can try the request again after some
time has elapsed, or the next time it becomes active.

Alternatively, an app can wait to make a network request until after the AppConnect library has received the
AppTunnel rules. An AppConnect wrapper callback method is available for the app to know when the rules have
been received.

Wrapper callbackmethod for when to send network requests

You can use the following callback method tomake sure your wrapped app does not send a network request until
after the AppConnect library in the app has received the AppTunnel rules. Implement themethod on the class that
implements the UIApplicationDelegate protocol.

In Objective-C:

-(void)appConnectStateChangedTo:(NSInteger)newState;

In Swift:

@objc func appConnectStateChangedTo(_ newState: Int)

When in the app life cycle the AppConnect library calls -appConnectStateChangedTo:

The AppConnect library calls the -appConnectStateChangedTo: method when:

Wrapper callbackmethod for whento sendnetwork requests

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 31

l the app is first launched.

l the app is launched after being terminated.

l the app is launched after the device is restarted.

In these situations, the AppConnect library calls themethod when the library has either:

l Received the AppTunnel rules.

l Determined that it will not receive the AppTunnel rules because theMobileIron client app is not installed on
the device.
Without theMobileIron client app, the wrapped app does not run as an AppConnect app. No AppConnect
features are available to it.

NOTE: Whenanapp is unauthorized, theMobileIron client appdisplays amessage and the appexits. In
that case, the AppConnect library does not call the -appConnectStateChangedTo: method.

The -appConnectStateChangedTo: method parameter

The following table shows the possible values of the newState parameter in the -appConnectStateChangeTo:
method:

Value of
newState

Meaning of value Action your app takes

0 The AppConnect library in the app will not receive AppTunnel
rules because theMobileIron client app is not installed on the
device.

Without theMobileIron client app, the wrapped app does not
run as an AppConnect app. No AppConnect features are
available, including AppTunnel. Network requests to URLs
behind a firewall will fail.

Behave as a standard, non-
AppConnect app. Typically, this
requires no changes to your
app.

1 The AppConnect library in the app has received the AppTunnel
rules.

The app can now make network
requests that will be tunneled.

AppConnectStateChangedTo callback method in Xamarin apps

Wrapped Xamarin apps can use a callback method to determine when to send network requests that use
AppTunnel. Specifically, the developer implements the followingmethod in the UIApplicationDelegate class or
subclass:

[Export ("appConnectStateChangedTo:")]

public AppConnectStateChangedTo (System.nint newState) {

The -appConnectStateChangedTo:methodparameter

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 32

// newState parameter:
//
// 0 - The AppConnect library in the app will not receive AppTunnel rules,
// or any other AppConnect configurations and policies, because
// the MobileIron client app is not installed on the device.
// Network requests to URLs behind a firewall will fail.
// The app should behave as a standard, non-AppConnect app.
//
// 1 - The AppConnect library in the app has received the AppTunnel rules. The app can
// now make network requests that will be tunneled.

}

AppConnectStateChangedTocallbackmethod inXamarinapps

5

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 33

How to wrap an iOS app

You can wrap an iOS app if:

l It is an app developed in-house.

l It is an app developed by a third-party organization for you to distribute.

IMPORTANT: Youcannotwrapanapp if you got the app (IPA file) from the Apple App Store.

You can wrap an iOS app one of these ways:

l Submit the app to AppConnect Wrapping Portal for immediate turnaround.
You re-sign the returned app using a script that MobileIron provides to you.

SeeUsing the AppConnect Wrapping Portal.

l Use the AppConnect AppWrapper, also known as the wrapping tool.
Provided by MobileIron, this OS X app wraps your app. Its output is a wrapped, signed app. It also can
output a wrapped, unsigned app, which you can give to another party to sign. Use the wrapping tool if you
cannot submit the app toMobileIron due to your security policies.

SeeUsing the AppConnect App Wrapper (wrapping tool).

Be sure the unwrapped app installs and runs according to your requirements before you wrap the app.

Related topics

l Re-signing an app before wrapping it

l Using the AppConnect Wrapping Portal

l Re-signing the wrapped app

l Using the AppConnect AppWrapper (wrapping tool)

Re-signing an app before wrapping it
Before you wrap an app developed by a third-party developer, re-sign it with your own enterprise's signing identity
using the sign_wrapped_app.sh script. Then wrap the app, and sign it again as described in Using the AppConnect
Wrapping Portal or Using the AppConnect AppWrapper (wrapping tool)

For in-house apps, re-signing the app before wrapping it is typically not necessary because it is already signed with
your enterprise's signing identity.

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 34

Before you begin
1. Login to help.mobileiron.com.
2. Click the Software tab.
3. Download the sign_wrapped_app.sh script.
4. Make sure the signing certificate that you created for the app is in theMacOS computer’s login keychain.
5. Put the IPA file of the unwrapped app and the sign_wrapped_app.sh script in the same directory for convenient

access.

The signing script is supported only with the versions MacOS and Xcode listed in Product versions required.

IMPORTANT: Youmust download the signing script sign_wrapped_app.sh for each new release of
AppConnect for iOS. Previous versions of the script will not work.

Procedure
1. Open the Terminal application on theMacOS computer.
2. Change to the directory containing the IPA file of the unwrapped app and the sign_wrapped_app.sh script.
3. Make sure that the sign_wrapped_app.sh script is executable. For example:

$chmod 755 sign_wrapped_app.sh
4. Run the script, specifying two parameters: the app’s signing certificate and the IPA file of the unwrapped app.

For example:
$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" myApp.ipa

Specify the name of the signing certificate in double quotes. The name has the format "iPhone Distribution:

<certificate name>" where <certificate name> is typically the name of your company.

5. When prompted, enter the password to unlock your keychain.
The script continues to run, displaying the following output when successful:
/var/folders/6g/z1_193_x0lj6jkzmysxl5wz80000gq/T//resign-
QJ4wZrPR/Payload/myApp.app/MISandbox.framework/Versions/A: replacing existing signature
/var/folders/6g/z1_193_x0lj6jkzmysxl5wz80000gq/T//resign-QJ4wZrPR/Payload/myApp.app: replacing invalid
existing signature
$
The script replaces the IPA file with a signed IPA file. The signed IPA file is the file you will wrap.

Optionally, you can specify a different output file for the signed IPA file. Use the -o option as follows:
$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" -o mySignedApp.ipa myApp.ipa

Using the AppConnect Wrapping Portal
Use the AppConnect Wrapping Portal to receive the wrapped app within minutes. The AppConnect Wrapping
Portal wraps the iOS app with the latest version of the AppConnect for iOS Wrapper Library. The AppConnect
Wrapping Portal does not keep either the unwrapped or wrapped version of your app. You can upload apps that are
up to 200MB.

The AppConnect Wrapping Portal is available at help.mobileiron.com in theDeveloper > Wrapped Apps tab.

Subscribe to https://trust.mobileiron.com for AppConnect Wrapping Portal system status and updates.

Using theAppConnectWrappingPortal

http://help.mobileiron.com/
http://help.mobileiron.com/
https://trust.mobileiron.com/

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 35

Do the following high-level steps:

1. Login to help.mobileiron.com

2. Upload an unwrapped app and wrap it

3. Download the wrapped app and signing script

4. Re-sign the wrapped app as described inRe-signing the wrapped app.

IMPORTANT: Do not submit anapp for wrapping if you got the app (IPA file) from the Apple App Store.

Before you begin

Before you use the AppConnect Wrapping Portal:

l Be sure the unwrapped app installs and runs according to your requirements before you wrap the app.

l Sign the app according to Apple’s requirements.

l Set Safari browser privacy option
If you are using Safari to access the AppConnect Wrapping Portal, inSafari > Preferences > Privacy,
set theCookies and website data option toAlways allow.
FIGURE 1.ALWAYS ALLOWCOOKIES

Login to help.mobileiron.com

Enter your login ID and password at https://help.mobileiron.com.

The home page displays.

Before youbegin

https://help.mobileiron.com/

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 36

Upload an unwrapped app and wrap it

1. Click Developer > Wrapped Apps in the tab bar.
TheWrapped Apps page displays.

2. Click Create New Wrapped App.

3. Read and accept the license agreement, if presented.
The license agreement is presented the first time that you click Create New Wrapped App.
After accepting the license agreement, theSelect Your App page displays.

4. Click Choose File.
A dialog box for choosing the file opens.

5. Select the IPA file of an unwrapped app in your computer’s folders.

6. Click Next on theSelect Your App page.
The portal uploads the IPA file, and then displays theWrap Your App page.

7. ClickWrap.

Download the wrapped app and signing script

When you clickWrap, after a few moments, depending on the size of the app, theDownload page displays.

Uploadanunwrappedappandwrap it

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 37

1. Click Download Wrapped App.
The portal downloads the wrapped app to your computer.

2. Click Download Signing Script.
The portal downloads the signing script to your computer.
IMPORTANT: Youmust download the signing script sign_wrapped_app.sh for each new release

of AppConnect for iOS. Previous versions of the script will not work.

3. Click Finish.
The portal removes both the wrapped and unwrapped version of the app.

4. Re-sign the wrapped app with the signing script as described inRe-signing the wrapped app.

NOTE: if wrapping fails, the portal displays the reason. You canclickOpen Support Ticket if you need
help.

Re-signing the wrapped app
When you receive your wrapped app from the AppConnect Wrapping Portal, re-sign the app using the script that
MobileIron returns with the app. The script is called sign_wrapped_app.sh.

The signing script is supported only with the versions MacOS and Xcode listed in Product versions required.

IMPORTANT: Youmust download the signing script sign_wrapped_app.sh for each new release of
AppConnect for iOS. Previous versions of the script will not work.

Before you begin

l Make sure the signing certificate that you created for the app is in theMacOS computer’s login keychain.

l Put the IPA file of the wrapped app and the sign_wrapped_app.sh script in the same directory for
convenient access.

Re-signing thewrappedapp

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 38

Procedure

1. Open the Terminal application on theMacOS computer.

2. Change to the directory containing the IPA file of the wrapped app and the sign_wrapped_app.sh script.
For example:
$cd ~/wrapping

3. Make sure that the sign_wrapped_app.sh script is executable. For example:
$chmod 755 sign_wrapped_app.sh

4. Run the script, specifying two parameters: the original app’s signing certificate and the IPA file of the
wrapped app. For example:
$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" myApp-wrapped.ipa

NOTE: Specify the name of the signing certificate of the original, unwrappedapp in double
quotes. This name is also the original app’s signing identity. The name has the format
"iPhone Distribution: <certificate name>" where <certificate name> is typically the
name of your company.

5. When prompted, enter the password to unlock your keychain.
The script continues to run, displaying the following output when successful:
/var/folders/6g/z1_193_x0lj6jkzmysxl5wz80000gq/T//resign-
QJ4wZrPR/Payload/myApp.app/MISandbox.framework/Versions/A: replacing existing signature
/var/folders/6g/z1_193_x0lj6jkzmysxl5wz80000gq/T//resign-QJ4wZrPR/Payload/myApp.app: replacing
invalid existing signature
$
The script replaces the IPA file with a signed IPA file. The signed IPA file is the file you distribute to device
users.
Optionally, you can specify a different output file for the signed IPA file. Use the -o option as follows:
$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" -o
mySignedWrappedApp.ipa myApp-wrapped.ipa

Related topics

l Specifying custom entitlements

l Specifying a new provisioning profile

l Specifying new version numbers

l Specifying a different bundle ID

l Troubleshooting the signed wrapped app

l Specifying AppConnect AppGroup ID

Specifying custom entitlements

By default, the sign_wrapped_app.sh script takes the app entitlements (for example, enabling iCloud, push
notifications, and App Sandbox) from the app binary. You can override this behavior by specifying an optional

Specifyingcustomentitlements

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 39

parameter when running the sign_wrapped_app.sh script. The parameter names an entitlements plist file.
-e <entitlements plist file name>

For example:
$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" -e entitlements.plist myApp-
wrapped.ipa

Specifying a new provisioning profile

By default, the sign_wrapped_app.sh script uses the distribution provisioning profile that is embedded in the app’s
IPA file. You can override this behavior by specifying an optional parameter when running the sign_wrapped_
app.sh script. The parameter names another distribution provisioning profile.

-p <path to distribution provisioning profile>

For example, when the provisioning profile is in the current directory:

$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName"
-p MyProvisioningProfile.mobileprovision myApp-wrapped.ipa

Specifying new version numbers

By default, the sign_wrapped_app.sh script does not change the version numbers in the IPA file. These version
numbers are:

l the release version number (CFBundleShortVersionString key’s value in the Info.plist of the app)

l the build version number (CFBundleVersion key’s value in the Info.plist of the app)

Typically, you do not need to specify new version numbers for the signing script. The new version numbers in an
updated app are fine. However, if you are using the signing script to re-provision and re-sign an existing version of a
wrapped app that is already in the app distribution library onMobileIron Core, youmust increase the version
numbers. MobileIron Core does not allow you to upload an app with the same version numbers as the version you
already uploaded.

The signing script provides parameters for specifying new version numbers.
-s <CFBundleShortVersionString>
-d <CFBundleVersion>

For example:
$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" -s "3.1.2" -d "3.1.2" myApp-
wrapped.ipa

Specifying a different bundle ID

You can use the -b option on a wrapped app to change its bundle ID. Because the -i option is required, youmust
also specify the signing certificate.

For example:

Specifyinganewprovisioningprofile

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 40

sign_wrapped_app.sh -i "iPhone Distribution:myCompanyName"
-b "com.new.bundleID" myWrappedApp.ipa

Troubleshooting the signed wrapped app

If your signed wrapped app exits unexpectedly when you launch it, the issue sometimes involves the original app’s
bundle ID. In some cases, the sign_wrapped_app.sh script cannot infer the original app’s bundle ID, which results
in problems running the app.

To correct this issue, run the script using the -b option to specify the original app’s bundle ID. For example:
$./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" -b com.myCompanyName.myApp
myApp-wrapped.ipa

Specifying AppConnect AppGroup ID
You can use -g option to add the AppConnect Group ID to the app's Info.plist. This groupmust be registered on the
Apple Developer Portal for the app and included in app's entitlements or provisioning profile used for signing. For
information about how to create an AppGroup, add it to your AppConnect app, and save and download the updated
Provisioning Profile for your app on the Apple Developer portal, see Optional: Avoid pasteboard notifications

For example:

sign_wrapped_app.sh -i "iPhoneDistribution:myCompanyName" -p
MyProvisioningProfile.mobileprovision -g "group.com.my.company.ios.appconnect"
myWrappedApp.ipa

In the example, MyProvisioningProfile.mobileprovisionmust have com.apple.security.application-groups
entitlement enabled and the entitlement must contain group.com.my.company.ios.appconnect group ID.

Using the AppConnect AppWrapper (wrapping tool)
The AppConnect AppWrapper, also known as the wrapping tool, is anMacOS app that MobileIron provides. Its
output is a wrapped, signed app. It also can output a wrapped, unsigned app, which you can give to another party to
sign. You can run the wrapping tool using either its graphical user interface or using a command-line interface (CLI).
The CLI is useful when you want to wrap an app from an automated script.

Important: You cannotwrap an app if you got the app (IPA file) from the Apple App Store.

Before you begin

Before you use the wrapping tool, be sure the unwrapped app installs and runs according to your requirements.

System requirements

The wrapping tool is supported only with the following versions of MacOS and Xcode listed in Product versions
required.

Troubleshooting the signedwrappedapp

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 41

Install Xcode

Install Xcode from the Apple App Store. After the installation completes, open Xcode and accept the license
agreement. Then enter your administrator password for your MacOS system, if prompted for it.

Before you run the wrapping tool

Before you run the wrapping tool, make sure you have the following:
• Permission on your MacOS computer to allow apps that are not from theMac App Store.

On your computer, go to System Preferences > Security & Privacy > General. For the setting “Allow apps
downloaded from”, select “Mac App Store and identified developers”.

• The signed, unwrapped IPA file for the app that you want to wrap.
Make sure that you or another party signed the app according to Apple’s requirements.

• The signing identity, if you plan to re-sign the wrapped app now.
You can distribute an app only if the app is signed. The wrapping tool gives you the option to sign the wrapped
app. To use that option, make sure you have the signing identity that you want to use in the keychain. You can
use the same signing identity as the unwrapped app or a different signing identity.
If you are using the CLI, make sure that the keychain containing the signing identity is unlocked. SeeUnlock
the keychain containing the signing identity.
If you do not sign the app with the wrapping tool, you can sign the app later.
MobileIron provides a signing script called sign_wrapped_app.sh for this purpose. Typically, you sign the app
with the wrapping tool unless you do not have access to the signing identity. For example, only another person
in your enterprise or at a third-party enterprise has the signing identity.

• The provisioning profile, if different from the unwrapped app’s provisioning profile.
Typically, you re-use the provisioning profile from the unwrapped app. However, some reasons to replace it are
that it has expired, or the signing identity is different from the unwrapped app. If necessary, install the new
provisioning profile on theMacOS computer using Xcode.

To learn about signing identities and provisioning profiles, see Apple documentation at http://developer.apple.com.

Get the wrapping tool and signing script

The wrapping tool and signing script are located at:

https://support.mobileiron.com/mi/appconnect_app_wrapper/iOS/current

The wrapping tool is in AppConnectAppWrapper-<version number>.zip. Download the zip file to anMacOS
computer and unzip the file.

The signing script is called sign_wrapped_app.sh.

Unlock the keychain containing the signing identity

If you plan to sign the wrapped app using the wrapping tool CLI, first make sure the keychain containing the signing
identity is unlocked.

InstallXcode

https://support.mobileiron.com/mi/appconnect_app_wrapper/iOS/current

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 42

MacOS computers store signing identities and other security related items in keychains. A keychain is a password-
protected file with the .keychain extension. It must be added to the keychain system on theMacOS computer
before a program can use it. A keychain is either locked or unlocked. When locked, you cannot sign an app with a
signing identity in the keychain unless you provide the keychain’s password.

Therefore, before running the wrapping tool CLI, unlock the keychain if the signing identity is in a locked keychain.
If you do not, MacOS prompts you for the password in a dialog box. This graphical prompt occurs when running the
wrapping tool with either the graphical user interface or CLI.When using the CLI from an automated script,
avoiding this prompt is critical to the script’s success.

TheMacOS KeyChain Access application and the command-line program security allow you to view and
manipulate keychains and their contents.

Use the following command-line command to unlock the keychain:
security unlock-keychain -p <password> <path to .keychain file>

Important:Signing identities are security sensitive because they can be used to signmalicious apps that appear to
be your legitimate app. Take appropriate measures to secure the keychain that contains the signing identity and to
secure the keychain’s password.

Run the wrapping tool using its graphical user interface

Run the wrapping tool, following the instructions in the tool’s graphical user interface.

Alternatively, you can run the wrapping tool using a command-line interface from a Terminal window or a script. For
details, seeRun the wrapping tool using a command-line interface.

Run the separate signing script, if necessary

The wrapping tool gives the option to sign the wrapped app. If you do not sign the wrapped app with the wrapping
tool, sign it using theMobileIron-provided script called sign_wrapped_app.sh. This step is necessary if the person
using the wrapping tool does not have access to the signing identity for the app.

Instructions for using sign_wrapped_app.sh are inRe-signing the wrapped app.

Run the wrapping tool using a command-line interface

You can run the wrapping tool using a command-line interface (CLI) from a Terminal window or a script. You
provide command-line arguments instead of following a graphical user interface. Running the wrapping tool using
the command-line interface is useful, for example, to automate wrapping as part of your regular app build process.

SinceMacOS apps comprise a directory of resources and executables, the wrapping tool app contains its
command-line executable in the following directory:

<wrapping tool installation directory>/AppConnect\ App\ Wrapper.app/Contents/MacOS/

Runthewrapping toolusing its graphicaluser interface

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 43

The executable is AppConnect\ App\ Wrapper.

Therefore, to run the wrapping tool using the CLI, use the following command:

<wrapping tool installation directory>/AppConnect\ App\ Wrapper.app/ \
Contents/MacOS/AppConnect\ App\ Wrapper <command-line arguments>

Command-line argument usage

Running the wrapping tool from the command-line requires that you enter command-line arguments. Some of the
arguments are the options that determine the action that the wrapping tool takes. Include exactly one of the
following options:
-w, -i, -f, -v, -h.

The following table shows the command-line argument usage.

Command-line usage Purpose

./AppConnect\ App\ Wrapper --nogui -w [-s identity] \
[-p profile] [-o outputPath]
[--quiet] <app to wrap>

Wraps an app.

./AppConnect\ App\ Wrapper --nogui -i [--verbose|--quiet] Lists the names of available
signing identities.

./AppConnect\ App\ Wrapper --nogui -f [--verbose|--quiet] Lists the names of available
provisioning profiles.

./AppConnect\ App\ Wrapper --nogui -v Displays the version number of
the wrapping tool.

./AppConnect\ App\ Wrapper --nogui -h Displays the command-line
usage.

TABLE 2.COMMAND-LINE ARGUMENT USAGE

NOTE: The order of the options does not matter. For example, --nogui canappear before or after -w.

Command-line argument descriptions

The following table describes the command-line arguments.

Note The Following:

l For the options -w, -i, -f, -v, and -h, you canalso use the corresponding long name: --wrap,
--listidentities, --listprofiles, --verbose, and --help.

l All long namesmust beginwith adouble dashwhereas the one character options beginwith a
single dash.

Command-lineargumentusage

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 44

Argument Description

<app to wrap> Specifies the absolute or relative path to the IPA file to wrap.

Use this argument only when you specify the --wrap argument.

--nogui Suppresses the graphical user interface.

If you do not include --nogui:

l the wrapping tool ignores all other command-line arguments

l the wrapping tool graphical user interface launches

--verbose Displays more detailed information as follows:

l With --listidentities, displays the expiration date of each
signing identity.

l With --listprofiles, displays the expiration date and bundle ID
matching rule for each provisioning profile.

--quiet Does not display command-line help text when an error occurs.

Without --quiet, when an error occurs, the output displays the error
information following by the --help text.

--wrap or -w Wraps the app.

When you use this argument, you can also specify these arguments:
--sign

--provision

--output

<app to wrap>

--listidentities or -i Lists the names of the available signing identities that you can use with
the --sign option.

Use the --verbose option to list more detailed information.

--listprofiles or -f Lists the names of the available provisioning profiles that you can use with
the --provision option.

Use the --verbose option to list more detailed information.

--version or -v Displays the version number of the wrapping tool.

--help or -h Displays help text describing the command-line arguments.

--sign <identity name>

or
-s <identity name>

Signs the wrapped app with the specified signing identity. Use this
argument only when you specify the
--wrap argument.

If you do not include the --sign argument, the app is wrapped but not

TABLE 3.COMMAND-LINE ARGUMENTS

Command-lineargumentdescriptions

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 45

Argument Description

signed.

--provision <profile name>

or
-p <profile name>

Provisions the wrapped app with the specified provisioning profile. If
multiple provisioning profiles have the specified name, the wrapping tool
uses the profile with themost recent creation date.

Use this argument only when you specify the --wrap argument.

Make sure that the provisioning profile:

l embeds the signing identity that you chose in the
--sign argument.

l contains a bundle ID search string that matches the bundle ID of the
app.

If you do not include the --provision argument, the wrapping tool uses
the unwrapped app’s provisioning profile.

--output <output file>

or
-o <output file>

Saves the wrapped app to the specified file. Specify the absolute or
relative path to the file. Use this argument only when you specify the --
wrap argument.

If you do not include the --output argument, the wrapping tool:

l puts the wrapped app in the same directory as the unwrapped app.

l appends " Wrapped" to the unwrapped app’s file name.
For example, wrapping MyApp.ipa creates MyApp Wrapped.ipa.

TABLE 3.COMMAND-LINE ARGUMENTS (CONT.)

Command-line usage examples

The following examples demonstrate command-line usage. Each example assumes that the current
directory is:

<wrapping tool installation directory>/AppConnect\ App\ Wrapper.app/Contents/MacOS

Command-line usageexamples

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 46

Example Wrapping tool’s actions

./AppConnect\ App\ Wrapper --nogui -w \

-o ~/MyApp_Wrapped.ipa ~/MyApp.ipa

l Wraps the app ~/MyApp.ipa.

l Does not sign the wrapped app.

l Uses the unwrapped app’s provisioning profile for the
wrapped app.

l Puts the wrapped app in
~/MyApp_Wrapped.ipa

Using short option names:
./AppConnect\ App\ Wrapper --nogui -w \
-s "iPhone Distribution: MyCompany" \
-p "Wildcard Distribution" \
-o ~/MyApp_Wrapped.ipa ~/MyApp.ipa

Using long option names:
./AppConnect\ App\ Wrapper --nogui --
wrap \
--sign "iPhone Distribution:

MyCompany" \
--provision "Wildcard Distribution" \
--output ~/MyApp_Wrapped.ipa

~/MyApp.ipa

l Wraps the app ~/MyApp.ipa.

l Signs the wrapped app with the specified signing
identity.

l Provisions the wrapped app with the specified
provisioning profile.

l Puts the resulting wrapped app in ~/MyApp_
Wrapped.ipa.

./AppConnect\ App\ Wrapper --nogui -i -
-verbose

Lists the name and expiration date of each available signing
identity.

./AppConnect\ App\ Wrapper --nogui -f -
-verbose

Lists the name, expiration date, and bundle ID matching rule
of each available provisioning profile.

./AppConnect\ App\ Wrapper --nogui -v Displays the version number of the wrapping tool.

./AppConnect\ App\ Wrapper --nogui -h Displays the command-line usage.

TABLE 4.COMMAND-LINE USAGE EXAMPLES

Command-line command exit status

If the command-line command is successful, the command sets the exit status to 0.

If it is unsuccessful, it does the following:

l Sets the exit status to 1.

l Outputs a detailed error message and error code to stderr.

l For appropriate cases, outputs the command-line usage to stderr.

Command-line commandexit status

6

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 47

AppConnect for iOSWrapper Library and
Wrapping Tool revision history

l AppConnect 4.7.0 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.6.0 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.5.3 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.5.2 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.5.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.5.0 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.4.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.4.0 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.3.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.3.0 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.2.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.2 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.1.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 4.0 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 3.5 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 3.1.3 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 3.1.2 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 3.1.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 3.1 for iOS Wrapper Library andWrapping Tool revision history

l AppConnect 3.0 for iOS Wrapper Library andWrapping Tool revision history

l Releases prior to AppConnect 3.0 for iOS Wrapper library andWrapping Tool revision history

AppConnect 4.7.0 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following:

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 48

l New features and enhancements summary

l Known issues

l Limitations

New features and enhancements summary
This release includes the following new features and enhancements:

l Avoid pasteboard notifications: To avoid pasteboard notifications on users' devices when using
AppConnect apps, set up an app group for your AppConnect apps. Setting up an app groupmitigates
flipping between the AppConnect app and theMobileIron client and avoids pasteboard notifications. For
more information, seeOptional: Avoid pasteboard notifications.

Known issues

This release includes the following new known issues:

l APG-1196: On iOS 12 devices, users are not required to authenticate when using AppConnect 4.7.0 apps.
This is an intermittent issue.
Workaround: Upgrade to iOS 13 through the latest version as supported by MobileIron.

Limitations

This release includes the following new limitations:

l APG-1186: Though users will not see notifications when an AppConnect app flips to theMobileIron client
and back, they will see notifications,
o when they first launch a wrapped app.

o if copy/paste is disabled in the AppConnect policy.

AppConnect 4.6.0 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following:

l New features summary

New features summary

This release includes the following new features and enhancements:

New features andenhancements summary

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 49

l Support for UIScene: Apps using UIScene are supported. As a result, the previous known issue APG-
1154 is resolved.

AppConnect 4.5.3 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following:

l Resolved issues

Resolved issues

This release provides the following new resolved issues in the wrapper:

l APG-1177: Fixed an issue where redirected server requests could fail to connect.

AppConnect 4.5.2 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following:

l Resolved issues

Resolved issues

This release provides the following new resolved issues in the wrapper:

l APG-1171: Fixed an AppConnect startup issue inWrapped apps. The issue is seen after updating to new
versions of Mobile@Work, MobileIron Go, or MobileIron AppStation.
For information on theMobile@Work, MobileIron Go, andMobileIron AppStation versions that are
affected, see AppConnect for iOS: Mandatory Updates for Client App Compatibility on theMobileIron
Support Community.

AppConnect 4.5.1 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following.

l Resolved issues

AppConnect 4.5.3 for iOSWrapper LibraryandWrapping Tool revisionhistory

https://help.mobileiron.com/s/article-detail-page?Id=kA12T000000kAYNSA2
https://help.mobileiron.com/
https://help.mobileiron.com/

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 50

Resolved issues

This release provides the following new resolved issues in the wrapper:

l APG-1162: Resolved an issue where NSURLSession delegatemethods in Swift were sometimes not
called.

AppConnect 4.5.0 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following:

l Resolved issues

l Known issues

l Limitations

Resolved issues

This release provides the following new resolved issues:

l AP-5256: Workaround for a bug in a third-party app security framework, which caused a crash when used
with AppConnect.

l AP-5241: Fixed crash in [ACAppInterfaceBus displayMessage:scheme:completion:].

l AP-5199: Sometimes AppConnect apps failed to unlock using biometric authentication if the device
passcode was set as the fallback option. Users may have seen this issues if the Check-in interval and the
AutoLock interval are small and equivalent. This issue is fixed.

l AP-5245: Fixed a Secure File I/O thread-safety issue which could cause I/O errors when writing tomultiple
files simultaneously. Note that I/O to individual files should always be done from a single thread.

l AP-5253: Fixed an exception when launching apps in Xcode's Simulator.

Known issues

This release includes the following new known issues:

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

l AP-5252: Web@Work 2.9.0.0 for iOS with Chromium does not trust some sites. For more information, see
the following Knowledge Base article in theMobileIron Community: Web@Work - Certain sites may not be
trusted when using Chromium engine.

Resolved issues

https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine
https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 51

Limitations

This release includes the following new limitations:

l APG-1151: AppConnect SDK is not compatible with Xamarin.Forms Events on TextFields.
Workaround: Add the following call in the AppDelegate's
FinishedLaunching() function: UIApplication.CheckForEventAndDelegateMismatches =
false;

AppConnect 4.4.1 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following:

l Resolved issues

l Known issues

Resolved issues

This release includes the following new resolved issues:

l AP-5233: Under certain conditions when adding cookies to a network request, the cookies were dropped
after receiving an HTTP 302 redirect. This issue is fixed.

l APG-1148: In 4.4.0, if UIDocumentPicker / UIDocumentPickerViewController was initialized for Open
From before AppConnect was ready, the AppConnect wrapped app crashed on iOS 12 devices. On iOS 13
devices, the Open From DLP was ignored due to underlying changes in iOS. With 4.4.1, the Open From
DLP is ignored on all iOS versions for consistency and to avoid any crashes. Using UIDocumentPicker for
Open From now behaves as if the app were unwrapped.

Known issues

This release includes the following new known issues:

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

AppConnect 4.4.0 for iOSWrapper Library andWrapping Tool
revision history
This release provides the following:

Limitations

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 52

l New features summary

l Resolved issues

l Limitations

New features summary
This release includes the following new features and enhancements:

l Support for iOS 13: AppConnect apps work as expected on iOS 13 devices.

l armv7s architecture: Support for the armv7s architecture has been dropped.

Resolved issues

This release provides the following new resolved issues:

l AP-5158: iOS 13 changed the identification for iPad devices. If your iPad is upgraded to iOS 13, MobileIron
recommends that you also upgrade toMobileIron Core to one of the following patch releases: 10.2.0.2,
10.3.0.2, or 10.4.0.1. These patches contain the fixes for the changes in iOS 13 for iPad identification.

l AP-5179: On devices running iOS 13, openURL does not return the bundle ID of the calling app if the team
ID is not the same. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to
AppConnect 4.4.0.

l AP-5201: Previously, the NSProxy instance proxying application delegate did not receive application
lifecycle callbacks. This issue is fixed.

l AP-5207: On devices running iOS 13, AppConnect apps canOpen files to other apps whenOpen In is
disabled. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect
4.4.0.

l AP-5166: On devices running iOS 13, NSURLSession failed. This issue is fixed with AppConnect 4.4.0 for
iOS. To address the issue, update to AppConnect 4.4.0.

l AP-5169: On devices running iOS 13, Email+ for iOS displayed a black background in app switcher. This
issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect 4.4.0.

l AP-5174: Fixed the root cause due to which Email+ for iOS crashed intermittent.

l AP-5206: Previously, the AppConnect for iOS SDK was not calling applicationDidBecomeActive. This
issue is fixed.

Limitations

This release includes the following new limitations:

l AP-5186: The openURL API in iOS 13 provides the bundle ID of the calling app only if the calling app has
the same team ID. Due to this limitation, the Open From feature does not work on iOS 13 devices.

l AP-5164: Sharing files with the Chrome extension if Open In is restrictedmay cause the application to
freeze.

l AP-5159: On devices running iOS 13, the "Unable to Share Document with selected application" prompt is
not shown unless the Share dialog is closed.

New features summary

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 53

AppConnect 4.3.1 for iOSWrapper Library andWrapping Tool
revision history
This release does not provide any new features.

Support for the armv7s architecture is deprecated.

Resolved issues

This release provides the following new resolved issue:

l APG-1132: Fixed a potential crash in the NSURLSession delegate_task:didCompleteWithError: method.

AppConnect 4.3.0 for iOSWrapper Library andWrapping Tool
revision history

New features
• Support for MobileIron AppStation

Apps wrapped with the AppConnect 4.3.0 for iOS wrapper can run with MobileIron AppStation as the
MobileIron client app instead of MobileIron Go. Administrators can useMobileIron AppStation on devices which
are interacting with aMobileIron Cloud tenant that supports Mobile Apps Management (MAM) but not
Mobile DeviceManagement (MDM).

• Support for Open From data loss prevention policy
The AppConnect 4.3.0 for iOS AppConnect library adds support for the Open From data loss protection policy.

At the date of this AppConnect release, no MobileIron servers support this policy.

• iOS 9 no longer supported
AppConnect 4.3.0 for iOS is not supported on iOS 9 devices.
See Product versions required.

Resolved issues
• APG-1124:An issue has been fixed when using the -b option with the sign_wrapped_app.sh script. Now you

can use the -b option on a wrapped app to change its bundle ID and the app will run successfully.
Because the -i option is required, youmust also specify the signing certificate. For example:

sign_wrapped_app.sh -i "iPhone Distribution:myCompanyName"
-b "com.new.bundleID" myWrappedApp.ipa

AppConnect 4.2.1 for iOSWrapper Library andWrapping Tool
revision history

New features
• Allow AppConnect apps to send custom cookies in web requests

AppConnect 4.3.1 for iOSWrapper LibraryandWrapping Tool revisionhistory

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 54

Someweb pages inject custom cookies into web requests. For example, when an end user taps on a link in a
web page, the page's JavaScript injects a custom cookie. If a user makes such a request from aweb page
displayed in an AppConnect app, by default AppConnect does not include the injected cookies in the web
request, which can cause the request to fail. AppConnect now includes the custom cookies in the request if the
MobileIron server administrator includes the following key in the app's app-specific configuration on the
MobileIron server: MI_AC_USE_ORIGINAL_COOKIES_FOR_DOMAINS. The value of the key is a comma-separated
string listing the domains for which the custom cookies should be included. Make sure no spaces are included
in the value.
For example:
www.somewebsite.com,somename.someotherwebsite.com

Resolved issues
• APG-1121: Wrapped apps using Firebase no longer fail to launch.

Known issues
• APG-1124: If you change the bundle ID of a wrapped app, re-signing the wrapped app appears to succeed.

However, when you launch the re-signed wrapped app, control switches toMobile@Work but control does not
return to the app.
Workaround: Re-sign the unwrapped app but in addition to the usual -i option for the signing identity, add the -b
option to specify the new bundle ID. For example:

 $./sign_wrapped_app.sh -i "iPhone Distribution: myCompanyName" -b com.myCompanyName.myApp
myApp.ipa

Then wrap the resulting IPA file and sign it.

Limitations
• AP-5026: A Xamarin app crashes if it uses custom code to copy text rather than the native iOS copy

functionality.

AppConnect 4.2 for iOSWrapper Library andWrapping Tool
revision history
This release of the AppConnect for iOS Wrapper library and wrapping tool has no new features.

Resolved issues
• AP-4919: Fixed an issue that caused an AppConnect app to crash when it used the same object as a delegate

for multiple UI elements.

Known issues
• AP-4940: The LookUp option in the iOS context menu allows data to be shared to non-AppConnect apps

regardless of theOpen In andCopy/Paste To data loss prevention policies.

Resolved issues

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 55

AppConnect 4.1.1 for iOSWrapper Library andWrapping Tool
revision history
This AppConnect release has no new features.

Resolved issues
• AP-4920: When an AppConnect’s app upload request is redirected, the request failed when using AppTunnel.

This issue has been fixed by converting the stream request to a body request when using AppTunnel. Note that
you can override the conversion by adding a key-value pair to the app’s AppConnect configuration. AddMI_
AC_DISABLE_HTTP_STREAM_CONVERSION with the value Yes.

• APG-1118: Fixed an issue where apps subclassing NSProxy could crash on launch with the error -[NSProxy
doesNotRecognizeSelector:_ACDecoratorClass].

• APG-1097: Provides a workaround to a known bug in NSURLSession that sometimes causes the form body to
bemissing in connections in AppConnect apps when using AppTunnel.

Known issues
• AP-4919: If an AppConnect app uses the same object as a delegate for multiple UI elements, the app crashes.

AppConnect 4.1 for iOSWrapper Library andWrapping Tool
revision history
• New features
• Resolved issues

New features
• Certificate pinning support
• Lock AppConnect apps when screen is off
• Overriding the Open In Policy for openURL: with themailto: scheme

Certificate pinning support

This AppConnect release supports certificate pinning for AppConnect apps to heighten security for communication
between AppConnect apps and enterprise servers or cloud services.

Using certificate pinning requires:
• Configuration on theMobileIron server.

For MobileIron Core, see “Certificate pinning for AppConnect apps” in theMobileIron Core AppConnect and
AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through themost recently released version as supported by MobileIron.

This feature requires no additional development in the app.

AppConnect 4.1.1 for iOSWrapper LibraryandWrapping Tool revisionhistory

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 56

Lock AppConnect apps when screen is off

This AppConnect release supports automatically logging out device users from AppConnect apps when the device
screen is turned off due to either inactivity or user action.

This feature requires:
• Configuration on theMobileIron server.

For MobileIron Core, see “Configuring the AppConnect global policy” in theMobileIron Core AppConnect and
AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through themost recently released version as supported by MobileIron.

This feature requires no additional development in the app.

Overriding the Open In Policy for openURL: with the mailto: scheme

This AppConnect release allows theMobileIron server administrator to override the Open In policy when the policy
blocks the iOS native email app when the app calls openURL: with the mailto: scheme.

The AppConnect library overrides the Open In policy for native email if theMobileIron server administrator added
the key MI_AC_DISABLE_SCHEME_BLOCKINGwith the value true to the app’s app-specific configuration.

This feature requires no additional development in the app.

Resolved issues
• APG-1110: Fixed a "failed to extract entitlements from binary" error when re-signing apps with the sign_

wrapped_app.sh script. See https://community.mobileiron.com/docs/DOC-7921 for details.

AppConnect 4.0 for iOSWrapper Library andWrapping Tool
revision history

New features
• iOS 8 no longer supported
• Swift support for callback methods
• Native email control using the Open In DLP policy
• App extension control using the Open In DLP policy
• Custom keyboard use controlled by MobileIron server
• Dictation with the native keyboard is not allowed
• Support for sending AppConnect logs fromMobile@Work
• Drag and Drop data loss prevention policy support
• Automatic policy status updates sent to MobileIron server
• Support for storing AppConnect library encryption keys in the Secure Enclave

LockAppConnectappswhenscreen is off

https://community.mobileiron.com/docs/DOC-7921
https://community.mobileiron.com/docs/DOC-7921

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 57

iOS 8 no longer supported

AppConnect 4.0 for iOS is not supported on iOS 8 devices.

See Product versions required.

Swift support for callback methods

Previous versions of AppConnect for iOS included wrapping Swift apps. However, callback methods were
supported only when written in Objective-C. Now they are also supported when written in Swift.

See AppConnect wrapper callback methods.

Native email control using the Open In DLP policy

TheOpen In Data Loss Prevention policy now includes controlling whether an app can share documents with the
native iOS mail app. Opening a document with the native iOS mail app is allowed only if one of the following is true:
• Open In is allowed for all apps
• Open In is allowed for only whitelisted apps, and the native iOS mail app is in the whitelist. The whitelist must

contain both of these bundle IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

App extension control using the Open In DLP policy

TheOpen in data loss protection policy now includes restricting access to the iOS extensions that apps provide.
Specifically:

Open In DLP for host
app (the app using
the extension)

Extension behavior

All apps allowed The host app can use any app’s extension for Open In.

Only AppConnect apps
allowed

The host app can use only extensions provided by AppConnect apps for Open In.

Whitelist The host app can use only extensions of apps in the whitelist for Open In.

Custom keyboard use controlled by MobileIron server

Releases prior to the AppConnect 4.0 for iOS Wrapper library blocked the use of custom keyboards in wrapped
AppConnect apps. This release changes that behavior. TheMobileIron server can now control custom keyboard
use by your AppConnect app. If the administrator does not configure this choice, your app can choose to reject
custom keyboard use.

See Custom keyboard control.

iOS 8 no longer supported

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 58

Dictation with the native keyboard is not allowed

The AppConnect 4.0 for iOS Wrapper library blocks the use of dictation when using the native iOS keyboard. The
Wrapper library also adds support for a key-value pair that theMobileIron server administrator can set on the app’s
configuration. The key is calledMI_AC_WR_ALLOW_KEYBOARD_DICTATION. By default, the value is false,
and dictation is not allowed. If the administrator sets the value to true, then wrapped AppConnect apps can use
dictation with the native keyboard.

Support for sending AppConnect logs from Mobile@Work

AppConnect apps using AppConnect 4.0 for iOS support the feature in Mobile@Work for iOS that sends
AppConnect logs to an email address of your choice, such as a company’s helpdesk. This feature requires
Mobile@Work 9.8 for iOS through themost recently released version as supported by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

The option is displayed only for apps AppConnect apps using AppConnect 4.0 for iOS. However, the displayed
option is disabled if the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, if you included the following key-value pair for the app in its AppConnect app configuration:
• MI_AC_ENABLE_LOGGING_TO_FILE set toYes

For wrapped apps, the server administrator can also include the key MI_AC_WR_ENABLE_LOG_CAPTURE set
toYes. This key causes the app’s logs to be included in the log files along with the logs from the AppConnect
wrapper and AppConnect library.

Drag and Drop data loss prevention policy support

MobileIron server administrators can set a drag and drop policy for each AppConnect app. It specifies whether
AppConnect apps can drag content to all other apps, to only other AppConnect apps, or not at all. The AppConnect
library enforces this policy.

NOTE: This feature is not supportedwithMobileIronCloud.

Automatic policy status updates sent to MobileIron server

The AppConnect library now automatically sends a status update to theMobileIron server when it receives the
following changes:

Dictationwith the native keyboard is notallowed

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 59

Change Status update that AppConnect library sends to MobileIron server

Open In policy Informs server that the policy change has been applied.

Pasteboard policy Informs server that the policy change has been applied.

Print policy Informs server that the policy change has been passed to the app.

Configuration values Informs server that the configuration change has been passed to the app.

Authentication status Informs server that the authentication change has been passed to the app.

Support for storing AppConnect library encryption keys in the Secure Enclave

For heightened security of the encryption keys that the AppConnect library uses, aMobileIron server administrator
can now specify that the keys are stored in the Apple hardware known as the Secure Enclave. By using the Secure
Enclave, the encryption key’s attack surface is reduced, because the keys are stored in the Secure Enclave rather
than inmemory. TheMobileIron server administrator uses the key namedMI_AC_CONTAINER_TYPE with the
value ENCLAVE in the app’s app configuration. The AppConnect library consumes this key. It is not passed to
your app in Its configuration key-value pairs.

To benefit from this feature, the devicemust:
• have Apple’s Secure Enclave hardware.

NOTE: Devices that have biometric security have Secure Enclave hardware.
• be running iOS 11 through themost recently released version as supported by MobileIron
• be runningMobile@Work 9.8 for iOS through themost recently released version as supported by MobileIron

NOTE: MobileIronGo does not support this feature.

Resolved issues
• APG-1081: Fixed an issue where the AppConnect library failed to initialize in wrapped apps after changing the

iOS Text Size setting.
• AP-4202: Custom protocol classes set to NSURLSessionConfiguration were previously ignored in

AppConnect apps. This issue has been fixed.
• AP-4133: Added ability to use NSURLConnection with NSURLSession networking with AppTunnel.

Known issues
• AP-4657: The "unauthorizedmessage" screen is blurred. It continues to be blurred until the next time the app

switches to theMobileIron client app. After the next AppConnect checkin, the screen is no longer blurred.

Limitations
• AP-4720: On some devices, screen blurring does not occur when going to the Task Switcher.

Support for storingAppConnect libraryencryptionkeys in the Secure Enclave

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 60

AppConnect 3.5 for iOSWrapper Library andWrapping Tool
revision history

New features

iOS 11 compatibility

This version of the AppConnect for iOS Wrapper Library is compatible with devices running iOS 11 Beta 7. At the
time of this AppConnect release, the GA version of iOS 11 is not available.

IMPORTANT: Re-wrap your app to use the AppConnect 3.5wrapper for your app to run on iOS 11
devices. Appswrappedwithwrapper versions prior to 3.1.3crash on iOS 11devices. Apps
wrappedwithwrapper version 3.1.3do not crash, but the AppConnect library does not
handle the pasteboarddata loss prevention policy correctly.

Formore information, see Product versions required.

Callback method involving network requests with AppTunnel

A callback method -appConnectStateChangedTo: is now available. It is a convenient way tomake sure your app
does not make network requests that depend on AppTunnel until the AppConnect library in the app has received
the AppTunnel rules.

For more information, see Callback method involving network requests with AppTunnel.

Open In changes
• The AppConnect for iOS Wrapper Library supports a new key-value pair from theMobileIron server that tells

the library not to enforce the Open In policy.
See “Overriding the Open In Policy for the app” in theMobileIron CoreMobileIron Core AppConnect and
AppTunnel Guide.

• Open In behavior in wrapped app is different in iOS versions prior to iOS 11 than In iOS 11 through themost
recently released version as supported by MobileIron. In iOS 11, regardless of the Open In policy, iOS always
displays all apps that support the document type as possible target apps. However, if a user taps on an app
that is not allowed based on theOpen In policy, nothing happens. On iOS versions prior to iOS 11, only allowed
apps are displayed. The iOS behavioral change impacts all wrapped apps, regardless what version of the
wrapper they are wrapped with.
See Data loss prevention policies.

Resolved issues
• APG-977: Sometimes AppConnect wrapped apps that used third-party SDKs crashed. The issue has been

fixed.
• AP-4145: URL requests made on a background thread were not tunneled if the AppConnect library in the app

had not received the AppTunnel rules. The issue has been fixed because the AppConnect library now blocks
URL requests until after it has received the AppTunnel rules.

AppConnect 3.5 for iOSWrapper LibraryandWrapping Tool revisionhistory

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 61

• AP-3917: When a URL request using NTLM authentication was tunneled with AppTunnel, an error occurred
when the device user was prompted with the user credentials dialog. The dialog displayed the Standalone
Sentry host name instead of the URL request’s host name. The issue has been fixed.

Limitations
• AP-4302: Apps that use UIDocumentInteractionController’s preview API will not be able to share documents

with other apps, because iOS 11 beta 6 and 7 allow sharing only with certain built-in extensions.

AppConnect 3.1.3 for iOSWrapper Library andWrapping Tool
revision history
This release has no new features.

Resolved issues
• AP-4054: The HTTP error code 403 was not always reported to apps using AppTunnel. This issue has been

fixed.
• AP-4149: In some cases, enterprises that used both AppTunnel and a global HTTP proxy policy resulted in

AppConnect apps having no access to the network. The issue occurred when an AppTunnel rule caused a
tunneling attempt for requests to the URL for the proxy auto-configuration (PAC) file. The issue occurred for all
AppTunnel rules that did one of the following:
- used a wildcard character in the AppTunnel rule’s hostname such that the PAC file URLmatched the rule
- explicitly named the PAC file URL in the AppTunnel rule’s hostname
To fix the issue, the AppConnect library now supports a new key-value pair in the AppConnect app
configuration for an AppConnect app:
- key name: global_http_proxy_url
- value: the URL of the PAC file, which the Core administrator also enters into the Proxy PAC URL field of

the global HTTP proxy policy.
Example: http://pac.myproxy.mycompany.com

The AppConnect library does not attempt to tunnel the specified URL, which results in successful use of both
AppTunnel and the global HTTP proxy policy,

NOTE: AnAppConnect appdoes not receive this key-value pair. It is consumedby the AppConnect
library.

• AP-4152: This issue fixes a crash of AppConnect apps on iOS 11 Beta 1. However, this release does not
support iOS 11.

AppConnect 3.1.2 for iOSWrapper Library andWrapping Tool
revision history
This release has no new features.

Resolved issues
• AP-4062: Fixed a critical issue that caused an AppConnect app to crash if all of the following are true:

- The app uses AppTunnel with either HTTP/S tunneling or TCP tunneling.

Limitations

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 62

- The AppConnect log level “Debug” is activated for the app.
- The device is registered with MobileIron Core 9.4.0.0.

AppConnect 3.1.1 for iOSWrapper Library andWrapping Tool
revision history
This release has no new features.

Resolved issues
• AP-3996: Renamed an AppConnect library internal class (PasteboardManager) to avoid naming conflicts.

AppConnect 3.1 for iOSWrapper Library andWrapping Tool
revision history

New features

Update to OpenSSL 1.0.2h

The AppConnect library now uses OpenSSL version 1.0.2h.

Resolved issues
• AP-3721: Fixed an AppTunnel issue when using the iOS Social framework's SLRequest class.
• AP-3698: Fixed an issue that caused an AppConnect app to crash if the app used a custom protocol handler

with NSURLSession (such as when the Layer SDK uses the SPDY protocol).
Note that although the app no longer crashes, the custom protocol request might fail if the request is tunneled
using AppTunnel.

• AP-3674: Fixed an issue where AppConnect apps inadvertently shared encrypted data with other iOS 10
devices on the same iCloud account.

• AP-3616: Fixed an issue where using the following iOS API caused an AppConnect app to crash.
- (BOOL)application:(UIApplication *)app openURL:(NSURL *)url
options:(NSDictionary<UIApplicationOpenURLOptionsKey,id> *)options;

Known issues
• AP-3958: When you copy content from an AppConnect app, pasting from the Universal Clipboard onto another

device sometimes does not work.

Limitations
• AP-3711: A black screen is shownwhen flipping from theMobileIron client app to an AppConnect app on

devices running all versions of iOS 8. This is an Apple issue.

AppConnect 3.1.1 for iOSWrapper LibraryandWrapping Tool revisionhistory

MobileIronAppConnect 4.7.0 for iOSAppWrappingDevelopers Guide| 63

AppConnect 3.0 for iOSWrapper Library andWrapping Tool
revision history
This release has no new features. It fixes miscellaneous bugs.

Resolved issues
• APG-959: After wrapping an app that had no app entitlements, signing the app failed. The issue has been fixed.

Known issues
• AP-3616: Using the following iOS API causes an AppConnect app to crash:
- (BOOL)application:(UIApplication *)app openURL:(NSURL *)url
options:(NSDictionary<UIApplicationOpenURLOptionsKey,id> *)options;

• AWE-685: As issue occurs if a wrapped app running on a iOS 10 device uses the iOS API QLPreviewController
to write to the pasteboard. If the AppConnect pasteboard policy does not allow an AppConnect app to write to
the pasteboard, using this iOS API still results in data being written to the pasteboard, and any other app can
paste the data.

Releases prior to AppConnect 3.0 for iOSWrapper library and
Wrapping Tool revision history
For the revision history of releases prior to AppConnect 3.0 for iOS Wrapper library and wrapping tool, see
the"MobileIron AppConnect 4.2 for iOS AppWrapping Developers Guide", available on
https://community.mobileiron.com.

AppConnect 3.0 for iOSWrapper LibraryandWrapping Tool revisionhistory

	Contents
	New features and enhancements
	Introducing AppConnect for iOS wrapped apps
	AppConnect for iOS wrapped app overview
	Wrapped app features
	App requirements
	Supported programming languages
	Supported mobile development platforms
	MobileIron AppConnect components for wrapped apps
	Using a wrapped app

	Product versions required

	Securing and managing a wrapped iOS AppConnect app
	Authorization
	AppConnect passcode and Touch ID/Face ID policy
	Tunneling
	AppTunnel supports only NSURLConnection and NSURLSession
	Accessing sockets directly does not use AppTunnel
	AppTunnel supports redirects and authentication requests on HTTP/S upload
	AppTunnel support in Xamarin apps
	AppTunnel with TCP tunneling
	When to make network requests when using AppTunnel

	Certificate authentication to enterprise services
	Supported networking methods
	Unsupported networking methods

	Data loss prevention policies
	Custom keyboard control
	Log messages based on log levels
	App-specific configuration from the MobileIron server
	Data encryption
	AppConnect-related data
	App data files

	Optional: Avoid pasteboard notifications
	Configuring an App Group on the Apple Developer portal

	AppConnect wrapper callback methods
	App-specific configuration callback methods
	Overview of app-specific configuration from the MobileIron server
	Methods for receiving app-specific configuration from the MobileIron server
	When to use -appConnectConfigIs: versus -appConnectConfigChangedTo:
	When to use -appConnectConfigIs:
	When to use -appConnectConfigChangedTo:
	Details about when each method is called

	Handling app-specific configuration in Xamarin apps

	Callback method involving network requests with AppTunnel
	Wrapper callback method for when to send network requests
	When in the app life cycle the AppConnect library calls -appConnectStateChang...
	The -appConnectStateChangedTo: method parameter
	AppConnectStateChangedTo callback method in Xamarin apps

	How to wrap an iOS app
	Re-signing an app before wrapping it
	Using the AppConnect Wrapping Portal
	Before you begin
	Login to help.mobileiron.com
	Upload an unwrapped app and wrap it
	Download the wrapped app and signing script

	Re-signing the wrapped app
	Specifying custom entitlements
	Specifying a new provisioning profile
	Specifying new version numbers
	Specifying a different bundle ID
	Troubleshooting the signed wrapped app
	Specifying AppConnect App Group ID

	Using the AppConnect App Wrapper (wrapping tool)
	Before you begin
	System requirements
	Install Xcode
	Before you run the wrapping tool
	Get the wrapping tool and signing script
	Unlock the keychain containing the signing identity
	Run the wrapping tool using its graphical user interface
	Run the separate signing script, if necessary
	Run the wrapping tool using a command-line interface
	Command-line argument usage
	Command-line argument descriptions
	Command-line usage examples
	Command-line command exit status

	AppConnect for iOS Wrapper Library and Wrapping Tool revision history
	AppConnect 4.7.0 for iOS Wrapper Library and Wrapping Tool revision history
	New features and enhancements summary
	Known issues
	Limitations

	AppConnect 4.6.0 for iOS Wrapper Library and Wrapping Tool revision history
	New features summary

	AppConnect 4.5.3 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues

	AppConnect 4.5.2 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues

	AppConnect 4.5.1 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues

	AppConnect 4.5.0 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues
	Known issues
	Limitations

	AppConnect 4.4.1 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues
	Known issues

	AppConnect 4.4.0 for iOS Wrapper Library and Wrapping Tool revision history
	New features summary
	Resolved issues
	Limitations

	AppConnect 4.3.1 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues

	AppConnect 4.3.0 for iOS Wrapper Library and Wrapping Tool revision history
	New features
	Resolved issues

	AppConnect 4.2.1 for iOS Wrapper Library and Wrapping Tool revision history
	New features
	Resolved issues
	Known issues
	Limitations

	AppConnect 4.2 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues
	Known issues

	AppConnect 4.1.1 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues
	Known issues

	AppConnect 4.1 for iOS Wrapper Library and Wrapping Tool revision history
	New features
	Certificate pinning support
	Lock AppConnect apps when screen is off
	Overriding the Open In Policy for openURL: with the mailto: scheme

	Resolved issues

	AppConnect 4.0 for iOS Wrapper Library and Wrapping Tool revision history
	New features
	iOS 8 no longer supported
	Swift support for callback methods
	Native email control using the Open In DLP policy
	App extension control using the Open In DLP policy
	Custom keyboard use controlled by MobileIron server
	Dictation with the native keyboard is not allowed
	Support for sending AppConnect logs from Mobile@Work
	Drag and Drop data loss prevention policy support
	Automatic policy status updates sent to MobileIron server
	Support for storing AppConnect library encryption keys in the Secure Enclave

	Resolved issues
	Known issues
	Limitations

	AppConnect 3.5 for iOS Wrapper Library and Wrapping Tool revision history
	New features
	iOS 11 compatibility
	Callback method involving network requests with AppTunnel
	Open In changes

	Resolved issues
	Limitations

	AppConnect 3.1.3 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues

	AppConnect 3.1.2 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues

	AppConnect 3.1.1 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues

	AppConnect 3.1 for iOS Wrapper Library and Wrapping Tool revision history
	New features
	Update to OpenSSL 1.0.2h

	Resolved issues
	Known issues
	Limitations

	AppConnect 3.0 for iOS Wrapper Library and Wrapping Tool revision history
	Resolved issues
	Known issues

	Releases prior to AppConnect 3.0 for iOS Wrapper library and Wrapping Tool re...

