
MobileIron AppConnect 4.7.0 for iOS
SDK App Developers Guide

October 20, 2020

For complete product documentation see:
MobileIron AppConnect for iOS Product Documentation HomePage

Proprietary and Confidential | Do Not Distribute

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 2

Copyright © 2012 - 2020MobileIron, Inc. All Rights Reserved.

Any reproduction or redistribution of part or all of thesematerials is strictly prohibited. Information in this publication
is subject to change without notice. MobileIron, Inc. does not warrant the use of this publication. For some phone
images, a third-party database and image library, Copyright © 2007-2009 Aeleeta's Art and Design Studio, is used.
This database and image library cannot be distributed separate from theMobileIron product.

“MobileIron,” theMobileIron logos and other trade names, trademarks or servicemarks of MobileIron, Inc.
appearing in this documentation are the property of MobileIron, Inc. This documentation contains additional trade
names, trademarks and servicemarks of others, which are the property of their respective owners. We do not
intend our use or display of other companies’ trade names, trademarks or servicemarks to imply a relationship
with, or endorsement or sponsorship of us by, these other companies.

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 3

Contents
Contents 3

New features and enhancements 19

Introducing the MobileIron AppConnect for iOS SDK 20

AppConnect for iOS overview 20

Where to get the AppConnect for iOS SDK 20

Secure app features 21

AppConnect for iOS SDK advantages 22

64-bit and 32-bit app support 23

MobileIron AppConnect components 23

Using a secure app 24

App responsibilities 24

MobileIron client app and AppConnect library responsibilities 24

AppConnect for iOS SDK variants 25

AppConnect for iOS SDK contents 25

Header files in AppConnect.framework 26

Header files in AppConnectExtension.framework 30

AppConnect for iOS architecture 31

TheMobileIron client app and AppConnect apps 33

App checkin and theMobileIron client app 33

The auto-lock timeout and theMobileIron client app 34

Product versions required 34

Securing andmanaging the app using the AppConnect library 35

Authorization 36

AppConnect passcode and Touch ID/Face ID policy 37

Configuration specific to the app 38

AppTunnel 38

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 4

AppTunnel supports only NSURLConnection and NSURLSession 39

Accessing sockets directly does not use AppTunnel 39

App’s responsibilities when using AppTunnel 40

AppTunnel supports redirects and authentication requests on HTTP/S upload 40

AppTunnel with TCP tunneling 40

Certificate authentication to enterprise services 40

Supported networkingmethods 40

Unsupported networkingmethods 41

Data loss prevention policies 41

Custom keyboard control 42

Data protection 43

AppConnect-related data 43

App data files 43

Logmessages 44

Optional: Avoiding pasteboard notifications 45

Configuring an AppGroup on the Apple Developer portal 46

Add AppGroup to Info.plist 47

Getting Started with the AppConnect for iOS SDK 48

Getting started tasks 48

Before you begin adding the AppConnect SDK to your app 48

First-time use of SDK in your app 49

Task lists for upgrading the SDK in your app 49

SDK 3.1 through 3.5 upgrade task list 50

Getting started task list 51

Add AppConnect files and settings to your Xcode project 51

Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed 52

Register as a handler of the AppConnect URL scheme 52

Declare the AppConnect URL schemes as allowed 53

Add AppConnect-related entries to your Info.plist 53

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 5

Enable screen blurring 53

Allow Face ID 54

Use AppConnect’s UIApplication subclass 54

Initialize the AppConnect library 54

Wait for the AppConnect singleton to be ready 56

Optional: Specify app permissions and configuration in a plist file 56

Using your ownUIApplication subclass 59

Using the AppConnect framework in a Swift app 59

First time use of SDK in your Swift app 59

Tasks for upgrading the SDK in your Swift app 62

Troubleshooting 62

AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode. 62

Problem: Bitcode is enabled in build options, but should be disabled. 62

Solution: 62

Lexical or preprocessor issue when building your app 62

Problem: pathmissing in #import statement 62

Solution 63

App cannot start because AppConnectResources.bundle not found 63

Problem 63

Solution 63

App crashes in call to -startWithLaunchOptions: 63

Problem 63

Solution 63

Application error: Unable to communicate with the application 63

Problem 63

Solution 64

App crashes due to uncaught ACPropertyAccessException 64

Problem 64

Solution 64

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 6

Developing Third-party Dual-mode Apps 65

What is a dual-mode app? 65

Dual-mode sample app 66

Dual-mode app states 66

Data encryption states 68

Actions when changing to the Encrypted state 69

Actions when changing to the Unencrypted state 69

High-level dual-mode app behavior 69

When the app launches for the first time 69

When an app subsequently launches 70

User requests to switch to Non-AppConnect Mode 71

User requests to switch to AppConnect Mode 71

Data loss prevention policy handling 72

Dual-mode API details 72

The ACManagedPolicy enumeration 72

ThemanagedPolicy property 72

Dual modemethods 73

The +shouldStartAppConnect: class method 73

The -appConnect:managedPolicyChangedTo: callback method 73

The stopmethod 73

The retire method 74

API call sequence when the app launches 74

API call sequence when user requests Non-AppConnect Mode 75

API call sequence when user requests AppConnect Mode 76

AppConnect for iOS API 78

The AppConnect interface 79

AppConnect-related notifications 79

Notificationmethods in the AppConnectDelegate protocol 80

Notification acknowledgments 80

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 7

Multithread support 81

AppConnect ready API details 82

The ready property 82

Impacted instance properties 82

The -appConnectIsReady: callback method 82

Pseudocode for -isAppConnectReady: 83

Authorization API details 84

The ACAuthState enumeration 84

The authState and authMessage properties 84

Authorizationmethods 85

The -appConnect:authStateChangedTo:withMessage: callback method 85

The -authStateApplied:message: acknowledgment method 86

The -displayMessage: method 86

App-specific configuration API details 87

The config property 87

App-specific configurationmethods 87

The -appConnect:configChangedTo: callback method 87

The -configApplied:message: acknowledgment method 88

Pasteboard policy API details 88

The ACPasteboardPolicy enumeration 88

Impact on the pasteboard policy of secure services availability 89

The pasteboardPolicy property 89

Pasteboard policy methods 90

The -appConnect:pasteboardPolicyChangedTo: callback method 90

The -pasteboardPolicyApplied:message: acknowledgment method 91

The -appConnect:copyAttemptedWhenUnauthorized: callback method 91

Drag and drop policy API details 91

Drag and drop policy method 92

Open In policy API details 92

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 8

Overview of Open In handling 93

The ACOpenInPolicy enumeration 94

The openInPolicy and openInWhitelist properties 94

Open In policy methods 95

The -appConnect:openInPolicyChangedTo:whitelist: callback method 95

The -openInPolicyApplied:message: acknowledgment method 95

The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method 96

The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method 96

Info.plist key related to the Open In policy 97

Open From policy API details 97

Overview of Open From handling 97

The ACOpenFromPolicy enumeration 98

The openFromPolicy and openFromWhitelist properties 98

Open From policy methods 99

The -appConnect:openFromPolicyChangedTo:whitelist: callback method 99

The -openFromPolicyApplied:message: acknowledgment method 100

The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method 100

Print policy API details 101

The ACPrintPolicy enumeration 101

The printPolicy property 101

Print policy methods 101

The -appConnect:printPolicyChangedTo: callback method 101

The -printPolicyApplied:message: acknowledgment method 102

Logmessages API details 102

The ACLogLevel enumeration 102

Log level descriptions and examples 102

Sensitive data examples 104

The logLevel property 104

Log level methods 105

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 9

The -appConnect:logLevelChangedTo: callback method 105

logAtLevel class methods 105

-logAtLevel:format:args: example 106

Log level methods and dual mode apps 107

Secure services API details 107

The ACSecureServicesAvailability enumeration 107

The ACSecureFileIOPolicy enumeration 107

The secureServicesAvailability and secureFileIOPolicy properties 108

Secure services methods 109

The -appConnect:secureServicesAvailabilityChangedTo: callback method 109

The -appConnect:secureFileIOPolicyChangedTo: callback method 109

The -secureFileIOPolicyApplied:message: acknowledgment method 110

Version property 110

Getting upload status for tunneled HTTP/S requests 110

AppConnect library behavior when using AppTunnel 111

Upload status API overview 111

The AppConnectNetworkingDelegate protocol 111

The -setNetworkingDelegate: method 112

Caching tunneled URL responses 112

AppConnectUIApplication class 113

Using your ownUIApplication subclass 113

originalDelegate property (deprecated) 113

Encryption keys for custom cryptography 114

Overview of encryption keys for custom cryptography 114

The -derivedAppKeyWithIdentifier:error: method 115

The -derivedSharedKeyWithIdentifier:error: method 115

Error returns for derived key methods 115

Deprecated custom cryptography methods 116

The -derivedAppKey:withIndex: method (deprecated) 116

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 10

The -derivedSharedKey:withIndex: method (deprecated) 116

Securing sensitive data such as encryption keys 116

Coding your app to secure sensitive data 117

Configuring theMobileIron server to secure sensitive data for your app 118

Debugging ACSensitiveData usage 118

iOS active state change notifications due to AppConnect control switches 119

Situations that trigger the state change notifications 119

Secure file I/O API details 120

POSIX-style secure file APIs 120

Additional error returns using ACSecureFileLastError() 121

ACFileHandle class for AppConnect secure file I/O 124

Overridden and added NSFileHandlemethods 124

ACFileHandle example 127

Objective-C categories for AppConnect secure file I/O 128

NSFileManager category 128

NSData (ACSecureFile) category 131

NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories 134

NSKeyedArchiver category 138

NSKeyedUnarchiver category 140

NSDictionary category 140

NSMutableDictionary category 142

NSArray category 144

NSMutableArray category 146

NSError objects that secure Objective-C methods return 147

Sharing secure files from an extension 148

Setting up theMobileIron server for sharing files from an extension 149

Setting up the provider app’s Info.plist 149

Coding the provider app to share secure files with its extension 150

Coding the extension to share files with the host app 152

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 11

Coding the host app to access the shared file 156

AppTunnel diagnostic API details 158

Running an AppTunnel diagnostic 159

-diagnoseTunnelingForURL:resultHandler: parameters 160

-diagnoseTunnelingForURL:resultHandler: return value 160

The result handler for diagnostic runs 161

The ACTunnelingDiagnosticResult class 161

The ACTunnelingDiagnosticResultCode enumeration 162

AppTunnel configuration troubleshooting checklist for MobileIron Core 166

UIScene support 168

Best Practices Using the AppConnect for iOS SDK 169

Display authorization status in the home screen 169

Allow the user to enter credentials manually 170

Use the AppConnectDelegate protocol for notifications 170

Limit the size of configuration data from theMobileIron server 171

Use the UIApplication’s delegate as you normally would 171

Consider limitations when using the iOS simulator 172

Enable the AppConnect library to blur screens when the app becomes inactive 173

Do not put secure data in the app bundle 173

Indicate to the user that the app is initializing 173

Reject custom keyboard control 173

Do not use UIWebView to upload sensitive data 174

Provide documentation about your app to theMobileIron server administrator 174

AppConnect Library Log Messages 177

Informational logmessages 177

API usage errors and warnings 177

Miscellaneous errors and warning 178

Developing AppConnect Apps with Xamarin 178

Overview of using AppConnect with Xamarin apps 179

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 12

Available C# bindings 179

Xamarin AppConnect sample apps 180

How to include the Xamarin C# binding in your Xamarin project 180

How to initialize your Xamarin app to use AppConnect C# APIs 180

Register as a handler of the AppConnect URL scheme 181

Declare the AppConnect URL scheme as allowed 181

Add AppConnect-related entries to your Info.plist 182

Enable screen blurring 182

Allow Face ID 183

Use AppConnect’s UIApplication subclass 183

Initialize the AppConnect library 184

Edit your AppDelegate source file 184

Create a subclass of AppConnectDelegate 184

Modify your UIApplicationDelegate subclass 185

Wait for the AppConnect singleton to be ready 186

Optional: Specify app permissions and configurations in a plist file 186

Create the AppConnect.plist in Xamarin Studio 187

Edit the AppConnect.plist 188

Convert the AppConnect.plist to binary format 189

AppTunnel support in Xamarin apps 190

AppTunnel Diagnostic API for Xamarin 191

Set up your app to use the AppTunnel Diagnostic API for Xamarin 191

Run the API 191

API Response 191

Sample response 194

FIPS Compliance in an AppConnect SDK App 195

Testing for Third-party App Developers 196

Third-party AppConnect app testing overview 196

Set upMobileIron Core 197

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 13

Login to the Admin Portal 197

Enable AppConnect onMobileIron Core 197

Configure the AppConnect global policy 198

Create an AppConnect container policy 198

Set up your end-user device 198

Set upMobile@Work on an iOS device 199

Install your app on the device 199

Set up the AppConnect passcode on the device 199

Test authorization status handling 199

Change the status to authorized or unauthorized 199

Change the status to retired 200

Reauthorize a retired app 201

Test data loss prevention policy handling 202

Test AppConnect configuration change handling 205

Create an AppConnect app configuration 205

Update the AppConnect app configuration 206

Test using AppTunnel 207

Enable AppTunnel onMobileIron Core 207

Use an existing certificate 208

Generate a certificate 208

Create a certificate authority for using AppTunnel with HTTP/S tunneling 208

Create a local certificate enrollment setting 209

Configure the Sentry with an AppTunnel service 209

Configure the AppTunnel service in the AppConnect app configuration 211

Test loggingmessages to the console or files 212

Log levels 212

Debug code for verbose and debug log levels 212

Logging to files 213

Log file details 213

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 14

Configuring logging to files 213

Pushing the new log level to the device 214

Activating verbose or debug logging on the device 214

Sending log files in an email 216

Test the app documentation 217

Testing for In-house App Developers 218

In-house AppConnect app testing overview 218

Set upMobileIron Core 219

Login to the Admin Portal 219

Enable AppConnect onMobileIron Core 219

Create a label for testing your app 220

Upload your app toMobileIron Core if you use AppConnect.plist 220

Verify your AppConnect.plist settings 220

Configure the AppConnect global policy 221

Create an AppConnect container policy, if necessary 221

Set up your end-user device 222

Set upMobile@Work on an iOS device 222

Install your app on the device 222

Set up the AppConnect passcode on the device 222

Test authorization status handling 223

Change the status to authorized or unauthorized 223

Change the status to retired 224

Reauthorize a retired app 225

Test data loss prevention policy handling 225

Test AppConnect configuration change handling 228

Create an AppConnect app configuration 229

Update the AppConnect app configuration 230

Test using AppTunnel 230

Enable AppTunnel onMobileIron Core 231

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 15

Use an existing certificate 231

Generate a certificate 231

Create a certificate authority for using an AppTunnel with HTTP/S tunneling 232

Create a local certificate enrollment setting 233

Configure the Sentry with an AppTunnel service 233

Configure the AppTunnel service in the AppConnect app configuration 234

Test loggingmessages to the console or files 235

Log levels 236

Debug code for verbose and debug log levels 236

Logging to files 236

Log file details 236

Configuring logging to files 237

Pushing the new log level to the device 237

Activating verbose or debug logging on the device 237

Sending log files in an email 240

Test the app documentation 240

Derived Credential Handling 241

Derived credential handling overview 241

Derived credential header files 242

Before adding derived credentials code 242

Making your app an AppConnect app 242

Declaring the appConnectdc URL scheme as allowed 243

Registering as a handler of a URL scheme you define 243

Sending derived credentials to theMobileIron client 244

Handling the custom URL scheme in your app delegate 244

Checking if theMobileIron client supports derived credentials 245

Checking if sending credentials to MobileIron client is currently allowed 246

Getting a derived credential 246

Preparing a certificates array 247

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 16

Preparing an ACDerivedCredential object 248

Creating an ACDervicedCredentialService object 249

Sending the certificates to theMobileIron client 250

Handling secure services becoming available 251

AppConnect for iOS SDK Revision History 252

AppConnect 4.7.0 for iOS SDK revision history 252

New features and enhancements summary 252

Resolved issues 253

Known issues 253

Limitations 253

AppConnect 4.6.0 for iOS SDK revision history 254

New features summary 254

Resolved issues 254

AppConnect 4.5.3 for iOS SDK revision history 255

Resolved issues 255

AppConnect 4.5.2 for iOS SDK revision history 255

AppConnect 4.5.1 for iOS SDK revision history 255

AppConnect 4.5.0 for iOS SDK revision history 255

Resolved issues 255

Known issues 255

AppConnect 4.4.2 for iOS SDK revision history 256

Resolved issues 256

Known issues 256

AppConnect 4.4.1 for iOS SDK revision history 256

Resolved issues 256

Known issues 256

AppConnect 4.4.0 for iOS SDK revision history 257

New features summary 257

Resolved issues 257

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 17

Limitations 258

AppConnect 4.3.1 for iOS SDK revision history 258

Resolved issues 258

AppConnect 4.3.0 for iOS SDK revision history 258

New features 258

AppConnect 4.2.1 for iOS SDK revision history 259

New features 259

Limitations 259

AppConnect 4.2 for iOS SDK revision history 259

New features 259

Resolved issues 259

Known issues 259

AppConnect 4.1.1 for iOS SDK revision history 260

Resolved issues 260

Known issues 260

AppConnect 4.1 for iOS SDK revision history 260

New features 260

Certificate pinning support 260

Lock AppConnect apps when screen is off 261

Overriding the Open In Policy for openURL: with themailto: scheme 261

SwiftFileSharing demonstrates sharing secure files from an extension 261

AppConnect 4.0 for iOS SDK revision history 261

New features 261

iOS 8 no longer supported 262

Dynamic frameworks 262

Swift support 262

Secure file sharing from an extension 262

Drag and Drop data loss prevention policy support 262

New callback method -openURLAttemptedWhenUnauthorizedForURL: 263

Contents

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 18

Native email control using the Open In DLP policy 263

App extension control using the Open In DLP policy 263

Custom keyboard use controlled by MobileIron server 264

Screen blurring 264

Requirement for Face ID usage Info.plist entry 264

Support for sending AppConnect logs fromMobile@Work 265

Securing sensitive data such as encryption keys 265

New category ACFileHandle (ACSharedSecureData) 265

New custom cryptography methods 265

Automatic policy status updates sent to MobileIron server 266

Resolved issues 266

Known issues 266

Limitations 267

AppConnect 3.5 for iOS SDK revision history 267

New features 267

iOS 11 compatibility 267

Open In changes 267

Sample app Xcode projects now compatible with Xcode 8.3 267

Resolved issues 267

Limitations 268

Releases prior to AppConnect 3.5 for iOS SDK revision history 268

Contents

1

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 19

New features and enhancements

This guide documents the following new features and enhancements:

l Avoid pasteboard notifications: To avoid pasteboard notifications on users' devices when using
AppConnect apps, set up an AppGroup for your AppConnect apps. Setting up an AppGroup reduces the
amount of flipping between the AppConnect app and theMobileIron client and avoids pasteboard
notifications. For more information, seeOptional: Avoiding pasteboard notifications.

For new known and resolved issues and limitations, see AppConnect for iOS SDK Revision History.

2

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 20

Introducing the MobileIron AppConnect for
iOS SDK

l AppConnect for iOS overview

l Product versions required

l Securing andmanaging the app using the AppConnect library

AppConnect for iOS overview
MobileIron AppConnect for iOS provides a software development kit (SDK) for securing andmanaging enterprise
applications onmobile devices. These secure enterprise apps are calledAppConnect apps or secure apps.

You can develop an AppConnect app for apps written using:

l Objective-C, by using the AppConnect for iOS Objective-C APIs.

l Swift, by using the Swift interfaces that correspond to the AppConnect for iOS Objective-C APIs. These
Swift interfaces are automatically generated by Xcode when you add the AppConnect framework into your
Xcode project.

l the Xamarin development platform, using Xamarin C# bindings of the AppConnect for iOS Objective-C
APIs.

l Cordova (or Phonegap), by using the AppConnect for iOS Cordova Plugin, described in theMobileIron
AppConnect for iOS Cordova Plugin Developers Guide.

Note The Following:

l If yourAppConnect app is to be distributed from theAppleAppStore, due toAppleAppStore requirements,
your app is required towork as a regular app in addition toworking as anAppConnect app.
SeeDevelopingThird-party Dual-modeApps.

l If your app uses anolder version of theAppConnect for iOS SDK, MobileIron recommends that you always
rebuild your appwith the current version of theSDK. Using the current version ensures the app contains all
new features, improvements, and resolved issues.

l AnAppleDeveloperEnterpriseProgram account is required to distribute in-house apps. SeeAppleDeveloper
EnterpriseProgram.

Where to get the AppConnect for iOS SDK

The AppConnect for iOS SDK ZIP flle is available at help.mobileiron.com in theSoftware tab.

https://developer.apple.com/programs/enterprise/
https://developer.apple.com/programs/enterprise/

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 21

Check for the latest updates to this document and other developer resources on: https://developer.mobileiron.com.

The SDK is also available at https://support.mobileiron.com/support/CDL.html.

Documentation is also available at https://support.mobileiron.com/docs/appconnect/.

Legal notices are also available on https://support.mobileiron.com/copyrights/ACe.

Secure app features

Secure enterprise apps that are built using the SDK can:

l Receive app-specific configuration information from theMobileIron server.
This capability means that device users do not have tomanually enter configuration details that the app
requires. By automating this process for the device users, each user has a better experience when
installing and setting up apps. Also, the enterprise has fewer support calls, and the app is secured from
misuse due to configuration. This feature is also useful for apps which do not want to allow the device
users to provide certain configuration settings for security reasons.

l Tunnel network connections to servers behind an enterprise’s firewall.
This capability means that device users do not have to separately set up VPN access on their devices to
use the app.

l Authenticate an app user to an enterprise service.
This capability means that AppConnect app users do not have to enter login credentials to access
enterprise resources.

l Handle data loss prevention.
TheMobileIron server administrator decides whether an app can copy content to the iOS pasteboard, use
the document interaction feature, receive documents from other apps (Open From) use drag and drop, or
print. The AppConnect library enforces the pasteboard, Open In, Open From and drag and drop policies.
The app enforces the print policy.

l Control custom keyboard use by your app.
TheMobileIron server administrator can choose whether an app can use custom keyboards, and the
AppConnect library enforces the choice. If the administrator does not configure this choice, your app can
choose to reject custom keyboard use.

l Blur the app’s screens when the app is not in the foreground.
This blurring occurs if you specify a particular key in your Info.plist. The AppConnect library then enforces
this behavior, which can be overridden by theMobileIron server administrator.

l Protect the app’s data independent of device level encryption.
You can protect your app’s data using APIs provided by the AppConnect for iOS SDK. This secure file
I/O capability means that data encryption for your app is not dependent on the device having a device
passcode. Note that the AppConnect library and theMobileIron client app protect AppConnect-related

Secureapp features

https://developer.mobileiron.com/
https://support.mobileiron.com/support/CDL.html
https://support.mobileiron.com/docs/appconnect/
https://support.mobileiron.com/copyrights/ACe

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 22

data, such as configurations and certificates, without any special actions by the app. The secure file I/O
APIs also allow you to share encrypted data among AppConnect apps.

l Obtain derived keys for custom encryption.
If your app uses custom cryptography, you can get derived encryption keys from the AppConnect library.
This feature is useful for legacy apps that cannot easily convert to using the SDK’s secure file I/O APIs.
Because the keys are derived, accidental leaks have limited damage, and the keys are not weakened by
brute force attacks.

l Secure sensitive data like encryption keys and passwords
The AppConnect for iOS SDK provides APIs for heightened security of especially sensitive data. These
APIs use Apple hardware capabilities (Apple’s Secure Enclave) to reduce the sensitive data’s attack
surface, because the data is never stored in plain-text in memory.

l Logmessages to the device’s console and files.
By using APIs provided by the AppConnect for iOS SDK, your app can logmessages of different severity
levels to the device’s console. TheMobileIron server administrator decides the severity levels that are
written to the console, and whether the logs are also written to files.

l Provide AppTunnel diagnostics.
By using APIs provided by the AppConnect for iOS SDK, your app can log or display diagnostic data about
your app’s AppTunnel configuration and usage.

l Be FIPS compliant.
See FIPS Compliance in an AppConnect SDK App.

l Deliver derived credentials to theMobileIron client app.
This capability is only for apps that obtain derived credentials from a derived credential provider and deliver
the credentials to theMobileIron client app. Very few apps implement this capability. How to implement
this capability is described in Derived Credential Handling.

AppConnect for iOS SDK advantages

With the AppConnect for iOS SDK:

l You can focus on application logic.
The SDK handles low-level, complex work such as authentication to access AppConnect apps, certificate
authentication to enterprise resources, tunneling, AppConnect passcode handling, data encryption, and
getting app-specific settings and configuration from theMobileIron server.

l You use a set of simple APIs to develop a secure enterprise app.

l The app does not have to interact directly with web service interfaces to get the information it needs to
behave as a secure enterprise app. Using the APIs, the app gets notified of any changes that the
administrator makes on theMobileIron server to controls and configuration.

AppConnect for iOS SDKadvantages

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 23

l You can create one app, with one code base, that can behave as a secure app or a regular app. This
behavior is required for secure apps that are distributed from the Apple App Store.

l Formore information, see Developing Third-party Dual-mode Apps.

64-bit and 32-bit app support

Using the AppConnect for iOS SDK, you can build an app as a 64-bit app or as a 32-bit app.

MobileIron AppConnect components

The apps that you build with this SDK work with the followingMobileIron components:

MobileIron
component

Description

MobileIron Core TheMobileIron on-premise server which provides security andmanagement for an
enterprise’s devices, and for the apps and data on those devices. An administrator
configures the security andmanagement features using a web portal.

MobileIron Connected
Cloud

TheMobileIron cloud offering that has the same functionality as MobileIron Core.

MobileIron Cloud TheMobileIron cloud offering that provides similar functionality as MobileIron Core.
However, it does not support all the AppConnect features that MobileIron Core
supports.

Standalone Sentry TheMobileIron server which provides secure network traffic tunneling from your app
to enterprise servers.

TheMobile@Work for
IOS app

A MobileIron client app that runs on an iOS device. It interacts with MobileIron Core
or Connected Cloud to get current security andmanagement information for the
device. It interacts with the AppConnect library to communicate necessary
information to your app.

TheMobileIron Go app A MobileIron client app that runs on an iOS device. It interacts with MobileIron Cloud
to get current security andmanagement information for the device. It interacts with
the AppConnect library to communicate necessary information to your app.

TheMobileIron
AppStation app

A MobileIron client app that runs on an iOS device. It interacts with MobileIron Cloud.
It can be used on the device instead of MobileIron Gowhen theMobileIron Cloud
tenant supports Mobile Apps Management (MAM) but not Mobile Device
Management (MDM). It interacts with the AppConnect library to communicate
necessary information to your app.

The AppConnect library TheMobileIron library that your app uses to get AppConnect information. The
AppConnect library is part of the AppConnect framework that your app includes. It
provides your appmanagement and security capabilities, and facilitates
communication between your app and theMobileIron client app.

TABLE 1.MOBILEIRONCOMPONENTS INVOLVED WITHAPPCONNECT APPS

64-bit and32-bit appsupport

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 24

Note The Following:

l MobileIronCore, MobileIronConnectedCloud, andMobileIronCloudare eachalso referred to
as aMobileIron server.

l Mobile@Work, MobileIronGo, andMobileIronAppStation are eachalso referred to as a
MobileIron client app.

IMPORTANT: Some AppConnect features dependon the version ofMobileIronCore, MobileIron Cloud,
Standalone Sentry, and theMobileIron client app.

Using a secure app

A device user can use a secure enterprise app only if:

l The device user has been authenticated through theMobileIron server.
The user must use theMobileIron client app to register the device with theMobileIron server. Registration
authenticates the device user.

l The server administrator has authorized the device user to use the app.

l The device user has entered a secure apps passcode or Touch ID/Face ID.
The server administrator configures whether a secure apps passcode, also called the AppConnect
passcode, is required, and configures its complexity rules. The administrator also configures whether
using Touch ID/Face ID, if available on the device, is allowed instead of the AppConnect passcode.

The AppConnect passcode is not the same as the passcode used to unlock the device.

App responsibilities

Your app is responsible for:

l enforcing the authorization settings

l handling the data loss prevention settings

l using the app-specific configuration

l ensuring the app’s data is protected by using the AppConnect secure file I/O APIs

l loggingmessages at the appropriate log level to protect sensitive data

l logging or displaying AppTunnel diagnostic information (optional)

l preserving and restoring the app’s state when control switches from the app to theMobileIron client app
and back

MobileIron client app and AppConnect library responsibilities

TheMobileIron client app and the AppConnect library are responsible for:

Usingasecureapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 25

l authenticating the user to theMobileIron server

l authenticating to enterprise services using certificates

l tunneling network connections

l AppConnect passcode and Touch ID / Face ID handling

l protecting AppConnect-related data, such as configurations and certificates

l managing the encryption key for the AppConnect secure file I/O

l controlling when sensitive logmessages are written

AppConnect for iOS SDK variants

Due to Apple deprecating the UIWebView class, the AppConnect for iOS SDK is available in two variants. One
with UIWebView support and another without the support for UIWebView. The AppConnect SDK without
UIWebView support is available to use for apps that are submitted to the App Store.

AppConnect for iOS SDK contents

The AppConnect for iOS SDK is available as a ZIP file called AppConnectiOSSDK_V<version>_<build>.zip,
where:

l <version> is the version number of the SDK.

l <build> is the build number of the SDK.

The ZIP file contains the following:

l AppConnect.framework, which you include in your app’s set of frameworks.
The AppConnect.framework includes the AppConnect library and header files.

l AppConnectExtension.framework, which you include in an extension of an AppConnect app to share files
with a host app. AppConnectExtension.framework includes the AppConnect extension library and header
files.

l A Documentation folder, which contains,

o this document
Check for updates to this document as described inWhere to get the AppConnect for iOS SDK.

l A plugins folder, which contains,
o the cordova folder, which contains the Cordova plugin, sample apps, the install_ac_cordova_plugin.sh

script, and documentation

o the xamarin folder, which contains the Xamarin C# bindings, sample apps, and C# API
documentation.
See Developing AppConnect Apps with Xamarin

l the script post_embed_actions.sh

AppConnect for iOS SDKvariants

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 26

See Add AppConnect files and settings to your Xcode project.

l Notices.pdf, which contains SDK copyright information, software, and licenses.

l README_license.pdf, which contains the SDK license agreement.

l A Samples folder, which contains these sample apps:

o HelloAppConnect, which demonstrates how an app uses the AppConnect framework. It displays its
authorization status, its app configuration, and its data loss prevention policies.
The sample includes both anObjective-C and a Swift version of the app.

o DualMode example, which demonstrates the behavior of a dual-mode app.

o SwiftFileSharing app, a Swift app demonstrating AppConnect API usage, including sharing secure
files from an extension.

l The SDK_without_UIWebView folder which contains the iOS SDK variant that does not support
UIWebView. The folder includes the following:

o AppConnect.framework, which you include in your app’s set of frameworks.
The AppConnect.framework includes the AppConnect library and header files.

o AppConnectExtension.framework, which you include in an extension of an AppConnect app to share
files with a host app.
AppConnectExtension.framework includes the AppConnect extension library and header files.

o A plugins folder, which contains:
o the cordova folder, which contains the Cordova plugin, sample aspps, the install_ac_cordova_

plugin.sh script, and documentation

o the xamarin folder, which contains the Xamarin C# bindings, sample apps, and C# API
documentation.
See Developing AppConnect Apps with Xamarin

Header files in AppConnect.framework

The following header files are included in the AppConnect.framework:

Header files inAppConnect.framework

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 27

Header file Description and related topics

ACCompatibility.h Header file for compatibility of AppConnect constants with
Swift.

Related topics

Using the AppConnect framework in a Swift app

ACDerivedCredential.h Described in Derived credential header files.

ACDerivedCredentialService.h Described in Derived credential header files.

ACError.h Defines the error domain and error codes used by the SDK’s
POSIX-style APIs, andObjective-C secure file subclasses and
categories.

Related topics

Secure file I/O API details

ACFileHandle.h Defines a NSFileHandle subclass for secure file I/O.

Related topics

Secure file I/O API details

ACFileHandle.h+ACSharedSecureFile.h Defines a category for sharing secure files with another
AppConnect app.

Related topics

Secure file I/O API details

ACSecureFile.h
l Defines the POSIX-style secure file I/O APIs.

l Defines ACSecureFileLastError() for gettingmore
detailed error information about the POSIX-style secure
file I/O APIs.

Related topics

Secure file I/O API details

ACSensitiveData.h Defines the classes for using heightened security for sensitive
data such as encryption keys.

Related topics

Securing sensitive data such as encryption keys

TABLE 2.HEADER FILES INAPPCONNECT.FRAMEWORK (IN ALPHABETICAL ORDER)

Header files inAppConnect.framework

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 28

Header file Description and related topics

ACTypes.h Defines AppConnect typedef enumerations used in
AppConnectInterface.h.

ACUnwrappedFile.h Defines the class for a host app to use to unwrap a secure file
shared by an extension.

Related topics

Sharing secure files from an extension

ACWrappedAppKey.h Defines the class for a provider app to use to create an
encryption key for encrypting shared files in its extension.

Related topics

Sharing secure files from an extension

ACWrappedFileReadHandle.h Defines the class for a host app to use to get the file handle of an
extension’s shared, wrapped file.

Related topics

Sharing secure files from an extension

AppConnect.h Umbrella header file for the AppConnect.framework, importing
all the header files in the framework.

AppConnect+Networking.h Defines the following APIs:

l APIs for receiving upload progress for HTTP/S requests
that use the AppTunnel feature.

l APIs for AppTunnel diagnostics

Related topics

l Getting upload status for tunneled HTTP/S requests

l AppTunnel diagnostic API details

AppConnectInterface.h
l Defines the AppConnect interface that your app uses to
get configuration and security-related information from the
AppConnect library.

l Defines the AppConnectDelegate protocol that you
implement to receive notifications from the AppConnect
library of changes to this information.

Related topics

TABLE 2.HEADER FILES INAPPCONNECT.FRAMEWORK (IN ALPHABETICAL ORDER) (CONT.)

Header files inAppConnect.framework

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 29

Header file Description and related topics

l The AppConnect interface

l AppConnect-related notifications

AppConnectUIApplication.h Defines the UIApplication subclass that the AppConnect library
uses. An app imports this header file only if it uses a subclass of
UIApplication.

Related topics

l Use AppConnect’s UIApplication subclass

l AppConnectUIApplication class

NSArray+ACSecureFile.h Defines NSArray category interfaces for secure file I/O.

Related topics

Secure file I/O API details

NSData+ACSecureFile.h Defines NSData category interfaces for secure file I/O.

Related topics

Secure file I/O API details

NSData+ACSharedSecureFile.h Defines NSData category interfaces for secure file I/O when
sharing data among AppConnect apps.

Related topics

Secure file I/O API details

NSDictionary+ACSecureFile.h Defines NSDictionary category interfaces for secure file
I/O.

Related topics

Secure file I/O API details

NSFileManager+ACSecureFile.h Defines NSFileManager category interfaces for secure file I/O.

Related topics

Secure file I/O API details

NSKeyedArchiver+ACSecureFile.h Defines NSKeyedArchiver category interfaces for secure file
I/O.

TABLE 2.HEADER FILES INAPPCONNECT.FRAMEWORK (IN ALPHABETICAL ORDER) (CONT.)

Header files inAppConnect.framework

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 30

Header file Description and related topics

Related topics

Secure file I/O API details

NSKeyedUnarchiver+ACSecureFile.h Defines NSKeyedUnarchiver category interfaces for secure file
operations.

Related topics

Secure file I/O API details

NSMutableArray+ACSecureFile.h Defines NSMutableArray category interfaces for secure file I/O.

Related topics

Secure file I/O API details

NSMutableDictionary+ACSecureFile.h Defines NSMutableDictionary category interfaces for secure file
I/O.

Related topics

Secure file I/O API details

TABLE 2.HEADER FILES INAPPCONNECT.FRAMEWORK (IN ALPHABETICAL ORDER) (CONT.)

Header files in AppConnectExtension.framework

The following header files are included in the AppConnectExtension.framework:

Header file Description and related topics

ACWrappedFile.h Defines the ACWrappedFile class used by extensions to share
secure files.

Related topics

Coding the extension to share files with the host app

AppConnectExtension.h Umbrella header file for the AppConnectExtension.framework,
importing all the header files in the framework.

Related topics

Coding the extension to share files with the host app

AppConnectExtensionInterface.h Defines AppConnectExtensionInterface class and
AppConnectExtensionInterfaceProtocol.

TABLE 3.HEADER FILES INAPPCONNECTEXTENSION.FRAMEWORK (IN ALPHABETICAL ORDER)

Header files inAppConnectExtension.framework

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 31

Header file Description and related topics

Related topics

Coding the extension to share files with the host app

TABLE 3.HEADER FILES INAPPCONNECTEXTENSION.FRAMEWORK (IN ALPHABETICAL ORDER) (CONT.)

AppConnect for iOS architecture

Your app, using the AppConnect library, interacts with theMobileIron client app. TheMobileIron client app is either
Mobile@Work for iOS, MobileIron Go for iOS, or MobileIron AppStation for iOS. Mobile@Work interacts with Core
andMobileIron Go interacts with MobileIron Cloud. AppStation is used in certain use cases instead of MobileIron
Go to interact with MobileIron Cloud when aMobileIron Cloud tenant is set up for Mobile Apps Management (MAM)
but not Mobile DeviceManagement (MDM). The AppConnect library also interacts with Standalone Sentry for
AppTunnel support.

The following diagram illustrates the interactions between an AppConnect app, the AppConnect library, the
MobileIron server, theMobileIron client, and the Standalone Sentry. The diagram uses MobileIron Core for the
server andMobile@Work for the client.

AppConnect for iOSarchitecture

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 32

FIGURE 1.APPCONNECT APP INTERACTION

AppConnect for iOSarchitecture

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 33

Note The Following:

l Each secure enterprise appcommunicateswith anAppConnect singleton object, which
contains the AppConnect library.

l The AppConnect library communicateswith theMobileIron client app.

l The appuses the AppConnect API to get management and security-related information, such
aswhether the server administrator has authorized the app to run on the device.

l Each secure enterprise appcreates anobject that implements the AppConnectDelegate
protocol. This object receives notifications from the AppConnect library. These notifications tell
the appabout changes tomanagement and security-related information.

l TheMobileIron client appcommunicateswith theMobileIron server to get management and
security-related information.
TheMobileIron server provides security andmanagement for an enterprise’s devices, and for the
apps anddata on those devices. Anadministrator configures the security andmanagement
features using awebportal.

l The AppConnect object interactswith a Standalone Sentry if it is tunneling network connections
to anenterprise server behind the firewall.

TheMobileIron client app and AppConnect apps

TheMobileIron client app supports AppConnect apps, including the following tasks:

l It communicates with theMobileIron server to get management and security-related information and
passes the information to the AppConnect apps.
TheMobileIron client app periodically does an app checkin with theMobileIron server to get this
information. The administrator configures the app checkin interval on theMobileIron server. It is the
maximum time between app checkins while an AppConnect app is running.

l It enforces the AppConnect passcode or Touch ID/Face ID.
TheMobileIron client app prompts the device user to create an AppConnect passcode or Touch ID/Face
ID when first launching any AppConnect app. The administrator configures an auto-lock timeout on the
MobileIron server. After this period of inactivity, theMobileIron client app prompts the device user to
reenter his AppConnect passcode or Touch ID/Face ID.

When you run your AppConnect app, theMobileIron client app sometimes automatically launches to support app
checkin and the AppConnect passcode or Touch ID/Face ID. Understanding theMobileIron client app expected
behavior can help you when you test your AppConnect app.

App checkin and the MobileIron client app

On each app checkin, theMobileIron client app gets AppConnect policy updates for all the AppConnect apps that
have already run on the device. These updates include changes to data loss prevention policies, password
settings, app configurations, and AppTunnel settings.

For example, for Mobile@Work, these updates are due to changes onMobileIron Core to:

TheMobileIronclientappandAppConnectapps

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 34

l the AppConnect global policy for the device.
l AppConnect container policies for each of the AppConnect apps that have run on the device.
l AppConnect app configurations for each of the AppConnect apps that have run on the device.
l the current authorization status for each of the AppConnect apps that have run on the device.

TheMobileIron client app does an app checkin in the following situations:

l The device user launches an AppConnect app for the first time.
In this situation, theMobileIron client app finds out about the app for the first time, and adds it to the set of
AppConnect apps for which it gets updates.

l The app checkin interval expires while an AppConnect app is running.

l The app checkin interval expired while no AppConnect apps were running and then the device user
launches an AppConnect app.

In each of these situations, theMobileIron client app launches, and the device user sees theMobileIron client app
momentarily. Once theMobileIron client app has completed the app checkin, the device user automatically returns
to the AppConnect app.

The auto-lock timeout and the MobileIron client app

TheMobileIron client app launches to prompt the device user for the AppConnect passcode or Touch ID/Face ID in
the following situations:

l The auto-lock (inactivity) timeout expires while the device is running an AppConnect app and the
AppConnect passcode, or Touch ID/Face ID, is the login mechanism.

If the device user is interacting with the app, the auto-lock timeout does not expire. This case occurs only when the
device user has not touched the device for the duration of the timeout interval.

l The device user used theMobileIron client app to log out of AppConnect apps, and then launches an
AppConnect app.

l The server administrator has changed the complexity rules of the AppConnect passcode, and an app
checkin occurs.

In each of these situations, theMobileIron client app launches, and presents the device user with a screen for
entering his AppConnect passcode or Touch ID/Face ID. After the device user enters the passcode or Touch
ID/Face ID, the device user automatically returns to the AppConnect app.

Product versions required
To develop and deploy an app that uses AppConnect for iOS, you need certain products. MobileIron supports a set
of product versions, and another set of product versions are compatible with apps built with this version of the
AppConnect for iOS SDK.

Theauto-lock timeoutand theMobileIronclientapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 35

l Supported product versions: The functionality of the product and version with currently supported
releases was systematically tested as part of the current release and, therefore, will be supported.

l Compatible product versions: The functionality of the product and version with currently supported
releases has not been systematically tested as part of the current release, and therefore not supported.
Based on previous testing (if applicable), the product and version is expected to function with currently
supported releases.

The following table summarizes supported and compatible product versions. This information is current at the time
of this release. For MobileIron product versions released after this release, see that product version's release notes
for themost current support and compatibility information.

Product Supported versions Compatible versions

iOS 11.0 - 14.0 9.0 and lower are not supported

Xcode

(for building apps that use the
AppConnect for iOS SDK)

11 11

See also, APG-1154 in AppConnect
4.5.0 for iOS SDK revision history.

MobileIron Core and
Connected Cloud

10.5.0.0, 10.6.0.0 , 10.7.0.0 10.3.0.0 - 10.4.0.0

Standalone Sentry 9.7.3, 9.8.1 9.5.0 - 9.6.0

Mobile@Work for iOS 12.3.0, 12.4.1 12.1.0 -12.2.2

MobileIron Cloud 72 Not applicable

MobileIron Go 5.5.1 4.0.0 - 5.5.0

MobileIron AppStation 1.3.0 Not applicable

TABLE 4. SUPPORTED AND COMPATIBLE PRODUCT VERSIONS FORAPPCONNECT SDKAPPS

IMPORTANT: Some AppConnect features dependon the version ofMobileIronCore, MobileIron Cloud,
Standalone Sentry, and theMobileIron client app.

Securing andmanaging the app using the AppConnect library
A MobileIron server administrator configures how mobile device users can use secure enterprise applications. The
administrator sets the following app-related settings that impact your app’s behavior:

l Authorization

l AppConnect passcode and Touch ID/Face ID policy

l Configuration specific to the app

l AppTunnel

Securingandmanaging theappusing theAppConnect library

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 36

l Certificate authentication to enterprise services

l Data loss prevention policies

l Custom keyboard control

l The log level and whether to log to files, described in Logmessages

Additionally, the AppConnect library provides the following capabilities for your app:

l Data protection
The AppConnect library uses encryption to protect AppConnect-related data. You can choose to protect
your app’s sensitive data using AppConnect for iOS APIs.

l iOS active state change notifications due to AppConnect control switches

l APIs for diagnosing AppTunnel configuration and usage
See AppTunnel diagnostic API details.

The following steps show the flow of information from theMobileIron server to your app:

1. TheMobileIron server administrator decides which app-related settings to apply to a device or set of
devices.

2. TheMobileIron server sends the information to theMobileIron client app.

3. TheMobileIron client app passes the information to the AppConnect library. TheMobileIron client app and
the AppConnect library enforce the AppConnect passcode policy. The AppConnect library enforces
tunneling.

4. Using the AppConnect for iOS API, your app can find out the current settings and receive notifications of
changes.

Your app is responsible for:

l enforcing authorization

l handling the data loss prevention policies

l using the configuration specific to the app.

l protecting the app’s data independent of device level encryption by using the AppConnect secure file I/O
APIs

l loggingmessages to the console using the AppConnect logging APIs

l preserving the app’s state when control switches to theMobileIron client app and then back to the app due
to the AppConnect app check-in interval or auto-lock time expiring.

Authorization

Your app uses the AppConnect library to get the user’s authorization status for using the app and to be notified of
changes. For more information, see Authorization API details.

TheMobileIron server administrator determines:

Authorization

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 37

l whether or not each device user is authorized to use each secure enterprise app.
If the user is not authorized, the app should not allow the user to access any secure data or functionality. If
the app handles only secure data and functionality, then the app does nothingmore than display a
message that the user is not authorized to use the app.

l the situations that cause an authorized device user to become unauthorized.
These situations include, for example, when the device OS is compromised. theMobileIron client app
reports device information to theMobileIron server. The server then determines whether to change the user
to unauthorized based on security policies on Core.
When a user becomes unauthorized, the app should stop allowing the user access to any secure data or
functionality.

l the situations that retire the app.
Retiring an appmeans that the user is not authorized to use it, and the app removes all secure data
associated with the app.

When an app is retired, you remove all its secure data. When a user is unauthorized but the app is not retired, you
do not allow the user to access the data, but you do not have to remove it. The reason is that an unauthorized user
can become authorized again, and therefore the secure data should become available again.

AppConnect passcode and Touch ID/Face ID policy

The AppConnect library and theMobileIron client app enforce the passcode or Touch ID/Face ID, and the auto-lock
timeout. The only task for your app is to includePrivacy - Face ID Usage Description in your app’s info.plist.
Beyond that plist addition, your app does not handle the AppConnect passcode or Touch ID/Face ID at all.

TheMobileIron server administrator determines:

l whether the AppConnect passcode or Touch ID/Face ID is required, which requires the device user to
enter a passcode or Touch ID/Face ID to access any secure enterprise apps.

l the complexity of the AppConnect passcode.

l the auto-lock (inactivity) timeout for the AppConnect passcode or Touch ID/Face ID.

The AppConnect library and theMobileIron client app enforce an AppConnect passcode or Touch ID/Face ID as
follows:

l TheMobileIron server notifies theMobileIron client app when the server administrator has enabled an
AppConnect passcode or Touch ID/Face ID. TheMobileIron client app prompts the user to set the
passcode, if required, the next time that the device user launches or switches to a secure enterprise app.

l The user is prompted to enter the passcode or Touch ID/Face ID when the user subsequently launches or
switches to a secure enterprise app but the auto-lock timeout has expired.

l The user is prompted to enter the passcode or Touch ID/Face ID when the auto-lock timeout expires while
the user is running a secure enterprise app.

AppConnectpasscodeandTouch ID/Face IDpolicy

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 38

l TheMobileIron client app prompts the user to set the passcode, if required, the next time the device user
launches or switches to a secure enterprise app after theMobileIron server has notified theMobileIron
client app that the passcode’s complexity rules have changed.

Configuration specific to the app

Sometimes an app requires app-specific configuration. Some examples are:

l the address of a server that the app interacts with

l whether particular features of the app are enabled for the user

l user-related information from LDAP, such as the user’s ID and password

l certificates for authenticating the user to the server that the app interacts with

You determine the app-specific configuration that your app requires. Each configurable item is a key-value pair.
Each key and value is a string. A MobileIron server administrator specifies the key-value pairs for each app on the
server. The administrator applies the appropriate set of key-value pairs to a set of devices. Sometimes more than
one set of key-value pairs exists on the server for an app if different users require different configurations. For
example, the administrator can assign a different server address to users in Europe than to users in the United
States.

NOTE: When the value is a certificate, the value contains the base64-encodedcontents of the
certificate, which is a SCEP or PKCS-12certificate. If the certificate is password encoded, the
server automatically sends another key-value pair. The key’s name is the string <name of key for
certificate>_MI_CERT_PW. The value is the certificate’s password.

Your app uses the AppConnect library to get the configuration and to be notified of changes. Then your app applies
the configuration according to its requirements.

For more information, see App-specific configuration API details .

AppTunnel

UsingMobileIron’s AppTunnel feature, a secure enterprise app can securely tunnel HTTP and HTTPS network
connections from the app to servers behind an organization’s firewall. A Standalone Sentry is necessary to support
AppTunnel with HTTP/S tunneling. TheMobileIron server administrator handles all HTTP/S tunneling configuration
on the server. Once the administrator has configured tunneling for the app on the server, the AppConnect library,
theMobileIron client app, and a Standalone Sentry handle tunneling for the app.

Your app accesses its enterprise servers as it normally would using NSURLConnection or NSURLSession. Your
app typically does not take any special actions related to tunneling. Although your app uses a server address that
results in tunneling, your app does not know that tunneling is occurring. Typically, theMobileIron server
administrator uses AppConnect’s app-specific configuration to specify the enterprise server URL that the app
uses. See Configuration specific to the app.

Configuration specific to theapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 39

NOTE: Initialize the AppConnect library before registering anyNSURLProtocol subclasses that your app
uses. See Initialize the AppConnect library onpage 54.

Consider the following information to ensure that your app can successfully tunnel network connections:

l AppTunnel supports only NSURLConnection and NSURLSession

l Accessing sockets directly does not use AppTunnel

l App’s responsibilities when using AppTunnel

l AppTunnel supports redirects and authentication requests on HTTP/S upload

l AppTunnel with TCP tunneling

AppTunnel supports only NSURLConnection and NSURLSession

Always access servers using NSURLConnection or NSURLSession.

Note The Following:

l AppTunnel with HTTP/S tunneling does not support using NSURLSession in abackground session.
The traffic does not reach its destination

l Youcanalso use networking libraries that use NSURLConnection or NSURLSession. For example,
apps can use AFNetworking 3.0because it uses NSURLSession.

l AppTunnel with HTTP/S tunneling does not support WKWebViewobjects.

Accessing sockets directly does not use AppTunnel

AppTunnel with HTTP/S tunneling is not supported if the app:

l accesses sockets directly.

l uses APIs that access sockets directly.

In these cases, the app cannot access a host behind the enterprise’s firewall using AppTunnel with HTTP/S
tunneling.

For example, AppTunnel with HTTP/S tunneling is not supported with the following APIs:

l Apple’s reachability APIs that detect network and host connectivity.

l CFNetwork APIs

l ASIHTTPRequest

NOTE: Network connections using sockets for TCP connections can tunnel databy using AppTunnel
with TCP tunneling. See AppTunnel with TCP tunneling.

AppTunnel supports onlyNSURLConnectionandNSURLSession

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 40

App’s responsibilities when using AppTunnel

Formany apps, the app takes no special actions to use AppTunnel with HTTP/S tunneling. However, special
actions are required if your app requires:

l Cached responses for URL requests that use AppTunnel with HTTP/S tunneling.
To allow cached responses, see Caching tunneled URL responses.

l Upload status for HTTP/S requests that use AppTunnel with HTTP/S tunneling.
Use the APIs described in Getting upload status for tunneled HTTP/S requests.

AppTunnel supports redirects and authentication requests on HTTP/S upload

When an app uses AppTunnel with HTTP/S tunneling, AppTunnel handles the following HTTP/S upload scenarios
without any special actions by the app:

l HTTP/S redirect responses from the server (HTTP/S 3XX status code).
If a server redirects an HTTP/S upload request (tunneled or not) to another URL that theMobileIron server
administrator has configured for tunneling, the request is tunneled.

l Authentication required response from the server (HTTP/S 401 status code).
The AppTunnel feature handles sending a second HTTP/S request with authentication credentials.

AppTunnel with TCP tunneling

AppTunnel can tunnel TCP traffic between an app and a server behind the company’s firewall. AppTunnel with
TCP tunneling does not require an app to be an AppConnect app; both AppConnect apps and standard apps can
use AppTunnel with TCP tunneling.TheMobileIron server administrator configures AppTunnel with TCP tunneling,
including installingMobileIron Tunnel (an iOS app) on the device. Your app takes no actions related to using
AppTunnel with TCP tunneling.

Certificate authentication to enterprise services

Without any development, an AppConnect app can send a certificate to identify and authenticate the app user to an
enterprise service when the app uses an HTTPS connection. TheMobileIron server administrator configures on the
server which certificate for the app to use, and which connections use it. The AppConnect library, which is part of
every AppConnect app, makes sure the connection uses the certificate. Your app takes no action at all.

Supported networking methods

Certificate authentication to enterprise services is supported only if your app uses one of the following to access
the enterprise service:

l NSURLConnection

l NSURLSession

App’s responsibilities whenusingAppTunnel

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 41

Certificate authentication to enterprise services does not support using NSURLSession in a background session.

l Networking libraries that use NSURLConnection or NSURLSession.

l UIWebView

Unsupported networking methods

Certificate authentication to enterprise services using other networkingmethods is not supported. For example, the
following are not supported:

l accessing sockets directly

l WKWebView and other APIs that access sockets directly
For example, these APIs are not supported: CFNetwork, ASIHTTPRequest, and Apple's reachability APIs
that detect network and host connectivity.

Data loss prevention policies

An app can leak data if it uses iOS features such as copying to the iOS pasteboard, document interaction (Open In
andOpen From), and print capabilities. A MobileIron server administrator specifies on the server whether each app
is allowed to use each of these features.

Specifically:

l The print policy indicates whether the app is allowed to use: AirPrint, any future iOS printing feature, any
current or future third-party libraries or apps that provide printing capabilities.
Your app enforces the print policy by enabling or disabling printing capabilities based on the print policy.

l The pasteboard policy specifies whether your app is allowed to copy content to the iOS pasteboard. If
copying content is allowed, the policy specifies whether all apps, or only AppConnect apps, can paste the
copied content from the pasteboard.
The AppConnect library enforces the pasteboard policy. Your app disables or enables any special user
interfaces that allow copying.

l The drag and drop policy specifies whether AppConnect apps can drag content to all other apps, to only
other AppConnect apps, or not at all.
The AppConnect library enforces this policy. When the policy allows dragging content to only other
AppConnect apps, the AppConnect library notifies your app when the device user attempts to drag content
to a non-AppConnect app. Your app can then notify the device user of the situation.

l TheOpen In policy specifies the apps, including the extensions that apps provide, with which your app can
share documents. The policy specifies no apps, all apps, all AppConnect apps, or a set of apps. A set of
apps is called the whitelist. Whether your app can share documents with the native iOS mail app is also
controlled by the Open In policy.

Unsupportednetworkingmethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 42

The AppConnect library enforces the Open In policy. Your app disables or enables any special user
interfaces that give the user the option to useOpen In.

l TheOpen From policy specifies the apps, including the extensions that apps provide, from which your app
can receive documents when the other app uses the Open In iOS feature. The policy specifies no apps, all
apps, all AppConnect apps, or a set of apps. A set of apps is called the whitelist.
The AppConnect library enforces the Open From policy. Your app informs the user about the Open From
policy if you want to.

The administrator applies the appropriate policies to a set of devices. Sometimes more than one set of policies
exists on theMobileIron server for an app if different users require different policies.

Your app uses the AppConnect library to get the data loss prevention policies and to be notified of changes. Then
your app handles the policies according to its requirements.

For more information, see:

l Pasteboard policy API details

l Drag and drop policy API details

l Open In policy API details

l Open From policy API details

l Print policy API details

Custom keyboard control

Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. To stop this potentially harmful data loss, the
MobileIron server administrator configures whether custom keyboards are allowed for an app by setting a key-value
pair in the app’s configuration. The key is calledMI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS. The key-value
pair is consumed by the AppConnect library; your app does not receive it.

When the key is present, the AppConnect library controls custom keyboard use according to the key’s value. If the
value is true, the AppConnect library allows the AppConnect app to use custom keyboards. If the value is false, the
AppConnect library does not allow custom keyboard use.

If the server administrator does not include the key-value pair for your app, the AppConnect library does not allow
the app to use custom keyboards.

Related topics

Reject custom keyboard control

Customkeyboardcontrol

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 43

Data protection

AppConnect-related data

TheMobileIron client app and the AppConnect library work together to use encryption to protect AppConnect-
related data, such as configurations and certificates, on the device.

The encryption key is not stored on the device. It is either:

l Derived from the device user’s AppConnect passcode.

l Protected by the device passcode if the administrator does not require an AppConnect passcode.

l Protected by the device passcode if the device user uses Touch ID/Face ID to access AppConnect apps.

If no AppConnect passcode or device passcode exists, the data is encrypted, but the encryption key is not
protected by either passcode.

Your app does not handle data protection for AppConnect-related data. theMobileIron client app and the
AppConnect library provide this data protection.

App data files

You can protect the contents of your app’s data files using secure file I/O APIs provided by the AppConnect for iOS
SDK. This secure file I/O capability means that data encryption for your app’s data, like the AppConnect-related
data, is not dependent on the device having a device passcode.

Like the AppConnect-related data, the encryption key is not stored on the device. It is either:

l Derived from the device user’s AppConnect passcode.

l Protected by the device passcode if the administrator does not require an AppConnect passcode.

l Protected by the device passcode if the device user uses Touch ID/Face ID to access AppConnect apps.

The administrator can require an AppConnect passcode, a device passcode, both passcodes, or neither. The
administrator can also allow a device user to use Touch ID/Face ID to access AppConnect apps, which requires a
device passcode to work. By using the secure file I/O APIs, you know that your app’s data is protected to the
extent that the administrator requires. If your app instead relies on iOS data protection to protect your app’s data,
data is not protected on devices that have no device passcode. Devices having no device passcode are not
uncommonwhen employees use their own devices at work.

NOTE: When using secure file I/O APIs, the existence of a file, its file name, its path, its approximate size,
its creation date, and its last modification date are not encrypted. Any of these itemspossibly
reveal sensitive information.

The following table summarizes the protection of the data that AppConnect apps save on the device. Note that if a
device user uses Touch ID/Face ID to access AppConnect apps, a device passcode is available.

Dataprotection

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 44

Device passcode
but no
AppConnect
passcode

AppConnect
passcode but no
device passcode

Device passcode
and AppConnect
passcode

Neither a device
passcode or
AppConnect
passcode

SDK apps that
enable iOS data
protection (typical
behavior)

App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

SDK apps that use
SDK-provided
secure file I/O

App data encrypted App data encrypted App data encrypted iOS encrypts the
data, but the
encryption key is
not protected.

TABLE 5.DATA ENCRYPTIONOF APP DATA

Some of the secure file I/O APIs also support sharing the encrypted files with other AppConnect apps. These APIs
rely on an additional encryption group ID to create the encryption key. Only apps which use the same encryption
group ID can read the data. If you use these APIs to share encrypted files with other apps, you provide an app-
specific configuration key name to theMobileIron server administrator in your app documentation. TheMobileIron
server administrator then provides your app and the other apps the same encryption group ID through app-specific
configuration for each app.

The SDK provides the following types of secure file I/O APIs:

l POSIX-style APIs

l Objective-C subclasses

l Objective-C class categories

Before your app uses these APIs, use the AppConnect library to get the status of:

l secure services
Currently, the only secure service is secure file I/O.

l secure file I/O

The AppConnect library notifies the app about changes in both statuses.

For more information, see Secure services API details.

NOTE: If your appuses custom cryptography, you canget encryption keys from the AppConnect
library. Formore information, see Encryption keys for custom cryptography.

Logmessages

The AppConnect for iOS SDK provides APIs for your app to use to logmessages to the Apple System Log facility,
also known as the device’s console. TheMobileIron server administrator can specify that themessages are also

Logmessages

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 45

logged to files on the device.

You specify the log level of eachmessage. The log levels are, from least verbose tomost verbose:

l Error

l Warning

l Status

l Info

l Verbose

l Debug

Note The Following:

l Error, warning and status messages are always logged to the console.

l Infomessages are logged to the console only if that level is specified by theMobileIron server administrator in
the app-specific configuration.

l Verbose anddebugmessages are logged to the console only if both of the following are true:

o The server administrator specified the level and adebug code in the app-specific configuration.

o Thedevice user enabled the level in theMobileIron client app using the debug code specified by the server
administrator. Note that the verbose or debug levels are disabled automatically after 24 hours. The device
user canmanually disable them sooner.

Because the verbose anddebug levels require a debug code, you can include sensitive data inmessages
loggedat those levels.

For details, including examples of the kinds of messages to log at each level, see Logmessages API details.

Optional: Avoiding pasteboard notifications
To avoid pasteboard notifications on users' devices when using AppConnect apps, set up an AppGroup for your
AppConnect apps and update the app's Info.plist. AppGroups are an iOS mechanism to share data between apps.
Setting up an AppGroup also reduces the amount of switching between the AppConnect app and theMobileIron
client. The following is an overview of the setup needed to avoid pasteboard notifications.

Overview

1. In the Apple Developer portal,

a. Create an AppGroup.

b. Add the AppGroup to your AppConnect app's App ID.

c. Update and download the Provisioning Profile.

2. Update the app to use the new Provisioning Profile.

Optional:Avoidingpasteboardnotifications

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 46

3. Configure AppGroup capability and AppGroup for the app in Xcode.

NOTE: Ensure that the appgroup name configured in Xcodematches the AppGroup name
that you configured in the Apple Developer Portal.

4. Add the AppGroup to the app's Info.plist.

For detailed instructions for each step, see the links in the following related topics.

Related topics

l For information about how to create an AppGroup, add it to your AppConnect app's App ID, and save and
download the updated Provisioning Profile for your app on the Apple Developer portal, see Configuring an
AppGroup on the Apple Developer portal

l For information about configuring AppGroup capability and AppGroups for you app, see the following
Apple documentation:

o Adding Capabilities to Your App

o Configure app groups

l For information about adding the AppGroup to the app Info.plist, see Add AppGroup to Info.plist.

The feature is available if the components are at the following version through the latest as supported by
MobileIron:

l The AppConnect app uses AppConnect 4.7.0 SDK.

l The iOS device uses iOS 14.

l TheMobileIron client is one of the following
o MobileIron Go 5.5.1
o Mobile@Work 12.4.1

NOTE: AppConnect apps continue to use the pasteboard if anAppGroup, as described in this section,
is not set up.

Configuring an AppGroup on the Apple Developer portal

You create an AppGroup, add it to your AppConnect 's App ID, and save and download the updated Provisioning
Profile for your app on the Apple Developer portal.

Procedure

1. On the Apple Developer portal, go toCertificates, Identifiers & Profiles > Identifiers.

2. Select App Groups, and create an AppGroup.
When you create an AppGroup, you add a name and an Identifier for the AppGroup. The name can be
anything, as long as it is unique.

ConfiguringanAppGroupontheAppleDeveloper portal

https://developer.apple.com/documentation/xcode/adding_capabilities_to_your_app
https://help.apple.com/xcode/mac/current/#/dev8dd3880fe

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 47

3. After you create the AppGroup, go toCertificates, Identifiers & Profiles > Identifiers.

4. Select App IDs, and click the AppConnect app.

5. Select App Groups > Configure, and select the AppGroup to assign to the AppConnect app.

6. After you update the AppGroup for the AppConnect app, toCertificates, Identifiers & Profiles >
Identifiers.

7. Select Profiles, and click the provisioning profile for your app to edit.

8. Click Edit > Save > Download.

9. Double-click the Provisioning Profile in the Finder to import it into Xcode.

Add AppGroup to Info.plist

The AppGroup is created by the app developer in the Apple Developer Portal using their Apple developer account.
On the Apple developer portal, create an AppGroup and add it to your AppConnect apps.

Add the following key-value pair in the app’s Info.plist:

l MI_APP_CONNECT
This key is the root key, and its value is a dictionary of key-value pairs

l MI_AC_ACCESS_GROUP
This key provides the AppGroup Identifier that the AppConnect library uses to access the app's shared
container. The value is the app’s AppGroup Identifier.

Example

In the example, group.com.thirdparty.enterprise.ios.appconnect is the AppGroup Identifier.

AddAppGroup to Info.plist

3

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 48

Getting Started with the AppConnect for iOS
SDK

l Getting started tasks

l Using the AppConnect framework in a Swift app

l Troubleshooting

Getting started tasks
Objective-C apps: Follow the instructions in Before you begin adding the AppConnect SDK to your app. Then
follow the instructions in either First-time use of SDK in your app or Task lists for upgrading the SDK in your app.

Swift apps: Follow the instructions in Before you begin adding the AppConnect SDK to your app. Then follow the
instructions in Using the AppConnect framework in a Swift app.

Xamarin apps: Follow the instructions in Before you begin adding the AppConnect SDK to your app. Then follow
the instructions in Developing AppConnect Apps with Xamarin .

Once you have completed these tasks, your app is ready to use the AppConnect for iOS API to, for example,
enforceMobileIron server settings and apply app-specific configurations from theMobileIron server.

NOTE: If your app is aCordovaapp, use the AppConnect for iOS Cordova Plugin, described in the
MobileIronAppConnect for iOS Cordova PluginDevelopersGuide.

Before you begin adding the AppConnect SDK to your app

l Download the AppConnect for iOS SDK.
Download the latest version of the AppConnect for iOS SDK ZIP file to your app’s Xcode project folder or
other convenient location. The ZIP file is available at help.mobileiron.com in theSoftware tab.
The ZIP file is named AppConnectiOSSDK_V<version>_<build>.zip where:

o <version> is the version number of the SDK
o <build> is the build number of the SDK.

l Verify required product versions.
Be sure you have the required product versions for working with apps built with the AppConnect for iOS
SDK.
See Product versions required .

http://help.mobileiron.com/

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 49

l Support fast app switching.
Make sure your app supports fast app switching. Fast app switchingmeans that the app can go into the
background for a short time without iOS terminating it. The AppConnect for iOS SDK requires that apps
support this feature. Most apps support fast app switching.
To ensure that your app supports fast app switching, in your app’s Info.plist, remove the
UIApplicationExitsOnSuspend key if it is present.

NOTE: Your appdoes not need to support any of the UIBackgroundModes, suchas audio or voip

First-time use of SDK in your app

If you are adding the AppConnect for iOS SDK to your app for the first time, do the tasks in Getting started task list.

Task lists for upgrading the SDK in your app

To upgrade from an app that uses a prior version of the AppConnect for iOS SDK do the following:

1. Replace the AppConnect.framework bundle in the project folder.

2. If you are using the AppConnectExtension.framework, replace the AppConnectExtension.framework
bundle in the project folder.

3. Declare the alt-appconnectURL scheme in your app’s Info.plist as another allowed URL scheme.
See Declare the AppConnect URL schemes as allowed.

If your SDK is 3.5 through 1.9.0, use the appropriate task list in the following table.

SDK version
from which
you are
upgrading

Upgrade task list

SDK 3.1
through 3.5

See SDK 3.1 through 3.5 upgrade task list.

SDK 2.4
through 3.0

1. Do the upgrade steps for SDK 3.1 through 3.5.

2. Recommended: If your app is a dual-mode app, modify the dual mode behavior to include
+shouldStartAppConnect:. For details, see Developing Third-party Dual-mode Apps.

3. Recommended: If your app enforced the Open In data loss prevention policy, note that the
AppConnect library now enforces the policy. Make appropriate codemodifications. For
details, seeOpen In policy API details .

SDK 1.9.1
through 2.3.1

1. Do the steps for SDK 2.4 through 3.0.

2. Declare the AppConnect URL schemes as allowed

SDK 1.9.0 or
earlier

Refer to the 3.5 version of this guide, available at MobileIron AppConnect 3.5 for iOS SDK App
Developers Guide or contact MobileIron Technical Support.

TABLE 6. UPGRADE TASK LIST

First-timeuseof SDK inyour app

https://community.mobileiron.com/docs/DOC-6862
https://community.mobileiron.com/docs/DOC-6862

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 50

SDK 3.1 through 3.5 upgrade task list

If your SDK is 3.1 through 3.5 use the following upgrade task list:

1. Remove the existing AppConnect.framework and AppConnectResources.bundle from your Xcode project.

2. Remove the libProtocolsBuffer.a and libCrypto.a libraries from your Xcode project if you added them only
for making your app an AppConnect app. However, if you use specific versions of these libraries for other
reasons, or indirectly link to versions of these libraries, keep them in your project andmake sure they are
linked before the AppConnect.framework.
The libCrypto.a that is part of the AppConnect.framework is FIPS compliant. Therefore, if your only reason
for linking in your own libCrypto.a is to be FIPS compliant, you can remove it.

3. Remove the following command from your Xcode project’s Other Linker Flags (in Linking underBuild
Setting:
-force_load $(SRCROOT)/AppConnect.framework/AppConnect

4. Make sureOther Linker Flags include -ObjC because the AppConnect.framework is anObjective-C
framework.

5. Navigate to AppConnect.framework in the top-level of the extracted AppConnect SDK directory.

6. Drag and drop AppConnect.framework toEmbedded Binaries in theGeneral settings of your Xcode
project’s target. When Xcode prompts you to choose options for adding the file, select Create groups.

7. Navigate to AppConnectResources.bundle in the AppConnect.framework directory of the extracted
AppConnect SDK directory.

8. Drag and drop AppConnectResources.bundle toCopy Bundle Resources in theBuild Phases settings
of your Xcode project’s target. When Xcode prompts you to choose options for adding the file, select
Create groups.

9. Add aRun Script section to theBuild Phases settings of your Xcode project’s target.

10. Add post_embed_actions.sh, located in the top-level of the extracted AppConnect SDK directory, to the
scripts to run. This script removes extra architectures from the AppConnect app’s binary. Removing
desktop architectures is required before submitting your app to the Apple App Store.

11. Make sureEnable Bitcode is set toNo inBuild Options in theBuild Settings of your Xcode project’s
target.

12. Include the boolean key MI_AC_PROVIDE_SCREEN_BLUR set to YES in your app’s info.plist. For
details, see Add AppConnect-related entries to your Info.plist.

13. IncludePrivacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the
purpose of Face ID use. For example, add the valueAppConnect. If youmanually add this key, its name
is NSFaceIDUsageDescription.

14. Declare the alt-appconnectURL scheme in your app’s Info.plist as another allowed URL scheme.
See Declare the AppConnect URL schemes as allowed.

SDK3.1 through3.5 upgrade task list

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 51

Getting started task list

NOTE: If you have anapp that already uses aprior version of the AppConnect for iOS SDK andwant to
upgrade the app to use the current SDK version, see Task lists for upgrading the SDK in your app.

If you are adding the AppConnect for iOS SDK to your app for the first time, do the following tasks:

1. Add AppConnect files and settings to your Xcode project

2. Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed

3. Register as a handler of the AppConnect URL scheme

4. Declare the AppConnect URL schemes as allowed

5. Add AppConnect-related entries to your Info.plist

6. Use AppConnect’s UIApplication subclass

7. Initialize the AppConnect library

8. Wait for the AppConnect singleton to be ready

9. Optional: Specify app permissions and configuration in a plist file.

Add AppConnect files and settings to your Xcode project

Do the following tasks to add AppConnect files and settings to your app’s Xcode project:

1. Make sureOther Linker Flags include -ObjC because the AppConnect.framework is anObjective-C
framework.

2. Navigate to AppConnect.framework in the top-level of the extracted AppConnect SDK directory.

3. Drag and drop AppConnect.framework toEmbedded Binaries in theGeneral settings of your Xcode
project’s target.
When Xcode prompts you to choose options for adding the file, select Create groups.

4. Navigate to AppConnectResources.bundle in the AppConnect.framework directory of the extracted
AppConnect SDK directory.

5. Drag and drop AppConnectResources.bundle toCopy Bundle Resources in theBuild Phases settings
of your Xcode project’s target.
When Xcode prompts you to choose options for adding the file, select Create groups.

6. Add aRun Script section to theBuild Phases settings of your Xcode project’s target.

7. Add post_embed_actions.sh, located in the top-level of the extracted AppConnect SDK directory, to the
scripts to run.
This script removes extra architectures from the AppConnect app’s binary. Removing desktop
architectures is required before submitting your app to the Apple App Store.

8. Make sureEnable Bitcode is set toNo inBuild Options in theBuild Settings of your Xcode project’s
target.

Getting started task list

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 52

Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed

The AppConnect.framework includes:

l the libcrypto.a library.
The included libcrypto.a library is FIPS compliant.

l the libProtocolBuffers.a library.
The included libProtocolBuffers.a library is by Booyah, Inc.

l the libssl.a library.

However, if you need specific versions of these libraries, you can add them to your Xcode project.

When you add one of these libraries to your Xcode project, make sure it is listed higher than
AppConnect.framework in your Xcode project in theGeneral tab under Linked Frameworks and Libraries.

Alternatively, you canmake sure your version of one of these libraries is used by adding a -force_load command
to the linker in Xcode. For example. in your Xcode project, inBuild Settings, under Linking, inOther Linker
Flags, add:

-force_load "$(PROJECT_DIR)/dependencies/openssl_fips_ios/lib/libcrypto.a"

Register as a handler of the AppConnect URL scheme

Your appmust handle the AppConnect URL scheme. Mobile@Work, MobileIron Go, andMobileIron AppStation
use this URL scheme to communicate with your app’s instance of the AppConnect library.

Register the AppConnect URL scheme by modifying the app’s Info.plist. Edit the key calledURL types so that:

l the sub-item URL identifier has the value of your app’s bundle identifier

l the sub-item URL Schemes’ sub-item 0 has the value ac concatenated with your app’s bundle identifier

These key-value pairs are illustrated by the following excerpt from HelloAppConnect’s HelloAppConnect-Info.plist:

NOTE: If youare editing the Info.plist file directly, it should include the following:

<key>CFBundleURLTypes</key>
<array>

<dict>
<key>CFBundleURLSchemes</key>
<array>

<string>ac$(PRODUCT_BUNDLE_IDENTIFIER)</string>

Addyour own libcrypto.a, libProtocolBuffers.a,and libssl.a libraries if needed

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 53

</array>
</dict>

</array>

Declare the AppConnect URL schemes as allowed

Declare the appconnect and the alt-appconnectURL schemes in your app’s Info.plist as allowed URL schemes.
Your app’s instance of the AppConnect library:

l uses the appconnect URL scheme to communicate with Mobile@Work or MobileIron Go.

l uses the alt-appconnect URL scheme to communicate with MobileIron AppStation.

To allow the appconnect and alt-appconnect URL schemes, add a key called LSApplicationQueriesSchemes
as shown in this example from HelloAppConnect’s HelloAppConnect-Info.plist:

Add AppConnect-related entries to your Info.plist

l Enable screen blurring

l Allow Face ID

Enable screen blurring

The AppConnect library can automatically blur your app’s screen whenever it is not active. This security measure
protects the app’s data from being captured in screenshots. The AppConnect library blurs the screen when
-applicationWillResignActive: is called and unblurs it when -applicationDidBecomeActive: is called.

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a Boolean.
Set the value to YES.

Declare theAppConnectURL schemes as allowed

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 54

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, theMobileIron server administrators
can disable screen blurring by setting a key-value pair on the server for your app’s configuration. The server key is
MI_AC_ENABLE_SCREEN_BLURRINGwith the value false.

NOTE: If youalready implemented screenblurring in your app, remove that code anduse theMI_AC_
PROVIDE_SCREEN_BLURplist key. Using the plist key ensures that all AppConnect apps behave
consistently.

Allow Face ID

IncludePrivacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose of
Face ID use. For example, add the valueAppConnect. If youmanually add this key, its name is
NSFaceIDUsageDescription.

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through themost recently released version as supported by MobileIron.

Use AppConnect’s UIApplication subclass

To use AppConnect’s UIApplication subclass:

1. Openmain.m for editing.

2. Add the following line to your import statements:
#import "AppConnect/AppConnect.h"

3. Change the third argument of the call to UIApplicationMain() to
kACUIApplicationClassName.
The third argument, the principalClassName argument, is the UIApplication class or subclass for the
app. For example, in the HelloAppConnect app provided with the AppConnect for iOS SDK, the statement
that calls UIApplicationMain is:

return UIApplicationMain(argc, argv, kACUIApplicationClassName,

NSStringFromClass([AppDelegate class]));

NOTE: If you use a subclass of UIApplication for your app, see Using your ownUIApplication subclass.

Initialize the AppConnect library

To initialize the AppConnect library for your app to use:

1. Open your AppDelegate source file and header file for editing.

2. Add the following line to your import statements in your AppDelegate header file:
#import "AppConnect/AppConnect.h"

3. Create a class that implements the AppConnectDelegate protocol.

AllowFace ID

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 55

Usually this class is also the AppDelegate for your app. For example, in AppDelegate.h in
HelloAppConnect, the AppDelegate class implements the AppConnectDelegate protocol.
@interface AppDelegate : UIResponder <UIApplicationDelegate, AppConnectDelegate>

Some of themethods of the AppConnectDelegate protocol are optional. Implement only the optional
methods that relate to your app’s functionality.

4. Call the static method +initWithDelegate: of the AppConnect class.Themethod takes as a parameter
an object of the class that implements the AppConnectDelegate protocol.
For example, in HelloAppConnect, in the AppDelegate class implementation, themethod -
application:didFinishLaunchingWithOptions: calls +initWithDelegate: as follows:
[AppConnect initWithDelegate:self];

NOTE: If the class that implements the AppConnectDelegate protocol is not your
AppDelegate, pass an instance of that class insteadof self.

5. Save the singleton instance of the AppConnect library.
For example, in HelloAppConnect, the AppDelegate object saves the singleton instance in the
appConnect property:
[self setAppConnect:[AppConnect sharedInstance]];

6. Call the AppConnect singleton’s method -startWithLaunchOptions:.
The appmust call this method from its AppDelegate’s method -
application:didFinishLaunchingWithOptions:, andmust pass along its launchOptions parameter
value.
For example, in HelloAppConnect:
[self.appConnect startWithLaunchOptions:launchOptions];

After this step, the AppConnect singleton is initializing. However, the app cannot yet use the singleton’s
instance properties. The app can:

l use the AppConnect class properties.

l use themethods of the AppConnect singleton object.

l register any NSURLProtocol subclasses that the app uses.
If your app uses AppTunnel with HTTP/S tunneling, be sure this NSURLProtocol registration occurs after
initializing the AppConnect library.

7. If your application supports UIScene, call themethod -sceneWillConnectToSessionWithOptions.
The appmust call themethod from its UISceneDelegate's method
-scene:willConnectToSession:options:, andmust pass along the UIScene connection options as
input parameter to the AppConnect instancemethod -sceneWillConnectToSessionWithOptions:.
Example
@implementation MySceneDelegate
- (void)scene:(UIScene *)scene willConnectToSession:(UISceneSession *)session
options:(UISceneConnectionOptions *)connectionOptions {
[self.appConnect sceneWillConnectToSessionWithOptions:connectionOptions];
}
@end

Initialize theAppConnect library

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 56

8. Indicate in the user interface that the app is initializing if the app requires the AppConnect singleton’s
instance properties to determine what to do. For example, use an activity indicator (spinner). Remove the
indication after the app is notified that the AppConnect singleton is ready.
One reason this indication is important involves when to display sensitive data. Do not show any sensitive
data until the AppConnect singleton is ready, because until that time, the app cannot determine whether it
is authorized. Only an authorized app should show sensitive data.

Wait for the AppConnect singleton to be ready

The app cannot use the AppConnect singleton’s instance properties until the ready property on the AppConnect
singleton is set to YES. It is set to YES when the callback method -appConnectIsReady: in your
AppConnectDelegate protocol implementation is called. The app can now access the instance properties, such as
authState and pasteboardPolicy, on the AppConnect singleton.

Before accessing any instance properties, use the isReady getter to make sure the properties are accessible.

For example, in HelloAppConnect, the -appConnectIsReady: callback method calls -updateLabels:. The
-updateLabels: method calls various methods that access the instance properties on the AppConnect singleton.
Because other methods also call -updateLabels:, themethod first checks the isReady property:

if ([self.appConnect isReady]) {

// Call methods that access instance properties.
}
else {

authInfoText = @"Ready: NO (AppConnect is not ready yet)";
policyInfoText = @"AppConnect is not ready yet";
configInfoText = @"AppConnect is not ready yet";

}

For details about the -appConnectIsReady: callback method and the ready property, see AppConnect ready
API details .

Optional: Specify app permissions and configuration in a plist file

If your app is an in-house app, you can specify default values for:

l the data loss prevention policies, such as the Open In policy

l the key-value pairs for your app-specific configuration

Specifically, you can provide a special plist file called AppConnect.plist as part of your in-house app that:

l specifies whether your app should be allowed by default to copy to the iOS pasteboard, use document
interaction (Open In andOpen From), and print.

l specifies app-specific configuration keys and default values.

Wait for theAppConnect singleton tobe ready

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 57

These default values are used by theMobileIron server to make it easier for the server administrator to set up your
app with the correct data loss prevention policies and app-specific configurations. Your app never reads the
AppConnect.plist.

When you include the AppConnect.plist in your app:

1. When an administrator uploads your in-house app to theMobileIron server, the server uses this plist file to
automatically create server policies that contain your specified data loss prevention policies and app-
specific configuration.

2. The administrator can then edit these policies.
For example:

l If one of your app-specific configuration keys requires a URL of an enterprise server, the administrator
provides that value.

l If the administrator requires stricter data loss prevention policies than your app’s default values, the
administrator changes the values.

3. The administrator then applies these policies to the appropriate set of devices.

4. When your app runs, it receives the data loss prevention policies and app-specific configuration by using
the AppConnect for iOS APIs, described in AppConnect for iOS API.
For example, to handle app-specific configurations, you use the config property (an NSDictionary object)
and the callback method -appConnect:configChangedTo:

5. If the administrator later changes the data loss prevention policies or app-specific configuration, your app
receives the updates by using the AppConnect for iOS APIs.

An example of an AppConnect.plist file as viewed in Xcode looks like the following:

To set up an AppConnect.plist file:

1. Create a plist file called AppConnect.plist.

2. Place it in the root directory of your app.

3. In the Root key of AppConnect.plist, place a key called bundleid with the type String, and set the value to
the bundle ID of your app.

4. In the Root key of AppConnect.plist, create two keys called policy and config, each with the type
Dictionary.

Optional: Specifyapppermissions andconfiguration inaplist file

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 58

5. In the policy dictionary, create keys called openin, openinwhitelist, openfrom,
openfromwhitelist,pasteboard, and print, each with the type String.

6. Set these keys’ values as given in the following table:

Key Possible values and meanings

openin • allow
Document interaction is allowed with all other apps.

• disable
Document interaction is not allowed.

• whitelist
Only documents in the openinwhitelist list can open documents
from your app.

• appconnect
Document interaction is allowed with all other AppConnect apps.

This value results in the app receiving a whitelist in the Open In policy
API. The whitelist contains the list of all currently authorized
AppConnect apps. You do not enter an openinwhitelist key in the
plist. See The openInPolicy and openInWhitelist properties on page 94.

openinwhitelist Semi-colon separated list of the bundle IDs of the apps with which
document interaction is allowed. This key is necessary when the
openin key has the value whitelist.

pasteboard • allow
Pasteboard interaction is allowed with all other apps. That is, this
option allows the device user to be able to copy content from your
app to the iOS pasteboard. Then, any app can copy from the
content from the pasteboard.

• disable
Pasteboard interaction is not allowed.

• appconnect
Pasteboard interaction is allowed only with other AppConnect
apps. That is, this option allows the device user to be able to copy
content from your app to the iOS pasteboard. Then, only other
AppConnect apps can copy the content from the pasteboard.

print • allow
Printing is allowed.

• disable
Printing is not allowed.

TABLE 7.APPCONNECT.PLIST KEYS AND VALUES

7. In the config dictionary, create keys as required for your app.

8. Optionally, add values for the keys. The values must be String types.

Optional: Specifyapppermissions andconfiguration inaplist file

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 59

NOTE: The value $USERID$ in the example tells Core to substitute the device user’s user ID for the
value. Other possible variables are $EMAIL$ and $PASSWORD$. Depending on the Core
configuration, custom variables called $USER_CUSTOM1$ through $USER_CUSTOM4$ are
sometimes available.

Using your ownUIApplication subclass

If your app uses its own subclass of UIApplication, do the following:

1. Derive your subclass from AppConnectUIApplication instead of UIApplication.
You will need the following import statement:
#import "AppConnect/AppConnectUIApplication.h"

2. Change the third argument of the call to UIApplicationMain() to the name of your subclass of
AppConnectUIApplication.
The third argument, the principalClassName argument, is the UIApplication subclass for the app.

3. When you override an UIApplicationmethod in your subclass, always invoke themethod implementation
of the superclass AppConnectUIApplication at the end of your method.
For example:
[super sendEvent:event]

If you do not invoke the superclass implementation, AppConnect features will not work in your app.

Using the AppConnect framework in a Swift app
l First time use of SDK in your Swift app

l Tasks for upgrading the SDK in your Swift app

First time use of SDK in your Swift app

The following procedure describes what to do to add the AppConnect framework to a Swift app.

NOTE: When youadd the AppConnect framework into your Xcode project, the Swift interfaces
corresponding to all the Objective-C APIs are automatically generatedby Xcode.

Before you begin

Do the tasks in Before you begin adding the AppConnect SDK to your app.

Procedure

1. Do the following steps from theGetting started task list:

a. Add AppConnect files and settings to your Xcode project.

b. Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed.

Usingyour ownUIApplication subclass

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 60

c. Register as a handler of the AppConnect URL scheme.

d. Declare the AppConnect URL schemes as allowed.

e. Add AppConnect-related entries to your Info.plist.

f. Optional: Specify app permissions and configuration in a plist file

2. Add a file namedmain.swift to your Xcode project, if you don’t already have one.

3. In main.swift, add the following code:

import Foundation
import AppConnect

UIApplicationMain(
CommandLine.argc,
UnsafeMutableRawPointer(CommandLine.unsafeArgv)

.bindMemory(
to: UnsafeMutablePointer<Int8>.self,
capacity: Int(CommandLine.argc)),

ACUIApplicationClassName,
NSStringFromClass(YourAppDelegate.self)

)

4. Add a bridging header file, if you don’t already have one, to your Xcode project. Name the file:
<app name>-Bridging-Header.h
Example:
HelloSwiftAppConnect-Bridging-Header.h

5. In the bridging header file, import AppConnect.h:
#import <AppConnect/AppConnect.h>

6. Go to your Xcode project's Build Settings for the Swift app target. UnderSwift Compiler - General, set
Objective-C Bridging Header to the bridging header file, including the path.

7. Create a class that implements the AppConnectDelegate protocol. Usually this class is also the
AppDelegate for your app.

8. Initialize the AppConnect class with your AppConnectDelegate, save the singleton instance of the
AppConnect library, and initialize the AppConnect library. Then wait for the initialization to complete.
The following code is an excerpt from HelloSwiftAppConnect in the file HSAppDelegate.swift:

import UIKit
import AppConnect

class HSAppDelegate: UIResponder, UIApplicationDelegate, AppConnectHandler {

var appConnect: AppConnect?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

First timeuseof SDK inyour Swift app

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 61

AppConnect.log(at: .status, message: "HelloAppConnect started")
self.startAppConnect(launchOptions: launchOptions)

return true
}

func startAppConnect(launchOptions: [AnyHashable : Any]? = [:]) {

AppConnect.initWith(self)
self.appConnect = AppConnect.sharedInstance()
self.appConnect!.start(launchOptions: launchOptions)

// Wait for appConnectIsReady() before using any of the AppConnect
// singleton’s instance properties. The app can use AppConnect class properties
// and methods of the AppConnect singleton object.
// If your app uses AppTunnel with HTTP/S tunneling, be sure to register any
// NSURLProtocol subclasses AFTER initializing the AppConnect library.

// Indicate in the user interface that the app is initializing if the app requires
// the AppConnect singleton’s instance properties to determine what to do. For example,
// use an activity indicator (spinner). Remove the indication after the app is notified
// that the AppConnect singleton is ready.
// One reason this indication is important involves when to display sensitive data. Do
// not show any sensitive data until the AppConnect singleton is ready, because until
// that time, the app cannot determine whether it is authorized. Only an authorized app
//should show sensitive data.

}

func appConnectIsReady(_ appConnect: AppConnect) {
// The app can now use the AppConnect singleton’s instance properties.

self.updateLabels()
}

}

If your application supports UIScene, call themethod sceneWillConnectToSession(with:).

The appmust call themethod from its UISceneDelegate's method scene(_:willConnectTo:options:), and
must pass along the UIScene connection options as input parameter to the AppConnect instancemethod
sceneWillConnectToSession(with:).

Example:

class MySceneDelegate: UIResponder, UIWindowSceneDelegate {
func scene(_ scene: UIScene, willConnectTo session: UISceneSession, options con-

nectionOptions: UIScene.ConnectionOptions){
AppConnect.sharedInstance()?.sceneWillConnectToSession(with: connectionOptions)

}
}

First timeuseof SDK inyour Swift app

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 62

Tasks for upgrading the SDK in your Swift app

If you are upgrading your Swift app from a previous version of the AppConnect for iOS SDK:

l Replace the AppConnect.framework bundle in the project folder.

l If you are using the AppConnectExtension.framework, replace the AppConnectExtension.framework
bundle in the project folder.

Troubleshooting

AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode.

Problem: Bitcode is enabled in build options, but should be disabled.

When you build your project, the following error occurs:
AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode. You must rebuild it
with bitcode enabled (Xcode setting ENABLE_BITCODE), obtain an updated library from the
vendor, or disable bitcode for this target. for architecture arm64

Solution:

Disable Bitcode in the project’s Build Options, for example:

Lexical or preprocessor issue when building your app

Problem: path missing in #import statement

When you build your project, the following compiler error occurs:
Lexical or Preprocessor Issue:
'AppConnect.h' file not found

Tasks for upgrading the SDK inyour Swift app

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 63

Solution

Be sure your #import statements include the path to AppConnect.h and other header files included in
AppConnect.framework. For example:

#import "AppConnect/AppConnect.h"

App cannot start because AppConnectResources.bundle not found

Problem

Your app crashes immediately on launch with the following error message:
[AppConnect:Error] AppConnect is unable to start because AppConnectResources.bundle was not
found in the app.
*** Terminating app due to uncaught exception 'AppConnect unable to start', reason:
'AppConnectResources.bundle was not found in the app

Solution

Make sure you have added AppConnectResources.bundle fromAppConnect.framework to your app.
See Add AppConnect files and settings to your Xcode project.

App crashes in call to -startWithLaunchOptions:

Problem

Your app crashes immediately on launch, in the call to the AppConnect singleton’smethod
-startWithLaunchOptions:.

When this error occurs, the AppConnect library:
• logs an error.

@"AppConnect error: AppConnect is unable to start because [UIApplication
sharedApplication] is not an instance AppConnectUIApplication."

• throws an NSException object. The object’s name method returns the string "AppConnect unable to start".
The object’s reason method returns the string "[UIApplication sharedApplication] is not an
instance of AppConnectUIApplication."

Solution

The call in main.m to the function UIApplicationMain is incorrect. Follow the instructions in Use
AppConnect’s UIApplication subclass.

Application error: Unable to communicate with the application

Problem

TheMobileIron client app displays this error message:

Solution

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 64

Application error: Unable to communicate with the application. Please contact the application developer.
The application’s bundle ID is <your application’s bundle ID>.

Solution

This error occurs when the AppConnect library tries to contact theMobileIron client app, but you did not
register the app as a handler for the AppConnect URL scheme.

SeeRegister as a handler of the AppConnect URL scheme on page 52.

App crashes due to uncaught ACPropertyAccessException

Problem

Your app crashes due to the following uncaught exception:
<Error>: *** Terminating app due to uncaught exception 'ACPropertyAccessException', reason:
'Method -[AppConnect_impl <method name>] called before recovering the first unlock key’

The AppConnect library throws this exception if the app accesses the instance properties on the AppConnect
singleton before the AppConnect singleton is ready.

Solution

Refactor your code tomake sure you check the AppConnect singleton getter isReady before accessing
any instance properties. If isReady is YES, you can access the instance properties. If isReady is NO, wait for
the AppConnect library to call the callbackmethod -appConnectIsReady: before accessing the
properties.

See AppConnect ready API details on page 82.

Solution

4

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 65

Developing Third-party Dual-mode Apps

l What is a dual-mode app?

l Dual-mode sample app

l Dual-mode app states

l Data encryption states

l High-level dual-mode app behavior

l Dual-mode API details

What is a dual-mode app?
If your AppConnect app is distributed from the Apple App Store, due to Apple App Store requirements, your app is
required to work as either:
• an AppConnect app for enterprise users
• a regular app for general consumers

Such an app is called a dual-mode app. Using one code base and APIs in the AppConnect for iOS SDK, the app
automatically decides when it launches whichmode to behave in:
• As an AppConnect app

The app supports the AppConnect features, such as authorization, data loss prevention, and secure file I/O.
MobileIron, through theMobileIron server, theMobileIron client app, and the AppConnect library, provides
AppConnect management.

• As a regular app
The app supports none of the AppConnect features. Furthermore, depending on the app, the functionality
available as a regular app can differ significantly from the functionality available as an AppConnect app. For
example, as a regular app, the app does not allow the user to access any sensitive enterprise data.
A typical reason that an app runs as a regular app is that AppConnect is not configured for the device on the
MobileIron server. An app also runs as a regular app if theMobileIron client app has not yet been installed on
the device.

AppConnect apps distributed from the Apple App Store must be dual-mode apps. If you are a third-party
app developer, you typically build apps for Apple App Store distribution. If you are an in-house app developer, your
apps are typically distributed from theMobileIron server.

IMPORTANT: If your app is not distributed from the Apple App Store andworks only as anAppConnect
app, ignore the dual-mode capability andassociatedAPIs.

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 66

Dual-mode sample app
A sample app that shows proper dual-mode app behavior is included with the AppConnect for iOS SDK zip file. The
app illustrates how and when to use the AppConnect for iOS APIs related to dual-mode behavior. It also illustrates
using AppConnect capabilities and secure data only when behaving as an AppConnect app.

The app is a simple note-taking app that allows the user to create a set of notes. The app uses themodel-view-
controller design pattern. Themodel classes are Notes and Policies. The view controllers are
NotesViewController, NoteDetailViewController, SettingsViewController and AuthMessageViewController. The
class DualModeAppDelegate is themain app controller.

The following table summarizes the files:

File Description

DualModeAppDelegate.h/m UIApplicationDelegate for the app

Notes.h/m • Handles application logic for adding and retrieving notes.
• Uses secure file I/O when required.

Policies.h/m • Implements AppConnectDelegate
• Handles the dual-mode state transitions.
• Keeps track of whether to use secure file

I/O and handle DLP policies.

NotesViewController.h/m Provides user interface for showing the list of notes.

NotesDetailViewController.h/m Provides user interface for showing the contents of an individual
note.

SettingsViewController.h/m Provides user interface for changing between AppConnect app
behavior and regular app behavior.

AuthMessageViewController.h/m Provides user interface for displaying authorization status
messages.

NOTE: Displaying the authorization status is only applicable
whenbehaving as anAppConnect app.

TABLE 8.DUAL-MODE SAMPLE APP FILES

Dual-mode app states
An appmust maintain a dual-mode state that indicates whether it is behaving as an AppConnect app or a regular
app. It stores this state persistently, so that when it next launches, it knows how to behave. The possible states
are:

Dual-mode sampleapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 67

• Undecided
The app has initialized for the first time and has not yet decided whether to run inAppConnect Mode orNon-
AppConnect Mode.

• AppConnect Mode
The app is running as an AppConnect app. It supports the AppConnect features, such as authorization, data
loss prevention, and secure file I/O.
InAppConnect Mode, the app can change state only toNon-AppConnect Mode, and only if the app user
requests the change using a user interface provided by the app.

• Non-AppConnect Mode
The app is running as a regular app.
InNon-AppConnect Mode, the app can change state only to AppConnect Mode, and only if the app user
requests the change using a user interface provided by the app.

• Pending AppConnect Mode
The app changes to this state if the device user explicitly requests a change from Non-AppConnect Mode to
AppConnect Mode using the app’s user interface. For example, device users in an enterprise sometimes
have installed and used an app before the enterprise requires it as an AppConnect app. In this state, the app is
waiting for a notification from the AppConnect library to find out whether MobileIron AppConnect components
aremanaging the app.

• AppConnect Not Available
AppConnect is not yet available on the device because theMobileIron client app is not yet installed on the
device. The app runs as a regular app. If theMobileIron client app is later installed, on subsequent launches the
app will decide whether to run inAppConnect Mode orNon-AppConnect Mode.
It is important for an app to delay its decision to run inAppConnect Mode orNon-AppConnect Mode until
after theMobileIron client app is installed. The reason is that users often launch the app before installing the
MobileIron client app. If the app decides onNon-AppConnect Mode, it can not leave that state without user
actions, such as using an app-provided user interface, or re-installing the app. TheAppConnect Not
Available state allows apps to automatically change toAppConnect Modewhen re-launched after the
MobileIron client app is installed.

The following diagram summarizes the state transitions that a dual-mode app implements. See High-level dual-
mode app behavior for more information about these state transitions.

Dual-modeappstates

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 68

Data encryption states
A dual-mode app encrypts its data only if all of the following are true:
• The app is inAppConnect Mode.
• Secure services are available.

Secure services are available only when the app’s authorization status is authorized.

• The secure file I/O policy requires secure file I/O.

Therefore, the appmaintains a data encryption state. It stores this state persistently, so that when it next launches,
it knows how to behave. The possible states are:
• Unencrypted

The app does not encrypt its data.
• Encrypted

The app encrypts its data.

The following diagram summarizes the state transitions that a dual-mode app implements. See High-level dual-
mode app behavior for information about these state transitions.

Dataencryption states

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 69

The state change toEncrypted state depends on three conditions: that the app is managed, that secure services
are available, and that the secure file I/O policy requires secure file I/O. Because the order of these notifications
can vary, upon receiving any of the notifications, the app checks if all three conditions are true yet.

For an example of checking whether to change to theEncrypted state, see the
DualMode sample app’s method -checkEncryptionState: in Policies.m.

Actions when changing to the Encrypted state

When changing to theEncrypted state, the app starts using secure file I/O APIs for new sensitive data. Also, the
app determines what to do with existing unencrypted data.

Consider these options for existing data:
• Secure existing sensitive data.

Your app can use the secure file I/O APIs to encrypt existing sensitive data. The dual-mode sample app
provides an example of this behavior.
MobileIron recommends this option for sensitive data. If device users upgrade from a previous version of your
app to a new dual-mode version, this option ensures that they do not lose data.
However, some data can remain unsecured. For example, user display preferences are typically not
sensitive information.

• Remove existing data.
Your app can remove existing data if doing so does not cause disruption to the app users.

Actions when changing to the Unencrypted state

When changing to theUnencrypted state, the app removes all sensitive data.

High-level dual-mode app behavior

When the app launches for the first time

When a dual-mode app launches for the first time, it does not know whether it is managed by MobileIron. It does the
following high-level steps:
1. Sets its initial dual-mode state toUndecided.
2. Sets its initial encryption state toUnencrypted.

Actionswhenchanging to the Encryptedstate

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 70

3. Checks whether AppConnect is available.
- If AppConnect is not available, the app changes its dual-mode state to AppConnect Not Available, and

continues as a regular app.
- If AppConnect is available, the app starts the AppConnect library.

4. Waits for a notification from the AppConnect library indicating whether MobileIron is managing the app.
5. Changes its dual-mode state toAppConnect Mode orNon-AppConnect Mode according to the notification.

- When changing toNon-AppConnect Mode, the app notifies the AppConnect library that it is retiring.
Normally, theMobileIron server decides when to retire an app. In this case, the app is retiring itself. Then
the app stops the AppConnect library. It behaves as a regular app.

- When changing toAppConnect Mode, the app behaves as an AppConnect app. However, the app
changes its data encryption state toEncrypted only if secure apps are available and the secure file I/O
policy requires secure file I/O. The app uses the data encryption state to determine whether it can use
secure file I/O APIs.

6. Stores both the dual-mode state and data encryption state persistently for the next time it launches.

NOTE: Formore details, including specific API calls for these steps, see API call sequence when the app
launches.

When an app subsequently launches

On subsequent launches, the app does the following high-level steps:
1. Gets the dual-mode state and data encryption state that it stored.
2. Checks the dual-mode state, and takes the following actions depending on the state.

a. AppConnect Mode: Starts the AppConnect library.
The app continues as an AppConnect app. It uses the data encryption state to determine whether it can use
secure file I/O APIs.

b. Non-AppConnect Mode: Continues as a regular app.
The app does not start the AppConnect library.

c. AppConnect Not Available: Checks whether AppConnect is available.
- If AppConnect is not available, the app stays inAppConnect Not Available, and continues as a

regular app.
- If AppConnect is available, the app starts the AppConnect library, and waits for a notification indicating

whether MobileIron is managing the app.
3. After receiving the notification, changes its dual-mode state toAppConnect Mode orNon-AppConnect

Mode according to the notification.
- When changing toNon-AppConnect Mode, the app notifies the AppConnect library that it is retiring.

Normally, theMobileIron server decides when to retire an app. In this case, the app is retiring itself. Then
the app stops the AppConnect library. It behaves as a regular app.

- When changing toAppConnect Mode, the app behaves as an AppConnect app. However, the app
changes its data encryption state toEncrypted only if secure apps are available and the secure file I/O
policy requires secure file I/O. The app uses the data encryption state to determine whether it can use
secure file I/O APIs.

4. Stores both the dual-mode state and data encryption state persistently for the next time it launches.

NOTE: Formore details, including specific API calls for these steps, see API call sequence when the app
launches.

Whenanappsubsequently launches

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 71

User requests to switch to Non-AppConnect Mode

A dual-mode app can provide a user interface that allows the device user to explicitly request that MobileIron no
longer manage the app. That is, the user requests a change toNon-AppConnect Mode. This user interface can be
useful if a device user leaves an enterprise, but still wants to use the app as a regular app.

Users are typically not aware of the term “AppConnect”. Therefore, the user interface should use other terminology.
The dual-mode sample app uses “Managed by MobileIron” in its user interface. Another possibility is “Secure
enterprisemode”.

When switching from AppConnect Mode toNon-AppConnect Mode, the app does the following high-level
steps:
1. Removes all its secure data, since regular apps do not have secure data.
2. Sets the data encryption state toUnencrypted, and stores it persistently for the next time it launches.
3. Notifies the AppConnect library that it is retiring.

Normally, theMobileIron server decides when to retire an app. In this case, the app is retiring itself.
4. Stops the AppConnect library.
5. Stores its dual-mode state, Non-AppConnect Mode, persistently for the next time it launches.
6. Continues running as a regular app.

For example, the app no longer enforces AppConnect policies or uses AppConnect features such as secure file
I/O.

NOTE: Formore details, including specific API calls for these steps, see API call sequence when user
requests Non-AppConnect Mode.

User requests to switch to AppConnect Mode

A dual-mode app can provide a user interface that allows the device user to explicitly request that MobileIron
manage the app. That is, the user requests a change toAppConnect Mode. For example, device users in an
enterprise sometimes have installed and used an app before the enterprise requires it as an AppConnect app.

Users are typically not aware of the term “AppConnect”. Therefore, the user interface should use other terminology.
The dual-mode sample app uses “Managed by MobileIron” in its user interface. Another possibility is “Secure
enterprisemode”.

When switching from Non-AppConnect Mode toAppConnect Mode, the app does the following high-level
steps:
1. Starts the AppConnect library.
2. Changes to thePending AppConnect Mode state.
3. Waits for a notification from the AppConnect library indicating that MobileIron is managing the app.
4. If the app receives the notification that MobileIron is managing the app, the app changes state toAppConnect

Mode, and persistently stores the new state. It begins behaving as an AppConnect app. For example, it
enforces DLP policies.
If secure services are available and the secure file I/O policy requires secure file I/O, the app changes the
encryption state toEncrypted. The app decides what to do with existing data as described in Actions when
changing to the Encrypted state.

User requests to switch toNon-AppConnectMode

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 72

NOTE: Formore details, including specific API calls for these steps, see API call sequence when user
requests AppConnect Mode.

Data loss prevention policy handling

When a dual-mode app changes from Non-AppConnect Mode toAppConnect Mode, it handles the AppConnect
data loss prevention policies that it supports. For example, if the app supports the Open In policy, based on the
policy it receives from the AppConnect library, it enables or disables any Open In user interfaces. When changing
toNon-AppConnect Mode, the app stops handling the AppConnect DLP policies.

Dual-mode API details
The AppConnect for iOS API provides properties andmethods that allow an app to behave as a dual-mode app.

The ACManagedPolicy enumeration

The ACManagedPolicy enumeration provides the possible managed policy values for the app

typedef enum {
ACMANAGEDPOLICY_UNKNOWN = 0, // The AppConnect library has not yet determined

// whether the app is managed by MobileIron.
ACMANAGEDPOLICY_UNMANAGED = 1, // The application is not currently managed by

// MobileIron.
ACMANAGEDPOLICY_MANAGED = 2, // The application is currently managed by

// MobileIron.
} ACManagedPolicy;

ThemanagedPolicy property

The read-only managedPolicy property on the AppConnect singleton contains an ACManagedPolicy value. The
value reflects the current status of themanaged policy for the app. Themanaged policy indicates whether
MobileIron is managing the app.

The app can access the managedPolicy property only after:
• It has called the -startWithLaunchOptions: method on the AppConnect singleton.
• It has received the -appConnectIsReady: callback, that sets the ready property on the AppConnect singleton

to YES.

NOTE: Currently, apps have no need to use the managedPolicy property. Dual-mode appsdependon
notifications to instigate changes to the app’s dual-mode state.

After your app starts the AppConnect library, the AppConnect library determines themanaged policy value, and
then:
1. updates the managedPolicy property.
2. calls the -appConnect:managedPolicyChangedTo: method to provide your app the current managed policy

value.

Data loss preventionpolicyhandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 73

Dual modemethods

A dual-mode app uses the followingmethods:
• The +shouldStartAppConnect: class method
• The -appConnect:managedPolicyChangedTo: callback method
• The stopmethod
• The retire method

The +shouldStartAppConnect: class method

+(BOOL)shouldStartAppConnect;

Dual mode apps call this method to determine whether to start the AppConnect library. Themethod returns YES if:
• theMobileIron client app is installed or
• theMobileIron client app had been installed but is now deleted, and the app had previously run in AppConnect

Mode

This method is necessary because users often launch an app before theMobileIron client app is installed. When an
app launches the first time, the app determines whether it is managed by MobileIron, and therefore determines
whether to run as an AppConnect app (AppConnect Mode) or a regular app (Non-AppConnect Mode). Once an
app has chosen one of thesemodes, it cannot change to the other mode without user actions, such as using an
app-provided user interface, or re-installing the app. Therefore, an app should call +shouldStartAppConnect: to
determine whether to delay choosing betweenAppConnect Mode andNon-AppConnect Mode until its next
launch. If +shouldStartAppConnect: returns NO, the app delays the choice and runs as a regular app. On the app's
next launch, if +shouldStartAppConnect: returns YES, it makes the choice to run as an AppConnect app without
any user action.

The -appConnect:managedPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect managedPolicyChangedTo:
(ACManagedPolicy)newManagedPolicy;

Implement this method only if your app is a dual-mode app.

When a change occurs to themanaged policy, the AppConnect library:
1. Sets the managedPolicy property on the AppConnect object to the new ACManagedPolicy value.
2. Calls the appConnect:managedPolicyChangedTo: method, which provides the new ACManagedPolicy value

in its parameter.

In this method, the app changes its dual-mode state toAppConnect Mode orNon-AppConnect Mode.

The stop method
-(void)stop;

The -stop method on the AppConnect singleton object:

Dualmodemethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 74

• shuts down the AppConnect library for the app.
• deallocates the AppConnect shared instance -- the sharedInstance static property on the AppConnect class.

The app calls the -stop method when it changes state toNon-AppConnect Mode.

If at a later time, the user requests to change toAppConnect Mode, the app restarts the AppConnect library.

NOTE: The appcancall the +logAtLevel:format: and +logAtLevel:format:args: classmethods and
get the +(ACLogLevel)logLevel property evenafter calling -stop:.When the AppConnect
library is stopped, the log level is always ACLOGLEVEL_STATUS.

See API call sequence when user requests AppConnect Mode for examples of:
• when to call the -stop method
• restarting the AppConnect library

The retire method
-(void)retire;

The -retire method on the AppConnect singleton object informs the AppConnect library that the app is retiring.
Normally, theMobileIron server decides when to retire an app. In this case, the app is retiring itself.

Calling -retire causes the AppConnect library to:
• clean up information it keeps about the app, including secure data.
• set its managedPolicy status for the app to ACMANAGEDPOLICY_UNKNOWN.

IMPORTANT: Anappmust call -retire and then immediately call -stopwhen it is changing toNon-
AppConnectMode.

For an example of when to call the -retire method, see API call sequence when user requests AppConnect
Mode.

API call sequence when the app launches

When a dual-mode app launches, it uses its dual-mode state and whether AppConnect is available to determine
how to proceed. It must determine whether it is managed by MobileIron, and therefore whether to behave as an
AppConnect app or a regular app.

NOTE: Dual-mode sample appcode snippets illustrating this behavior are from:
• File: Policies.m
• Methods: -initPrivateWithLaunchOptions: and -appConnect:managedPolicyChangedTo:

Specifically, when launching, the app does the following:
1. Gets its persisted dual-mode state and data encryption state. On the first launch, because no persisted states

exist, the app sets the dual-mode state toUndecided and the encryption state toUnencrypted.
2. Determines whether to start the AppConnect library.

The retiremethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 75

// Do not start the AppConnect library when the dual-mode state is Non-AppConnect Mode.
// Otherwise, start it only if shouldStartAppConnect() says you should.
if (DMS_NonACMode != _state && [AppConnect shouldStartAppConnect]) {

[AppConnect initWithDelegate:self];
_ac = [AppConnect sharedInstance];
[_ac startWithLaunchOptions:launchOptions];

}
else if (DMS_Undecided == _state) {

// Change the state to AppConnect Not Available.
// Persistently store the state, and continue as a regular app

[self setState:DMS_ACNotAvailable];
}

3. If the AppConnect library was not started, continue as a regular, non-AppConnect app.

In this case, if the dual-mode state had been persisted prior to this launch, it was eitherNon-AppConnect Mode,
AppConnect Not Available, or Pending AppConnect Mode. If it had not been persisted, the state changed
from Undecided toAppConnect Not Available.

4. If the AppConnect library was started and the persisted dual-mode state was AppConnect Mode:
- Wait for the -appConnectIsReady: callback method before accessing any instance properties on the

AppConnect singleton.
- Continue as an AppConnect app. Regarding data encryption, if the data encryption state is Encrypted, it

can use secure file I/O.
5. If the AppConnect library was started and the dual-mode state is AppConnect Not Available, Undecided, or

Pending AppConnect Mode, wait for the AppConnect library to call the
-appConnect:managedPolicyChangedTo: callback method.
The state change depends on the value of the newManagedPolicy parameter in the callback method:
- If the value ACMANAGEDPOLICY_MANAGED, the app changes toAppConnect Mode, and persistently stores

the new dual-mode state.
The app begins behaving as an AppConnect app. For example, it handles DLP policies, and when the data
encryption state changes toEncrypted, it starts using secure file I/O

- If the value ACMANAGEDPOLICY_UNMANAGED, the app changes toNon-AppConnect Mode, and persistently
stores the new dual-mode state.
It calls -retire, and then stops the AppConnect library:

[_ac retire];
[_ac stop]:
_ac = nil;

The app begins behaving as a regular, non-AppConnect app.

API call sequence when user requests Non-AppConnect Mode

If the device user, through the app’s user interface, requests to change toNon-AppConnect Mode, the app
makes the change.

API call sequencewhenuser requests Non-AppConnectMode

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 76

NOTE: Dual-mode sample appcode snippets illustrating this behavior are from:
• File: Policies.m
• Methods: -switchToNonACMode:

The app does the following:
1. Performs its usual retire actions, such as removing all its sensitive data, since regular apps do not have

sensitive data.
2. Sets the data encryption state toUnencrypted, since regular apps do not encrypt data. It persistently saves

the state.
3. Persistently saves its dual-mode state as Non-AppConnect Mode.
4. Calls the -retire method on the AppConnect singleton object, and then stops the AppConnect library.

[_ac retire];
[_ac stop]:
_ac = nil;

5. Continues as a regular, non-AppConnect app.

When the app next launches, it checks its dual-mode state. Because the state is Non-AppConnect Mode, the
app does not start the AppConnect library.

API call sequence when user requests AppConnect Mode

If the device user, through the app’s user interface, requests to change toAppConnect Mode, the app attempts to
make the change.

NOTE: Dual-mode sample appcode snippets illustrating this behavior are from:
• File: Policies.m
• Methods: -attemptSwitchToACMode: and -appConnect:managedPolicyChangedTo:

The app does the following:
1. Changes to thePending AppConnect Mode state, and persistently stores the state.
2. Starts the AppConnect library, using -startWithLaunchOptions:.

[AppConnect initWithDelegate:self];
_ac = [AppConnect sharedInstance];
[_ac startWithLaunchOptions:nil];

NOTE: When restarting the AppConnect library, the parameter passed to
-startWithLaunchOptions: is nil.

3. Waits for the AppConnect library to call -appConnect:managedPolicyChangedTo:.

When -appConnect:managedPolicyChangedTo: is called:
• If the newManagedPolicy parameter has the value ACMANAGEDPOLICY_UNMANAGED:

The app changes its dual-mode state back toNon-AppConnect Mode. The app persistently stores the state.
The app calls -retire, and then stops the AppConnect library:

API call sequencewhenuser requests AppConnectMode

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 77

[_ac retire];
[_ac stop]:
_ac = nil;

The app notifies the user of the failure to change to AppConnect Mode. It continues behaving as a regular,
non-AppConnect app.

• If the newManagedPolicy parameter has the value ACMANAGEDPOLICY_MANAGED:
The app changes its dual-mode state toAppConnect Mode. The app persistently stores the state.
If secure services are available, and the secure file I/O policy is required, the app sets the data encryption state
toEncrypted. The app decides what to do with existing data. For example, the DualMode sample app encrypts
all its existing notes. As the app continues, it checks the data encryption state to determine whether to use
secure file I/O APIs.
Also, when changing toAppConnect Mode, the app checks if the authorization status is retired. If it is, the
app performs its usual retire actions, such as removing all its sensitive data.
Finally, the app notifies the user of the successful change toAppConnect Mode. It continues behaving as an
AppConnect app.

API call sequencewhenuser requests AppConnectMode

5

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 78

AppConnect for iOS API

l The AppConnect interface

l AppConnect-related notifications

l Multithread support

l AppConnect ready API details

l Authorization API details

l App-specific configuration API details

l Pasteboard policy API details

l Drag and drop policy API details

l Open In policy API details

l Open From policy API details

l Print policy API details

l Logmessages API details

l Secure services API details

l Version property

l Getting upload status for tunneled HTTP/S requests

l Caching tunneled URL responses

l AppConnectUIApplication class

l Encryption keys for custom cryptography

l Securing sensitive data such as encryption keys

l iOS active state change notifications due to AppConnect control switches

l Secure file I/O API details

l Sharing secure files from an extension

l AppTunnel diagnostic API details

l UIScene support

Related topics

l Developing Third-party Dual-mode Apps

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 79

The AppConnect interface
The AppConnect interface provides your app’s primary interactions with the AppConnect library. The AppConnect
interface declares static methods that your app uses to initialize its use of the AppConnect library and get the
singleton instance of the AppConnect object. For details, see:
• Use AppConnect’s UIApplication subclass
• Initialize the AppConnect library.

The AppConnect interface also declares the properties andmethods your app uses to interact with the AppConnect
library. However, the app cannot access the instance properties on the AppConnect singleton until the
AppConnect singleton has completed its initialization. For details about checking when the AppConnect singleton
is ready, see:
• Wait for the AppConnect singleton to be ready
• AppConnect ready API details

For details each of the AppConnect interface’s properties andmethods, see:
• Authorization API details
• App-specific configuration API details
• Pasteboard policy API details
• Drag and drop policy API details
• Open In policy API details
• Print policy API details
• Logmessages API details
• Secure services API details
• Version property
• Caching tunneled URL responses
• Encryption keys for custom cryptography
• iOS active state change notifications due to AppConnect control switches

NOTE: The AppConnect interface also providesmethods specifically for dual-mode apps. These
methods are described inDeveloping Third-party Dual-mode Apps.

AppConnect-related notifications
Your app receives notifications about changes to:
• the ready status of the AppConnect singleton
• the user’s authorization status
• app-specific configuration
• data loss prevention policies
• secure services status
• the secure file I/O policy
• the log level
• app state changes due to AppConnect events

Upon receiving a notification, your app:

TheAppConnect interface

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 80

1. Makes appropriate changes to its logic, display, and data.
2. In most cases, calls an API to inform the AppConnect library about its success or failure in making the

changes.

Notificationmethods in the AppConnectDelegate protocol

Your app receives notifications by implementing the AppConnectDelegate protocol.

Your appmust implement the notification callback methods for:
• handling the change to the ready status of the AppConnect singleton:

-appConnectIsReady:

• handling authorization status changes:

-appConnect:authStateChangedTo:withMessage:

Your app optionally implements the notification callback methods for handling app-specific configuration changes,
data loss prevention policy changes, secure services changes, log level changes and changes to the app state due
to AppConnect events:

-appConnect:configChangedTo:

-appConnect:openInPolicyChangedTo:newWhitelist:

-appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

-appConnect:openURLAttemptedWhenUnauthorizedForURL:

-appConnectAttemptedDragAndDropToNonAppConnectApp:

-appConnect:pasteboardPolicyChangedTo:

-appConnect:copyAttemptedWhenUnauthorized:

-appConnect:printPolicyChangedTo:

-appConnect:secureServicesAvailabilityChangedTo:

-appConnect:secureFileIOPolicyChangedTo:

-appConnect:logLevelChangedTo:

-applicationWillResignActiveForAppConnect:

-applicationDidBecomeActiveFromAppConnect:

You implement only the optional callback methods that your application needs. For example, if your application
does not copy content to the iOS pasteboard, do not implement -appConnect:pasteboardPolicyChangedTo:.

Notification acknowledgments

Your appmust inform the AppConnect library of your app’s success or failure in applying changes it receives in
notifications. Depending on the type of notification, your app calls one of the followingmethods of the AppConnect
singleton object:

Notificationmethods in theAppConnectDelegateprotocol

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 81

-authStateApplied:message:

-configApplied:message:

-openInPolicyApplied:message:

-pasteboardPolicyApplied:message:

-printPolicyApplied:message:

-secureFileIOPolicyApplied:message:

NOTE: No notification acknowledgments exist for ready status notifications, log level notifications, or
notifications of app state changes due to AppConnect events.

Eachmethod takes a parameter that is an ACPolicyState enumeration value:

typedef enum {
ACPOLICY_UNSUPPORTED = 0, // The policy is not supported by this application
ACPOLICY_APPLIED = 1, // The policy was applied successfully
ACPOLICY_ERROR = 2, // An error occurred applying the policy

} ACPolicyState;

Typically, you pass either ACPOLICY_APPLIED or ACPOLICY_ERROR. If you do not implement one of the optional
notificationmethods, the AppConnect library behaves as if your app had passed ACPOLICY_UNSUPPORTED.

Multithread support
Regardingmultithread support:
• The AppConnect library is thread-safe. Your app can concurrently call all methods of the AppConnect singleton

object frommultiple threads without deadlocking, crashing, corrupting data, or providing unpredictable results.
Also on concurrent calls, themethods will not block for a long time.

• Calls that the AppConnect library makes to AppConnectDelegatemethods are dispatched to the delegate on
themain thread.

• Each secure file API has the samemultithreading capabilities, if any, that the corresponding unsecured API
has. This correspondence is true for the Posix-style APIs, themethods of ACFileHandle, and the Objective-C
category methods that the AppConnect SDK provides. For example, if a POSIX function locks a file, the
corresponding secure function honors that file locking. Refer to the documentation of the corresponding
unsecured API for specifics. In general, however, use standard practices to serialize access to a file from
multiple threads.

Related topics
• The AppConnect interface
• AppConnect-related notifications
• Secure file I/O API details

Multithreadsupport

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 82

AppConnect ready API details

The ready property

The AppConnect for iOS API provides a read-only property on the AppConnect singleton called ready:

@property (nonatomic, readonly, getter=isReady) BOOL ready;

This property and its getter method isReady indicate whether the AppConnect singleton is ready for the app to
access the singleton’s instance properties. The app can access the instance properties only if isReady is YES. If
isReady is NO, an attempt to access an instance property throws an exception. The thrownNSException object
has the name "ACPropertyAccessException".

When the app calls the AppConnect singleton’s method -startWithLaunchOptions:, the value of ready is NO.
When the AppConnect library calls the callback method
-appConnectIsReady:, the value changes to YES. The value remains YES for the life of the app.

Impacted instance properties

When isReady is NO, accessing the following instance properties throw an exception:

@property (nonatomic, readonly) ACManagedPolicy managedPolicy;

@property (nonatomic, readonly) ACAuthState authState;

@property (unsafe_unretained, nonatomic, readonly) NSString *authMessage;

@property (nonatomic, readonly) ACPasteboardPolicy pasteboardPolicy;

@property (nonatomic, readonly) ACOpenInPolicy openInPolicy;

@property (unsafe_unretained, nonatomic, readonly) NSSet *openInWhitelist;

@property (nonatomic, readonly) ACPrintPolicy printPolicy;

@property (nonatomic, readonly) ACSecureFileIOPolicy secureFileIOPolicy;

@property (unsafe_unretained, nonatomic, readonly) NSDictionary *config;

NOTE: You canaccess the instance property secureServicesAvailability at any time.

The -appConnectIsReady: callbackmethod

You are required to implement this method, which is in the AppConnectDelegate protocol:
-(void)appConnectIsReady:(AppConnect *)appConnect;

The AppConnect library calls this method when the value of the ready property has changed. The AppConnect
library calls this method one time after the app calls the AppConnect singleton’s method -
startWithLaunchOptions:. The value of ready is changed to YES, whichmeans that the instance properties on
the AppConnect singleton are initialized and ready for the app to access.

AppConnect readyAPI details

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 83

In the -appConnectIsReady: method:
• Access the instance properties on the AppConnect singleton.
• Update the app with the current authorization status, data loss prevention policies, secure file I/O policy, and

configuration key-value pairs.
• Remove the user interface indication that informed the user that the app was initializing.

NOTE: Always update the app’s policies andconfiguration status in the -appConnectIsReady:method,
which the AppConnect library calls every time the app is launched. The AppConnect library
calls other callbackmethods, suchas the callbackmethods for authorization, data loss
prevention policies, andconfiguration, only if the status has changed. Therefore, you canalways
expect all these callbackmethods on the first launchof the app. However, subsequent launches
often result in the AppConnect library calling only the -appConnectIsReady:method.

Pseudocode for -isAppConnectReady:

The following pseudocode illustrates how to use the isReady getter and the
-isAppConnectReady: callback method. In this example:
• The same class implements the UIApplicationDelegate protocol and the AppConnectDelegate protocol.
• The class has an instance property called appConnect for saving the AppConnect singleton.

- (void)applicationDidBecomeActive:(UIApplication *)application
{

if ([self.appConnect isReady]) {
[self updateWithAppConnectPolicies];

}
else {

[self presentAppInitializingWithMessage:NSLocalizedString
(@"Authorizing. Please wait...", nil)];

}
}

-(void)appConnectIsReady:(AppConnect *)appConnect {
[self updateWithAppConnectPolicies];
[self dismissAppInitializing];

 }

-(void)updateAppConnectPolicies {

// Check isReady since this method can be called from methods besides
// -appConnectIsReady:

 if ([appConnect isReady]) {
 // Check the app’s authorization, policies, and configuration status
// and update the app appropriately.

 }
}

Pseudocode for -isAppConnectReady:

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 84

Authorization API details
The AppConnect for iOS API provides properties andmethods that allow an app to handle the device user’s
authorization status for using the app. For an overview of this feature, see Authorization .

The ACAuthState enumeration

The ACAuthState enumeration provides the possible authorization statuses for the device user to use the
application:

typedef enum {
ACAUTHSTATE_UNAUTHORIZED = 0, // The user is not authorized to access sensitive

// data or views in this app.
ACAUTHSTATE_AUTHORIZED = 1, // This is the only state in which the user is

// authorized to access sensitive data or views.
ACAUTHSTATE_RETIRED = 2, // The app must erase all sensitive data,

// including any stored authentication
// credential.

} ACAuthState;

The authState and authMessage properties

The following read-only properties on the AppConnect singleton relate to authorization:

Property Description

authState An ACAuthState value that indicates the current authorization status of the device
user for using the app.

authMessage A string value that indicates the reason for the current authorization status.

TABLE 9.AUTHORIZATION PROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the authState and the authMessage

properties.
While waiting, indicate in the user interface that the app is initializing if the app requires the AppConnect
singleton’s instance properties to determine what to do. For example, use an activity indicator (spinner).
One reason this indication is important involves when to display sensitive data. Do not show any sensitive data
until the AppConnect singleton is ready, because until that time, the app cannot determine whether it is
authorized. Only an authorized app should show sensitive data.

After the -appConnectIsReady: callback method is called, check the value of the authState property. Do the
following:
• Remove the indication that the app is initializing.
• If the status is not ACAUTHSTATE_AUTHORIZED, do not allow the user to see or access sensitive data.
• If the status is not ACAUTHSTATE_AUTHORIZED, display the authMessage string.

AuthorizationAPI details

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 85

• If the status is ACAUTHSTATE_AUTHORIZED, allow the user to see and access sensitive data. Typically, the app
does not display the authMessage string when the status is ACAUTHSTATE_AUTHORIZED.

On any updates to authorization status while the app is running, the AppConnect library updates the properties, and
then calls the -appConnect:authStateChangedTo:withMessage: method.

Authorizationmethods

Your app uses the followingmethods to receive updates to the authorization status and report how the app handled
the updates.
• The -appConnect:authStateChangedTo:withMessage: callback method
• The -authStateApplied:message: acknowledgment method
• The -displayMessage: method

The -appConnect:authStateChangedTo:withMessage: callback method

You are required to implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *) appConnect
authStateChangedTo:(ACAuthState)newAuthState
withMessage:(NSString *)message;

When a change has occurred to the user’s authorization status, the AppConnect library:
1. Sets the authState property on the AppConnect object to the new ACAuthState value.
2. Sets the authMessage property on the AppConnect object to a string explaining the new authorization status.
3. Calls the -appConnect:authStateChangedTo:withMessage: method.

Themethod provides the following in its parameters:
• the new authorization status as a ACAuthState value
• an NSString, which is amessage explaining the new authorization status

Your app then handles the new status as follows:

New status App actions

ACAUTHSTATE_
UNAUTHORIZED

• Exits any sensitive part of the application.
• Stops allowing the user to access sensitive data and views.
• Displays themessage received in the callback method that explains the

authorization status change.
• Calls the -authStateApplied:message: method.

ACAUTHSTATE_AUTHORIZED • Allows the user to access sensitive data and views.
• Calls the -authStateApplied:message: method.

ACAUTHSTATE_RETIRED • Exits any sensitive part of the application.
• Deletes all sensitive data, including any stored authentication credentials,

data in files, keychain items, pasteboard data, and any other persistent

TABLE 10.AUTHORIZATION STATUS HANDLING

Authorizationmethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 86

New status App actions

storage.
• Displays themessage received in the callback method that explains the

authorization status change.
• Calls the -authStateApplied:message: method.

TABLE 10.AUTHORIZATION STATUS HANDLING (CONT.)

NOTE: The AppConnect library cancall the callbackmethodwhenonly the explanatory string, but not
the authorization status, has changed. When the status is ACAUTHSTATE_UNAUTHORIZED or
ACAUTHSTATE_RETIRED, themessage typically contains a new reason for the status. Display the
newmessage.

The -authStateApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)authStateApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the new authorization status.

Pass the value ACPOLICY_APPLIED if the app successfully handled the new status. Otherwise, pass the value
ACPOLICY_ERROR. Passing the value ACPOLICY_UNSUPPORTED is not allowed, because every appmust handle
authorization status changes.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the new authorization status. The string
is reported in theMobileIron server log files.

The -displayMessage: method

The followingmethod on the AppConnect singleton causes theMobileIron client app to display the current
authorization status message:

-(void)displayMessage:(NSString *)message withCompletion:(void(^)(BOOL success))completion;

In most cases, your production app does not use this method. Your production app is responsible for displaying the
message that it receives in the notificationmethod for an authorization status change. Your app controls exactly
when and how to display the string.

However, you can temporarily use this method when your app is under development. For example, when the status
changes to ACAUTHSTATE_UNAUTHORIZED, your appmust exit all sensitive views. This requirement canmake
displaying themessage difficult, depending on the application. In this case, use the -displayMessage: method
until you are able to fully develop your app.

The -authStateApplied:message:acknowledgmentmethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 87

App-specific configuration API details
The AppConnect for iOS API provides properties andmethods that allow an app to receive app-specific
configuration from theMobileIron server. For an overview of this feature, see Configuration specific to the app.

The config property

The read-only config property on the AppConnect singleton is an NSDictionary object. It contains the current
key-value pairs for the app-specific configuration.

Whenever changes to the key-value pairs occur, the AppConnect library:
1. updates the config property
2. calls the -appConnect:configChangedTo: method to provide your app the current configuration.

When your app launches:
• Get the singleton AppConnect object and call its

-startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the config property.
• After the -appConnectIsReady: callback method is called, check the value of the config property. It contains

the key-value pairs, if any, that are configured on theMobileIron server for the app. If no key-value pairs are
configured, the config property is an NSDictionary object with no entries.

• Apply the configuration according to your application’s requirements and logic.

App-specific configurationmethods

Your app uses the followingmethods to receive app-specific configuration updates and report how the app handled
the updates.

The -appConnect:configChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect configChangedTo:(NSDictionary *)newConfig;

Implement this method only if your app uses app-specific configuration key-value pairs that theMobileIron server
administrator configures on the server Admin Portal.

When a change has occurred to the app-specific configuration on theMobileIron server, the AppConnect library:
1. Sets the config property on the AppConnect object to the new NSDictionary value.
2. Calls the -appConnect:configChangedTo: method, which provides the new NSDictionary value in its

parameter.

Your app then:
• applies the new configuration according to your application’s requirements and logic.
• calls the -configApplied:message: method.

App-specific configurationAPI details

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 88

The -configApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)configApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the app-specific configuration

updates.
Pass the value ACPOLICY_APPLIED if the app successfully handled the updates. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support app-specific
configuration. If you do not implement the -configApplied:message method, the AppConnect singleton
behaves as if you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the app-specific configuration updates.
The string is reported in theMobileIron server log files.

Pasteboard policy API details
The AppConnect for iOS API provides properties andmethods that allow an app to handle its pasteboard policy as
determined by theMobileIron server. For an overview of this feature, see Data loss prevention policies.

This policy determines whether your app is allowed to copy content to the pasteboard. This policy does not impact
whether your app is allowed to paste content from the pasteboard into your app.

The ACPasteboardPolicy enumeration

The ACPasteboardPolicy enumeration provides the possible pasteboard statuses for the app:

typedef enum {
ACPASTEBOARDPOLICY_UNAUTHORIZED = 0, // The application cannot write data

// to the pasteboard.
// The AppConnect library enforces this status
// and ensures that the app cannot modify the
// pasteboard contents.

ACPASTEBOARDPOLICY_AUTHORIZED = 1, // The application may write data to the pasteboard
// which gets shared among all apps.
// (Both AppConnect and non-AppConnect apps
// can read this data).

ACPASTEBOARDPOLICY_SECURECOPY = 2 // The application may write data to the general
// pasteboard which is shared with authorized
// AppConnect apps.
// The AppConnect library implements the underlying
// technology so that the data written to the
// general pasteboard by one AppConnect app is only

The -configApplied:message:acknowledgmentmethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 89

// readable by authorized AppConnect apps.
} ACPasteboardPolicy;

Handle the pasteboard policy status as follows:
• Both ACPASTEBOARDPOLICY_AUTHORIZED and ACPASTEBOARDPOLICY_SECURECOPY indicate that copying

content to the pasteboard is allowed. The AppConnect library handles making sure all apps or only AppConnect
apps can paste the data. When the value is ACPASTEBOARDPOLICY_SECURECOPY, the AppConnect library
encrypts the data copied to the pasteboard, and decrypts the data when it is pasted to another AppConnect
app.

• The status ACPASTEBOARDPOLICY_UNAUTHORIZED indicates that writing data to the pasteboard is not allowed.
The AppConnect library enforces the status ACPASTEBOARDPOLICY_UNAUTHORIZED. Therefore, with this status,
even if you use an API to write to the pasteboard, the data is not written.
Exceptions to this rule exist. For some iOS APIs, such as QLPreviewController, it is not possible to prevent
data from being written to the pasteboard. If your app uses such APIs, when the status is
ACPASTEBOARDPOLICY_UNAUTHORIZED, change your app’s behavior so that it does not use that API. However,
for some apps, changing the behavior is not possible, due to, for example, an unacceptable degradation in the
app’s capabilities. In that case, your app should indicate that it does not support the pasteboard policy, as
described in The -pasteboardPolicyApplied:message: acknowledgment method.

Although the AppConnect library does not allow writing data to the pasteboard, your app should disable special
user interfaces, if any, that it uses for copying content to the pasteboard. By disabling such user interfaces, your
app does not give the end user the impression that copying is possible when the AppConnect library has disabled
it.

Impact on the pasteboard policy of secure services availability

The pasteboard policy ACPASTEBOARDPOLICY_SECURECOPY depends on secure services being available. If secure
services are not available and the pasteboard policy is ACPASTEBOARDPOLICY_SECURECOPY:
• Writing content to the pasteboard (copying) fails. No data is written.
• Reading content from the pasteboard (pasting) reads unsecured content, if any.

The pasteboardPolicy property

The read-only pasteboardPolicy property on the AppConnect singleton contains an ACPasteboardPolicy value.
The value reflects the current status of the pasteboard policy for the app.

The AppConnect library enables or disables the app’s ability to copy content to the pasteboard depending on the
pasteboardPolicy value:
• Copying is enabled for ACPASTEBOARDPOLICY_AUTHORIZED.
• Copying is disabled for ACPASTEBOARDPOLICY_UNAUTHORIZED.
• Copying is enabled for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property has

the value ACSECURESERVICESAVAILABILITY_AVAILABLE.
• Copying is disabled for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property has

the value ACSECURESERVICESAVAILABILITY_UNAVAILABLE.

When your app launches:

Impacton thepasteboardpolicyof secure services availability

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 90

1. Get the singleton AppConnect object and call its
-startWithLaunchOptions: method.

2. Wait for the -appConnectIsReady: callback method before accessing the pasteboardPolicy property.
3. After the -appConnectIsReady: callback method is called, depending on the pasteboardPolicy value,

disable or enable special user interfaces, if any, that the app uses for copying content to the pasteboard.
Although the AppConnect library enables or disables writing data to the pasteboard, your app should not give
the end user the impression that copying is possible when the AppConnect library has disabled it.

Whenever the policy changes, the AppConnect library:
1. updates the pasteboardPolicy property.
2. calls the -appConnect:pasteboardPolicyChangedTo: method to provide your app the current pasteboard

policy.

Pasteboard policy methods

Your app uses the followingmethods to receive pasteboard policy updates and to report how the app handled the
updates.
• The -appConnect:pasteboardPolicyChangedTo: callback method
• The -pasteboardPolicyApplied:message: acknowledgment method
• The -appConnect:copyAttemptedWhenUnauthorized: callback method

The -appConnect:pasteboardPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect pasteboardPolicyChangedTo:
(ACPasteboardPolicy)newPasteboardPolicy;

Implement this method only if your app copies content to the pasteboard. This policy does not impact whether your
app is allowed to paste content from the pasteboard into your app.

When a change has occurred to the pasteboard policy on theMobileIron server, the AppConnect library:
1. Sets the pasteboardPolicy property on the AppConnect object to the new ACPasteboardPolicy value.
2. Disables or enables copying to the pasteboard as follows:

- Enables copying for ACPASTEBOARDPOLICY_AUTHORIZED.
- Disables copying for ACPASTEBOARDPOLICY_UNAUTHORIZED.
- Enables copying for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property

has the value ACSECURESERVICESAVAILABILITY_AVAILABLE.
- Disables copying for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property

has the value ACSECURESERVICESAVAILABILITY_UNAVAILABLE.
3. Calls the appConnect:pasteboardPolicyChangedTo: method, which provides the new ACPasteboardPolicy

value in its parameter.

Your app then:
• Disables or enables special user interfaces, if any, that the app uses for copying content to the pasteboard.

Although the AppConnect library enables or disables writing data to the pasteboard, your app should not give
the end user the impression that copying is possible when the AppConnect library has disabled it.

• calls the -pasteboardPolicyApplied:message: method.

Pasteboardpolicymethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 91

The -pasteboardPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)pasteboardPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the pasteboard policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support copying content to the
pasteboard. If you do not implement the -pasteboardPolicyApplied:message method, the AppConnect
singleton behaves as if you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the pasteboard policy update. The
string is reported in theMobileIron server log files.

The -appConnect:copyAttemptedWhenUnauthorized: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect copyAttemptedWhenUnauthorized:
(ACPasteboardPolicy)pasteboardPolicy;

This method is useful because when the pasteboard policy is ACPASTEBOARDPOLICY_UNAUTHORIZED, iOS
behavior still causes the copy button to display. An end user who taps the copy button sometimes expects that text
has been copied. You can implement this method to alert the end user that no text has been copied.

For example:

-(void) appConnect:(AppConnect *)appConnect copyAttemptedWhenUnauthorized:
(ACPasteboardPolicy)pasteboardPolicy {

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Copy not allowed"
message:@"You are not allowed to copy from this app."
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];

[alert show];
}

Drag and drop policy API details
The drag and drop policy on theMobileIron server specifies whether AppConnect apps can drag content to all other
apps, to only other AppConnect apps, or not at all.

The AppConnect library enforces this policy. When the policy allows dragging content to only other AppConnect
apps, the AppConnect library notifies your app when the device user attempts to drag content to a non-AppConnect
app. Your app can then notify the device user of the situation.

The -pasteboardPolicyApplied:message:acknowledgmentmethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 92

Drag and drop policy method

The AppConnect library enforces theMobileIron server’s drag and drop policy. Therefore, your app is not aware of
the policy setting. Therefore, no enumeration describing the settings is necessary, and you do not have to handle
the setting or changes to the setting in your app.

However, when the policy allows dragging content to only other AppConnect apps, a device user can still attempt
to drag content to non-AppConnect apps. That attempt fails. In this situation, the AppConnect library calls a
callback method.

You optionally implement this method, which is in the AppConnectDelegate protocol:

- (void)appConnectAttemptedDragAndDropToNonAppConnectApp:(AppConnect *)appConnect;

You can implement this method to alert the end user that dragging content to non-AppConnect apps is not allowed.

For example:

-(void) appConnect:(AppConnect *)appConnect appConnectAttemptedDragAndDropToNonAppConnectApp:
{

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Drag and drop not allowed"
message:@"You are not allowed to drag content from this app to unsecured apps."
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];

[alert show];
}

Open In policy API details
The AppConnect for iOS API provides properties andmethods that allow an app to handle its Open In policy as
determined by theMobileIron server. For an overview of this feature, see Data loss prevention policies.

Specifically, when an app is allowed to useOpen In, it can share a document with another app, or an app’s
extension, or the native iOS mail app. This capability:
• is usually presented to the user as anOpen Inmenu item.
• includes sending documents or document portions by encoding them in custom URLs handled by other

applications.

Internally, an app uses the UIDocumentInteractionController, QLPreviewController (which in turn uses
UIDocumentInteractionController), and UIActivityViewController classes. The class which the app uses impacts
Open In handling as described in Overview of Open In handling.
• Overview of Open In handling
• The ACOpenInPolicy enumeration
• The openInPolicy and openInWhitelist properties
• Open In policy methods
• Info.plist key related to the Open In policy

Draganddroppolicymethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 93

Overview of Open In handling

The behavior of the AppConnect library, and the actions your app takes, depend on theOpen In policy status.

The possible status values are:
• ACOPENINPOLICY_AUTHORIZED -- The application is allowed to useOpen In.
• ACOPENINPOLICY_UNAUTHORIZED -- The application is not allowed to useOpen In.
• ACOPENINPOLICY_WHITELIST -- The application is allowed to useOpen In to send documents only to apps in

the whitelist. To put the iOS native email app in the whitelist, the whitelist must contain both of these bundle
IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

IMPORTANT:
• Regardless of the Open In policy status, when an appmakes anOpen In request, iOS always displays all the

apps that support the document type.
• Do not use UIActivityViewController to perform Open In functionality. Because of iOS implementation, the

AppConnect library cannot determine which app the end user selects, and therefore, whether it is in the
whitelist. To ensure security, the AppConnect library does not allow Open In to any app when theOpen In
policy is ACOPENINPOLICY_WHITELIST and the class used is UIActivityViewController.

The following table summarizes the behavior of the AppConnect library and the actions your app takes for each
Open In status. It assumes you use UIDocumentInteractionController, and do not use UIActivityViewController.

Open In
status

AppConnect library actions Your app’s actions

AUTHORIZED The AppConnect library performsno actionsonOpen In
behavior.

Enable user interfaces, if any, that give the user
the option to useOpen In.

For example, if your app presents amenu item for
Open In, themenu item should be enabled.

UNAUTHORIZED If a user tapson anyof the apps:
• the AppConnect library substitutesa dummy file with a

mangled name. Therefore, the target app cannot open the
file. Target app error handling varies. For example, some
appsdisplayan error pop-up.

• The AppConnect library also calls this callbackmethod if your
app implemented it:
-appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

• Disable user interfaces, if any, that give the
user the option to useOpen In. For example,
if your app presents amenu item for Open In,
themenu item should be disabled.
Bydisabling such user interfaces, your app
doesnot give the end user the impression
that Open In is possible when the
AppConnect library hasdisabled it.

• Implement the callbackmethod
-appConnect:
openInAttemptedWhenACOpenInPolicyBlocked:
In themethod, notify the user that Open In is
not allowed.
Note that if you disabled allOpen In user
interfaces, thismethod will not be called.

WHITELIST If a user tapson an app that is not in the whitelist: • Enable user interfaces, if any, that give the
user the option to useOpen In. For example,

TABLE 11.OPEN INACTIONS TAKEN BY THEAPPCONNECT LIBRARY AND YOUR APP

OverviewofOpen Inhandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 94

Open In
status

AppConnect library actions Your app’s actions

• the AppConnect library substitutesa dummy file with a
mangled name. Therefore, the target app cannot open the
file. Target app error handling varies. For example, some
appsdisplayan error pop-up.

• The AppConnect library also calls this callbackmethod if your
app implemented it:
-appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

if your app presents amenu item for Open In,
themenu item should be enabled.

• Implement the callbackmethod
-appConnect:
openInAttemptedWhenACOpenInPolicyBlocked:
In themethod, notify the user that Open In is
not allowed to the selected app.

TABLE 11.OPEN INACTIONS TAKEN BY THEAPPCONNECT LIBRARY AND YOUR APP (CONT.)

The ACOpenInPolicy enumeration

The ACOpenInPolicy enumeration provides the possible Open In statuses for the app:

typedef enum {
ACOPENINPOLICY_UNAUTHORIZED = 0, // The application may not use Open In.
ACOPENINPOLICY_AUTHORIZED = 1, // The application may use Open In.
ACOPENINPOLICY_WHITELIST = 2, // The application may only use Open In to send

// documents to applications in the whitelist.
} ACOpenInPolicy;

The openInPolicy and openInWhitelist properties

The following read-only properties on the AppConnect singleton relate to the Open In policy:

Property Description

openInPolicy An ACOpenInPolicy value that indicates the current status of the Open In policy for
the app.

openInWhitelist An NSSet object that contains NSString objects. Each string is the bundle ID of an
app in the whitelist. The whitelist is the set of apps to which your app is allowed to
send documents.

Because the AppConnect library enforces Open In to only the whitelisted apps,
your app uses this list only if it wants to inform the user about the list.

NOTE: When the Open In policy on theMobileIron server specifies “All
AppConnect apps”, the Open In status value is ACOPENINPOLICY_
WHITELIST. The openInWhitelist lists all the currently authorized
AppConnect apps. Therefore, your apphandles the “All
AppConnect apps” server setting the sameway it handles the
“whitelist” server setting.

TABLE 12.OPEN INPROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.

TheACOpenInPolicyenumeration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 95

• Wait for the -appConnectIsReady: callback method before accessing the openInPolicy and
openInWhitelist properties.

After the -appConnectIsReady: callback method is called, enable or disable user interfaces, if any, that give the
user the option to use the Open In feature, depending on the openInPolicy property value.

Whenever changes to the Open In policy or whitelist occur, the AppConnect library:
1. Updates the properties.
2. Calls the -openInPolicyChangedTo:whitelist: method to provide your app the current information.

Open In policy methods

Your app uses the followingmethods to receive Open In policy updates and to report how the app handled the
updates.
• The -appConnect:openInPolicyChangedTo:whitelist: callback method
• The -openInPolicyApplied:message: acknowledgment method
• The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method
• The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method

The -appConnect:openInPolicyChangedTo:whitelist: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openInPolicyChangedTo:
(ACOpenInPolicy)newOpenInPolicy whitelist:(NSSet *)newWhitelist;

Implement this method only if your app uses the Open In feature.

When a change has occurred to the Open In policy on theMobileIron server, the AppConnect library:
1. Sets the openInPolicy and openInWhitelist properties on the AppConnect object to the new values.
2. Calls the -appConnect:openInPolicyChangedTo:whitelist method, which provides the new values in its

parameters.

Your app then:
• Enable or disable user interfaces, if any, that give the user the option to use the Open In feature, depending on

the openInPolicy property value.
• calls the -appConnect:openInPolicyApplied:message: method.

The -openInPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)openInPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the Open In policy update.

Open Inpolicymethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 96

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support the Open In feature. If
you do not implement the -openInPolicyApplied:message method, the AppConnect singleton behaves as if
you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the Open In policy update. The string is
reported in theMobileIron server log files.

The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openInAttemptedWhenACOpenInPolicyBlocked:
(ACOpenInPolicy)OpenInPolicy;

This method is useful because even when theOpen In policy is ACOPENINPOLICY_UNAUTHORIZED or

ACOPENINPOLICY_WHITELIST, when an appmakes anOpen In request, iOS still displays all apps that support the
document type. An end user who taps an app sometimes expects the Open In operation to be successful. You can
implement this method to alert the end user that Open In is not allowed for the selected app.

Note that this method is also called for Open In requests to the iOS native email app when the policy is
ACOPENINPOLICY_UNAUTHORIZED or ACOPENINPOLICY_WHITELIST and the native email app is not on the
whitelist. For example, with these policy settings, this method is called when the device user taps a :mailTo link in
a UIWebView, WKWebView, or UITextView, or when the app attempts to display a
MFMailComposeViewController.

For example:

-(void) appConnect:(AppConnect *)appConnect
openInAttemptedWhenACOpenInPolicyBlocked: (ACOpenInPolicy)OpenInPolicy {

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Open In not allowed"
message:@"You are not allowed to share a document with this app."
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];

[alert show];
}

The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openURLAttemptedWhenUnauthorizedForURL:
(NSURL *)openURL;

This method is called when your app has called -openURL: with the mailto scheme and either:
• the Open In policy is ACOPENINPOLICY_UNAUTHORIZED
• the Open In policy is ACOPENINPOLICY_WHITELIST, and the whitelist does not contain the bundle ID of an app

that can handle the URL, such as the native iOS email app.
However, if the AppConnect app Email+ is installed on the device, it is opened and the callback method is not
called.

The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:callbackmethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 97

Use this method to notify the end user that opening an app to handle the request is not allowed due to the Open In
policy.

Info.plist key related to the Open In policy

Your app can override the Open In policy when the policy blocks the iOS native email app when the app calls
openURL: with the mailto: scheme. Overriding the Open In policy for this scenario means that the iOS native
email app is opened even though theOpen In policy is one of the following:
• ACOPENINPOLICY_UNAUTHORIZED
• ACOPENINPOLICY_WHITELIST, and the whitelist does not contain the bundle IDs of the native iOS email app.

To override the Open In policy for this scenario, add the key MI_AC_DISABLE_SCHEME_BLOCKINGwith the
value YES in theMI_APP_CONNECT dictionary in the app’s Info.plist.

NOTE: TheMobileIron server administrator canalso override the Open In policy for this scenario by
adding the keyMI_AC_DISABLE_SCHEME_BLOCKINGwith the value true to the app’s app-
specific configuration.

Open From policy API details
IMPORTANT: TOpen From does not work on iOS 13 devices.

The AppConnect for iOS API provides properties andmethods that allow an app to handle its Open From policy as
determined by theMobileIron server. For an overview of this feature, see Data loss prevention policies.

Specifically, when an app is allowed to useOpen From, it can receive a document shared from another app (or
another app’s extension) that uses the Open In iOS feature.
• Overview of Open From handling
• The ACOpenFromPolicy enumeration
• The openFromPolicy and openFromWhitelist properties
• Open From policy methods
• Open From policy API details

Overview of Open From handling

The behavior of the AppConnect library, and the actions your app takes, depend on theOpen From policy status.

The possible status values are:
• ACOPENFROMPOLICY_AUTHORIZED -- The app is allowed to receive documents shared by any app that uses

Open In.
• ACOPENFROMPOLICY_UNAUTHORIZED -- The app is not allowed to receive documents shared by any app that

uses Open In.
• ACOPENFROMPOLICY_WHITELIST -- The app is allowed to receive documents shared by another app using Open

In only if the other app is in the whitelist. To put the iOS native email app in the whitelist, the whitelist must
contain both of these bundle IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

Info.plist key related to theOpen Inpolicy

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 98

IMPORTANT:

When an appmakes anOpen In request, iOS always displays all the apps that support the document type,
regardless of:

• the requesting app's Open In policy status if it is an AppConnect app
• the receiving app's Open From policy status if it is an AppConnect app

Although the AppConnect library enforces the Open From policy, this iOS behavior means that your appmight want
to keep the user informed of failed attempts. The following table summarizes the behavior of the AppConnect
library and recommended actions for your app relating to Open From.

Open In
status

AppConnect library actions Your app’s actions

AUTHORIZED The AppConnect library performsno actionsonOpen From behavior. None

UNAUTHORIZED The AppConnect library doesnot allow another app to Open In to your app.

Additionally, if a user chooses to Open In to your app, the AppConnect library calls this
callbackmethod if your app implemented it.

-appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked:

Implement the callback
method. In themethod, notify
the user that using Open In
from the specified app to your
app is not allowed.

WHITELIST The AppConnect library doesnot allow an app that is not on the whitelist to Open In to
your app.

Additionally, if a user chooses to Open In to your app from an app that is not in the
whitelist, the AppConnect library calls this callbackmethod if your app implemented it:

-appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked:

Implement the callback
method. In themethod, notify
the user that Open From the
specified app is not allowed.

TABLE 13.OPEN FROM ACTIONS TAKEN BY THEAPPCONNECT LIBRARY AND YOUR APP

The ACOpenFromPolicy enumeration

The ACOpenFromPolicy enumeration provides the possible Open From statuses for the app:

typedef enum {
ACOPENFROMPOLICY_UNAUTHORIZED = 0, // The app is allowed to receive documents shared by

// any app that uses Open In.
ACOPENFROMPOLICY_AUTHORIZED = 1, // The app is not allowed to receive documents shared

// by any app that uses Open In.
ACOPENFROMPOLICY_WHITELIST = 2, // The app is allowed to receive documents shared by

// another app using Open In only if the other app
// is in the whitelist.

} ACOpenFromPolicy;

The openFromPolicy and openFromWhitelist properties

The following read-only properties on the AppConnect singleton relate to the Open From policy:

TheACOpenFromPolicyenumeration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 99

Property Description

openFromPolicy An ACOpenFromPolicy value that indicates the current status of the
Open From policy for the app.

openFromWhitelist An NSSet object that contains NSString objects. Each string is the
bundle ID of an app in the whitelist. The whitelist is the set of apps
from which your app is allowed to receive documents.

Because the AppConnect library enforces Open From from only the
whitelisted apps, your app uses this list only if it wants to inform the
user about the list.

NOTE: When the Open From policy on theMobileIron server
specifies “All AppConnect apps”, the Open From
status value is ACOPENFROMPOLICY_WHITELIST. The
openFromWhitelist lists all the currently authorized
AppConnect apps. Therefore, your apphandles the
“All AppConnect apps” server setting the sameway it
handles the “whitelist” server setting.

TABLE 14.OPEN FROM PROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the openFromPolicy and

openFromWhitelist properties.

Whenever changes to the Open From policy or whitelist occur, the AppConnect library:
1. Updates the properties.
2. Calls the -openFromPolicyChangedTo:whitelist: method to provide your app the current information.

Open From policy methods

Your app uses the followingmethods to receive Open From policy updates and to report how the app handled the
updates.
• The -appConnect:openFromPolicyChangedTo:whitelist: callback method
• The -openFromPolicyApplied:message: acknowledgment method
• The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method

The -appConnect:openFromPolicyChangedTo:whitelist: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openFromPolicyChangedTo:
(ACOpenInPolicy)newOpenFromPolicy whitelist:(NSSet<NSString *>)newWhitelist;

Implement this method only if:

OpenFrompolicymethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 100

l your app handles documents from other apps using Open In, and

l your app uses the Open From policy value or whitelist in someway, such as displaying information about it
to the user. The AppConnect library enforces the policy.

When a change has occurred to the Open From policy on theMobileIron server, the AppConnect library:
1. Sets the openFromPolicy and openFromWhitelist properties on the AppConnect object to the new values.
2. Calls the -appConnect:openFromPolicyChangedTo:whitelist method, which provides the new values in its

parameters.

Your app then:
• Can access the new values. The app can use them, for example, to inform the end user about allowed

Open From apps.
• calls the -appConnect:openFromPolicyApplied:message: method.

The -openFromPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)openFromPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the Open From policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support the Open From
feature. If you do not implement the -openInPolicyApplied:message method, the AppConnect singleton
behaves as if you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the Open From policy update. The
string is reported in theMobileIron server log files.

The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openFromAttemptedWhenACOpenFromPolicyBlocked:
(ACOpenFromPolicy)OpenFromPolicy
sourceApplication:(NSString *)sourceApplicationId;

This method is useful because even when theOpen From policy is ACOPENFROMPOLICY_UNAUTHORIZED or

ACOPENFROMPOLICY_WHITELIST, when another appmakes anOpen In request, iOS still displays all apps that
support the document type. An end user who taps an app expects the Open In operation to be successful. You can
implement this method to alert the end user that your app is not allowed to receive documents from the other app.

The -openFromPolicyApplied:message:acknowledgmentmethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 101

Print policy API details
The AppConnect for iOS API provides properties andmethods that allow an app to handle its print policy as
determined by theMobileIron server. For an overview of this feature, see Data loss prevention policies.

The ACPrintPolicy enumeration

The ACPrintPolicy enumeration provides the possible print statuses for the app:

typedef enum {
ACPRINTPOLICY_UNAUTHORIZED = 0, // The application may not use Print.
ACPRINTPOLICY_AUTHORIZED = 1, // The application may use Print.

} ACPrintPolicy;

The printPolicy property

The read-only printPolicy property on the AppConnect singleton contains an ACPrintPolicy value. The value
reflects the current status of the print policy for the app.

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the printPolicy property.
• After the -appConnectIsReady: callback method is called, enable or disable the app’s ability to print depending

on the printPolicy property value.

Whenever the policy changes, the AppConnect library:
1. updates the printPolicy property.
2. calls the -appConnect:printPolicyChangedTo: method to provide your app the current print policy.

Print policy methods

Your app uses the followingmethods to receive print policy updates and to report how the app handled the updates.

The -appConnect:printPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect printPolicyChangedTo:
(ACPrintPolicy)newPrintPolicy;

Implement this method only if your app is able to print.

When a change has occurred to the print policy on theMobileIron server, the AppConnect library:
1. Sets the printPolicy property on the AppConnect object to the new ACPrintPolicy value.
2. Calls the -appConnect:printPolicyChangedTo: method, which provides the new ACPrintPolicy value in its

parameter.

Your app then:

PrintpolicyAPI details

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 102

• Enables or disables its ability to print depending on the passed ACPrintPolicy value.
• calls the -printPolicyApplied:message: method.

The -printPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void) appConnect:(AppConnect *)appConnect printPolicyChangedTo:
(ACPrintPolicy)newPrintPolicy;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the print policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support print. If you do not
implement the -printPolicyApplied:message method, the AppConnect singleton behaves as if you passed
it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the print policy update. The string is
reported in theMobileIron server log files.

Logmessages API details
The AppConnect for iOS API provides properties andmethods that allow an app to logmessages at various
severity levels to the device’s console or to files. For an overview of this feature, see Logmessages.

The ACLogLevel enumeration

The ACLogLevel enumeration provides the possible log levels:

typedef enum {
ACLOGLEVEL_ERROR = 0, // Error messages
ACLOGLEVEL_WARNING = 1, // Warning messages
ACLOGLEVEL_STATUS = 2, // Significant status messages such as app launch

// and major user actions.
ACLOGLEVEL_INFO = 3, // Additional informational messages
ACLOGLEVEL_VERBOSE = 4, // Verbose messages which may include sensitive information
ACLOGLEVEL_DEBUG = 5, // Debug messages which may include sensitive information

} ACLogLevel;

Log level descriptions and examples

The following table provides guidelines about when to use each log level:

The -printPolicyApplied:message:acknowledgmentmethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 103

Log level Description May
contain
sensitive
data?

Examples of when to use

ACLOGLEVEL_ERROR For events that block
access to part or all of the
app.

No • Uncaught exception
• Corrupt or missing data
• Network timeout
• Digital signature validation error
• Certificate error
• Failed assertion
• Exhausted retries
• Error that is reported to the user

ACLOGLEVEL_
WARNING

For events that are
suspicious, but not quite
failures like errors.

No • Caught exception that is ignored
• Failed login due to bad user credentials
• Unexpected data that is ignored
• Network connection that is established

just before timing out
• Retrying
• Attempted forward compatibility. For

example, the app was developed with
and tested against version 1 of the
server, but the server reported version 2.

• Feature disabled due to low battery
• User attempted something that is not

currently allowed or available
• Warning that is reported to the user

ACLOGLEVEL_
STATUS

Formajor changes in the
state of the app

No • App launched
• Version information
• Successfully logged in
• Successfully opened, saved or closed a

user document
• Successfully deleted sensitive data

when authorization state changed to
ACAUTHSTATE_RETIRED

• Notification received from the server
• Status that is reported to the user

ACLOGLEVEL_INFO Forminor changes in the
state of the app

No • Changed views within the app
• Heartbeat sent to server
• App entered foreground or background,

became active or inactive, and other
UIApplicationDelegate app state
changes

• Interaction with device hardware, such

TABLE 15. LOG LEVEL DESCRIPTIONS

Log leveldescriptions andexamples

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 104

Log level Description May
contain
sensitive
data?

Examples of when to use

as taking a photo
• Changes to non-sensitive user

preferences

ACLOGLEVEL_
VERBOSE

Formore extensive
information, possibly
including sensitive details

Yes • Server addresses of requests and
resulting HTTP status codes

• Sensitive details of messages of less
verbose log levels, such as the name of
a saved file

• Device identifiers

ACLOGLEVEL_DEBUG For themost information,
possibly including
sensitive details

Yes • Very precise user actions, such as
touch events and keystrokes

• URL request details
• Memory and performance profiling

information

TABLE 15. LOG LEVEL DESCRIPTIONS (CONT.)

Sensitive data examples

Include sensitive data only in messages logged at the verbose or debug levels. Examples of sensitive data are:
• User data, including document contents, document names, contact lists, notes, bookmarks
• Initial bytes of symmetric encryption keys, private encryption keys, passwords, certificates, signing identities,

and cookies.

Only log initial bytes of these security-related values to ensure the values remain secure.

• Complete URLs and POST data
• Anything that may reveal the content of encrypted data, such as detailed error messages generated by parsing

decrypted data

The logLevel property
+(ACLogLevel)logLevel;

The read-only logLevel class property on the AppConnect class contains an ACLogLevel value. The value
reflects the current log level.

Use the following to get the logLevel value:
[AppConnect logLevel]

When your app calls themethods +logAtLevel:format:, +logAtLevel:format:args:, or
+logAtLevel:message:, the AppConnect library logs amessage only if the log level you pass to themethod is
less than or equal to the logLevel property’s current value.

Sensitive dataexamples

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 105

Your app can use the logLevel property to determine what work to do before calling one of the loggingmethods.
For example, if the app gathers and formats a lot of data when the log level is ACLOGLEVEL_DEBUG, it can skip that
logic when the log level is less than ACLOGLEVEL_DEBUG.

Log level methods

Your app uses the followingmethods to receive log level updates and to logmessages to the device’s console.

The -appConnect:logLevelChangedTo: callback method

You optionally implement this method to receive log level updates. Themethod is in the AppConnectDelegate
protocol:

-(void) appConnect:(AppConnect *)appConnect logLevelChangedTo:
(ACLogLevel)newLogLevel;

Implement this method only if your app logs messages using themethods +logAtLevel:format: or
+logAtLevel:format:args:.

When a change has occurred to the log level on theMobileIron server, the AppConnect library:
1. Sets the logLevel property on the AppConnect object to the new ACLogLevel value.
2. Calls the -appConnect:logLevelChangedTo: method, which provides the new ACLogLevel value in its

parameter.

Your app can use the notification to start or stop gathering additional data that the app uses in logging.

logAtLevel class methods

Use the following AppConnect class methods to logmessages:

+(void)logAtLevel:(ACLogLevel)logLevel format:(NSString *)format,
... NS_FORMAT_FUNCTION(2,3);

+(void)logAtLevel:(ACLogLevel)logLevel format:(NSString *)format
args:(va_list)args NS_FORMAT_FUNCTION(2,0);

+(void)logAtLevel:(ACLogLevel)logLevel message:(NSString *)message;

These class methods use the logLevel parameter to determine whether to log amessage. If logLevel parameter is
less than or equal to the logLevel property, themethods log amessage.

Themethods prepend the format or message string with one of the following strings depending on the logLevel
parameter:
• [Error]
• [Warning]
• [Status]
• [Info]
• [Verbose]
• [Debug]

Log levelmethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 106

Then:
• +logAtLevel:format: calls NSLog(), passing along the parameters.
• +logAtLevel:format:args: calls NSLogv(), passing along the parameters.
• +logAtLevel:message: calls NSLog(), passing along the parameter.

The following table describes the parameters of thesemethods:

Parameter Description

logLevel The ACLogLevel value for themessage.

The AppConnect library logs themessage only if the passed log level is less than or equal to
the current value of the logLevel property.

format A format string.

This parameter is an NSString, and can include format specifiers that NSString formatting
methods support.

... A comma-separated list of arguments to substitute into the format string in
+logAtLevel:format:.

args A va_list argument in +logAtLevel:format:args

Use +logAtLevel:format:args if you want to explicitly prepare a va_list argument that
contains the list of arguments that you pass to the loggingmethod. Preparing a va_list
argument is useful when you want to wrap AppConnect logging functionality with your own
function.

message A string.

This parameter is an NSString, useful if you do not require format specifiers.

TABLE 16.DESCRIPTIONSOF LOG LEVEL METHODS’ PARAMETERS

-logAtLevel:format:args: example
-(void)myDebugLogWithFormat:(NSString *)format, ... NS_FORMAT_FUNCTION(1,2) {

va_list args;
va_start(args, format);
[AppConnect logAtLevel:ACLOGLEVEL_DEBUG format:format args:args];
va_end(args);

}

-(void)someMethod {

NSString *foo = @"FooValue";
int bar = 4;
[self myDebugLogWithFormat:@"Foo: %@ Bar: %i", foo, bar];

}

-logAtLevel:format:args:example

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 107

Log level methods and dual mode apps

A dual mode app can call the +logAtLevel:format:, +logAtLevel:format:args:, and
+logAtLevel:message: methods and get the +(ACLogLevel)logLevel property even after calling -stop: on the
AppConnect singleton object. When the AppConnect library is stopped, the log level is always ACLOGLEVEL_
STATUS.

The notificationmethod -appConnect:logLevelChangedTo: is not called when the AppConnect library is
stopped.

Secure services API details
The AppConnect for iOS API provides properties andmethods that allow an app to:
• determine whether secure services are available.
• handle its secure file I/O policy.
• perform file operations on secure, encrypted files.
• determine whether secure copy to the pasteboard is available.

For an overview of this feature, see "Data Protection" in Securing andmanaging the app using the AppConnect
library.

The ACSecureServicesAvailability enumeration

The ACSecureServicesAvailability enumeration provides the possible secure services availability statuses for
the app:

typedef enum {
ACSECURESERVICESAVAILABILITY_UNAVAILABLE = 0, // Secure services are

// currently unavailable.
ACSECURESERVICESAVAILABILITY_AVAILABLE = 1, // Secure services are currently available.

} ACSecureServicesAvailability;

Formore information about these values, see The secureServicesAvailability and secureFileIOPolicy properties .

The ACSecureFileIOPolicy enumeration

The ACSecureFileIOPolicy enumeration provides the possible secure file I/O policy statuses for the app:

typedef enum {
ACSECUREFILEIOPOLICY_OPTIONAL = 0, // The application may store sensitive files using iOS

// filessytem APIs or AppConnect secure file I/O.
ACSECUREFILEIOPOLICY_REQUIRED = 1, // The application must store sensitive files

// using only AppConnect secure file I/O.
} ACSecureFileIOPolicy;

Log levelmethods anddualmodeapps

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 108

NOTE: This policy is not configurable by theMobileIron server administrator; The server always requires
secure file I/O. Formore information about these values, see The secureServicesAvailability and
secureFileIOPolicy properties .

The secureServicesAvailability and secureFileIOPolicy properties

The following read-only properties on the AppConnect singleton relate to secure services:

Property Description

secureServicesAvailability An ACSecureServicesAvailability value that indicates whether secure
services are currently available.

Secure services availability depends on the availability of the encryption
key. The encryption key is available only when all of the following are true:
• the device user has entered the AppConnect passcode, or the device

passcode when no AppConnect passcode is required
• the app is authorized
• the AppConnect singleton is ready (the ready property is YES)

secureFileIOPolicy An ACSecureFileIOPolicy that contains the current status of the secure
file I/O policy for the app.

This secure file I/O policy is not configurable by theMobileIron server
administrator; The server always requires secure file I/O.

TABLE 17. SECURE SERVICES PROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the secureFileIOPolicy property.

After the -appConnectIsReady: callback method is called:
• if the secureServicesAvailability property has the value ACSECURESERVICESAVAILABILITY_AVAILABLE,

use secure file I/O APIs.
• If the secureServicesAvailability property has the value ACSECURESERVICESAVAILABILITY_

UNAVAILABLE, wait for the notification of it changing to ACSECURESERVICESAVAILABILITY_AVAILABLE before
using secure file I/O. Secure file I/O APIs fail when secure services are not available. The notificationmethod
is
-appConnect:secureServicesAvailabilityChangedTo:.

• disable or enable special user interfaces for copying to the pasteboard if the pasteboard policy is
ACPASTEBOARDPOLICY_SECURECOPY. Copying to the pasteboard fails if secure services are unavailable and the
pasteboard policy is ACPASTEBOARDPOLICY_SECURECOPY.

NOTE: Because the secure file I/O policy is always set to requiredon theMobileIron server, the value of
the secureFileIOPolicy property is always ACSECUREFILEIOPOLICY_REQUIRED. When secure file
I/O is required, your app should use secure file I/O APIs (but onlywhile secure services are
available).

The secureServicesAvailabilityandsecureFileIOPolicyproperties

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 109

If the app becomes unauthorized, secure services change to unavailable. Similarly, if the AppConnect passcode
auto-lock timeout expires, secure services also change to unavailable. When these situations occur, the
AppConnect library calls the -appConnect:secureServicesAvailabilityChangedTo: notificationmethod.

NOTE: Consider the case when the AppConnect passcode auto-lock timeout expireswhile your app is
performing a file operation. The operationswill fail. Make sure your appcanhandle the returned
error conditions.

Secure servicesmethods

Your app uses the followingmethods to receive secure services availability updates and to report how the app
handled the updates.
• The -appConnect:secureServicesAvailabilityChangedTo: callback method
• The -appConnect:secureFileIOPolicyChangedTo: callback method
• The -secureFileIOPolicyApplied:message: acknowledgment method

The -appConnect:secureServicesAvailabilityChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect secureServicesAvailabilityChangedTo:
(ACSecureServicesAvailability)secureServicesAvailability;

Implement this method only if your app uses secure services.

When secure services availability changes, the AppConnect library:
1. Updates the secureServicesAvailability property on the AppConnect object.
2. Calls the -appConnect:secureServicesAvailabilityChangedTo: method, which provides the new value in

its parameter.

Your app then changes its use of secure services and takes appropriate logic paths depending on the passed
ACSecureServicesAvailability value. For example, if secure services become unavailable, an app should:
• stop doing any secure file I/O. The appmight also notify the user of limited functionality. Limited functionality is

necessary because files created using secure file I/O cannot be read or updated with regular file I/O.
• disable or enable special user interfaces for copying to the pasteboard if the pasteboard policy is

ACPASTEBOARDPOLICY_SECURECOPY. Copying to the pasteboard fails if secure services are unavailable and the
pasteboard policy is ACPASTEBOARDPOLICY_SECURECOPY.

The -appConnect:secureFileIOPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect secureFileIOPolicyChangedTo:
(ACSecureFileIOPolicy)newSecureFileIOPolicy;

Implement this method only if your app uses secure file I/O AppConnect APIs.

When the secure file I/O policy changes, the AppConnect library:

Secure servicesmethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 110

1. Updates the secureFileIOPolicy property on the AppConnect object.
2. Calls the -appConnect:secureFileIOPolicyChangedTo: method, which provides the new value in its

parameter.

Your app then changes its use of secure file I/O and takes appropriate logic paths depending on the passed
ACSecureFileIOPolicy value.

The -secureFileIOPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)secureFileIOPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the secure file I/O policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support secure file I/O. If you
do not implement the -secureFileIOPolicyApplied:message method, the AppConnect singleton behaves as
if you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.

Typically, you use this string to report the reason the app failed to apply the secure file I/O policy update. The string
is reported in theMobileIron server log files.

Version property

+(NSString *)version;

The read-only version class property on the AppConnect class contains an NSString value. The value reflects
the version of the AppConnect library that the app is working with.

A best practice is to report the AppConnect library version number on your app’s About page. This information is
useful to support organizations if a device user has any issues with the app.

Use the following to get the version value:

[AppConnect version]

Getting upload status for tunneled HTTP/S requests
The AppConnect library and theMobileIron client app are responsible for tunneling network connections using
AppTunnel with HTTP/S tunneling.

The -secureFileIOPolicyApplied:message:acknowledgmentmethod

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 111

The AppConnect for iOS SDK includes APIs that provide upload status for HTTP/S requests. Use these APIs
only if your app uses both of the following:
• the AppTunnel with HTTP/S tunneling feature
• the NSURLConnectionDataDelegate method

-connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:
or the NSURLSessionTaskDelegateMethod
-URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:
Thesemethods provide upload status for HTTP/S requests.

AppConnect library behavior when using AppTunnel

Apps that access enterprise servers using NSURLConnection or NSURLSession can use AppTunnel with
HTTP/S tunneling, as described in AppTunnel. The AppConnect library determines which URLs to tunnel based on
theMobileIron server configuration, and creates the secure tunnel for HTTP/S requests to and responses from a
server behind an organization’s firewall.

One aspect of this AppTunnel handling is that the AppConnect library intercepts the following
NSURLConnectionDataDelegate and NSURLSessionmethods:

-connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:

-URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:

This interceptionmeans that if your app has implemented the NSURLConnectionDataDelegate or
NSURLSessionTaskDelegate protocol, your implementation of thesemethods is never called. If the app depends
on this method, for example, to show the progress of an HTTP/S upload, that functionality will not work properly.

Therefore, the AppConnect for iOS SDK provides APIs to support showing the progress of an HTTP/S upload
when using AppTunnel with HTTP/S tunneling.

Upload status API overview

The AppConnect for iOS API provides amechanism for the app to receive the upload status when an HTTP/S
request is tunneled using AppTunnel with HTTP/S tunneling. Themechanism uses:
• The AppConnectNetworkingDelegate protocol that you implement to receive HTTP/S upload progress data
• A category method called -setNetworkingDelegate: in the Networking category on the AppConnect

interface. The app uses -setNetworkingDelegate: to tell the AppConnect object about the object of the
class that implements the AppConnectNetworkingDelegate protocol.

The protocol and the category are defined in AppConnect+Networking.h.

The AppConnectNetworkingDelegate protocol

Implement the AppConnectNetworkingDelegate protocol to receive HTTP/S upload progress data about tunneled
requests. This protocol contains onemethod that provides an estimate of the progress of the upload.

AppConnect librarybehavior whenusingAppTunnel

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 112

-(void) uploadProgressForConnectionWithURLRequest:(NSURLRequest *)request
bytesWritten:(NSInteger)bytesWritten
totalBytesWritten:(NSInteger)totalBytesWritten

totalBytesExpectedToWrite:(NSInteger)totalBytesExpectedToWrite;

The AppConnect library calls this method after it intercepts the following NSURLConnectionDataDelegate or
NSURLSessionTaskDelegate methods:

-connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:

-URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:

The AppConnectNetworkingDelegate protocol method provides the following information in its parameters:
• the number of bytes written in the latest write
• the total number of bytes written for the connection with this request
• the number of bytes the connection expects to write

The -setNetworkingDelegate: method

The Networking category of the AppConnect interface provides themethod -setNetworkingDelegate:. If your
app requires HTTP/S upload progress data on tunneled HTTP/S requests, call this method before sending the
HTTP/S request.

For example:

[[AppConnect sharedInstance] setNetworkingDelegate:myNetworkingDelegate];

wheremyNetworkingDelegate is an instance of a class that implements the AppConnectNetworkingDelegate
protocol.

Caching tunneled URL responses
Apps that access enterprise servers using NSURLSession can use AppTunnel with HTTP/S tunneling, as
described in AppTunnel. By default, for a tunneled URL request:
• The data for the URL is reloaded from the originating source. Any existing locally cached response is ignored.
• The data in the response is not stored in the local cache.

The reason that AppTunnel with HTTP/S tunneling does not use locally cached responses is to avoid caching
sensitive enterprise server data on the device.

However, some apps have requirements to use locally cached responses. Some examples are:
• The app requires a response even when the device has no network connectivity.
• The app requires a customized response.

If your app requires locally cached responses for URL requests that use AppTunnel with HTTP/S tunneling, use
the followingmethod, which is on the AppConnect singleton object:

The -setNetworkingDelegate:method

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 113

-(void)allowLocalCachingForTunneledRequests:(BOOL)flag;

The value of flag has the following impact:
• true

Allows caching for requests and responses that use AppTunnel with HTTP/S tunneling. However, whether
caching actually occurs depends on the cache policy for the NSURLRequest.

• false
Clears all cached responses, including responses for URL requests not using AppTunnel with HTTP/S
tunneling.

IMPORTANT: Do not cache sensitive data.

AppConnectUIApplication class

Using your ownUIApplication subclass

If your app uses its own subclass of UIApplication, derive your subclass from AppConnectUIApplication instead of
UIApplication. Information on subclassing AppConnectUIApplication, provided in AppConnectUIApplication.h, is
in Using your ownUIApplication subclass.

originalDelegate property (deprecated)

NOTE: Most apps have no reason to use this property.

The AppConnectUIApplication class also provides one property:

@property(nonatomic, readonly) id<UIApplicationDelegate> originalDelegate;

The AppConnect library depends on knowing about application life cycle events, such as when the application
becomes active. Requiring the app to pass every life cycle event to the AppConnect library would be toomuch of a
burden on the app. Therefore, the AppConnect library installs a UIApplicationDelegate proxy. This proxy sits
between the UIApplication and your application’s UIApplicationDelegate.

Your application does not do anything to support the proxy. Use your UIApplicationDelegate as you normally
would:
• The AppConnect library does not filter or modify any messages sent by iOS to the UIApplicationDelegate.
• You can still add custommethods to your UIApplicationDelegate. Call the custommethod as you normally

would, such as in the following statement:
[[UIApplication sharedApplication] delegate] customMethod];
The proxy passes themethod invocation to your UIApplicationDelegate.

• You can set a new UIApplicationDelegate as you normally would:
[[UIApplication sharedApplication] setDelegate:myOtherAppDelegate];

However, until AppConnect 4.0 for iOS, a side effect of the proxy was that the following expression did not return
your UIApplicationDelegate object:

[[UIApplication sharedApplication] delegate]

AppConnectUIApplicationclass

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 114

Therefore, the originalDelegate property was available to return your UIApplicationDelegate object. Using this
property is no longer necessary because the above expression now does return your UIApplicationDelegate
object.

Note The Following:

Another side effect of the proxy was that the following expression did not return your UIApplicationDelegate’s
class:
[[[UIApplication sharedApplication] delegate] class]

Instead, it returned the proxy class. Therefore, using isKindofClass: was necessary. For example, the following
returned YES:
[[UIApplication sharedApplication] isKindOfClass:[MyAppDelegate class]]

Encryption keys for custom cryptography
• Overview of encryption keys for custom cryptography
• The -derivedAppKeyWithIdentifier:error: method
• The -derivedSharedKeyWithIdentifier:error: method
• Error returns for derived key methods
• Deprecated custom cryptography methods

Overview of encryption keys for custom cryptography

The AppConnect library provides methods to obtain keys useful for cryptographic operations. It can provide two
types of keys:
• App keys, which are keys that are specific to your app on the device
• Shared keys, which are keys that are shared among all AppConnect apps on the device

If your app requires cryptography but the AppConnect secure file I/O APIs are not sufficient, it can use an app key
with custom cryptographic routines. For example, consider an app that currently relies on the iOS keychain for
secure storage. The keychain is not secure if the device lacks a device passcode. Refactoring the app to use the
secure file I/O APIs is possibly prohibitively difficult. Therefore, instead of refactoring, you can add code to encrypt
data being stored in the keychain, and you can use an app key as the encryption key.

If your app shares encrypted data with another AppConnect app, you can use a shared key as the encryption key.

Use one of the followingmethods, which are on the AppConnect singleton object:

-(nullable ACSensitiveData *)derivedAppKeyWithIdentifier:(NSString *)identifier
error:(NSError **)error;

-(nullable ACSensitiveData *)derivedSharedKeyWithIdentifier:(NSString *)identifier
error:(NSError **)error;

If successful, thesemethods return an ACSensitiveData object containing a 32-byte key. Thesemethods are
successful only when secure services are available.

Encryptionkeys for customcryptography

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 115

Related topics

Securing sensitive data such as encryption keys

The -derivedAppKeyWithIdentifier:error: method

The -derivedAppKeyWithIdentifier:error: method derives an encryption key. This “app key” is unique to this
instance of your app. Calling this method with the same identifier in an instance of your app on a different device
derives a different app key.

The app key is based on the following:
• the app
• the identifier passed as an argument

The identifier is any string. Use a different identifier for each encryption purpose. For example, if your app uses
AES, SHA-1, and HMAC routines, use a different identifier for each. Reusing an identifier for different
encryption purposes weakens the key, making it more vulnerable to brute force attacks.

• a secure services seed
Each device has one secure services seed, which is generated by theMobileIron client app. The seed is lost if
the device user deletes theMobileIron client app, or theMobileIron server retires the device. TheMobileIron
client app does not back up the seed, so a backup and restore of the device will also cause the seed to be lost.

The -derivedSharedKeyWithIdentifier:error: method

By using the shared key provided by this method, more than one AppConnect app on the same device can share
encrypted data. For example, one AppConnect app can encrypt data using a derived shared key created with a
particular identifier. Another AppConnect app can then use the same identifier to get the shared key, and decrypt
the data with the shared key.

The -derivedSharedKeyWithIdentifier:error: method derives an encryption key based on the following:
• the identifier passed as an argument
• a secure services seed

Each device has one secure services seed, which is generated by theMobileIron client app. The seed is lost if
the device user deletes theMobileIron client app, or theMobileIron server retires the device. TheMobileIron
client app does not back up the seed, so a backup and restore of the device will also cause the seed to be lost.

Error returns for derived keymethods

When unsuccessful, the -derivedAppKeyWithIdentifier:error: and -
derivedSharedKeyWithIdentifier:error: methods return an NSError object as shown in the following table:

NSError domain NSError code Description

ACErrorDomain ACErrorNoKeys Secure services are not available.

ACErrorDomain ACErrorInvalidArg The identifier argument is nil or has zero-length.

TABLE 18.NSERROR OBJECTS RETURNED BY DERIVED KEY METHODS

The -derivedAppKeyWithIdentifier:error:method

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 116

The NSError domain and code values are defined in ACError.h.

Deprecated custom cryptographymethods

The followingmethods are deprecated.
• The -derivedAppKey:withIndex: method (deprecated)
• The -derivedSharedKey:withIndex: method (deprecated)

MobileIron recommends you use instead the -derivedAppKeyWithIdentifier:error: and
derivedSharedKeyWithIdentifier:error: methods.

The -derivedAppKey:withIndex: method (deprecated)

The -derivedAppKey:withIndex: method derives an encryption key. This app key is unique to this instance of
your app. Calling this method with the same index in an instance of your app on a different device derives a
different app key.

The app key is based on the following:
• the app
• the index passed as an argument

The index is any string. Use a different index for each encryption purpose. For example, if your app uses AES,
SHA-1, and HMAC routines, use a different index for each. Reusing an index for different encryption purposes
weakens the key, making it more vulnerable to brute force attacks.

• a secure services seed
Each device has one secure services seed, which is generated by theMobileIron client app. The seed is lost if
the device user deletes theMobileIron client app, or theMobileIron server retires the device. TheMobileIron
client app does not back up the seed, so a backup and restore of the device will also cause the seed to be lost.

The -derivedSharedKey:withIndex: method (deprecated)

The -derivedSharedKey:withIndex: method derives an encryption key based on the following:
• the index passed as an argument
• a secure services seed

Each device has one secure services seed, which is generated by theMobileIron client app. The seed is lost if
the device user deletes theMobileIron client app, or theMobileIron server retires the device. TheMobileIron
client app does not back up the seed, so a backup and restore of the device will also cause the seed to be lost.

By using a shared key, more than one AppConnect app on the same device can share encrypted data. For
example, one AppConnect app can use a derived shared key with a particular index to encrypt data. Another
AppConnect app can then get the same derived shared key by using the same index to decrypt the data.

Securing sensitive data such as encryption keys
For heightened security of especially sensitive data, such as encryption keys and passwords, you can use the
classes ACSensitiveData or ACSensitiveMutableData. These classes use the Apple hardware known as Secure

Deprecatedcustomcryptographymethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 117

Enclave. By using these classes, you reduce the sensitive data’s attack surface, because the sensitive data is
stored in the Secure Enclave rather than in plain-text in memory. Without these classes, sensitive data such as
keys are stored inmemory, and therefore can be captured in amemory dump.

To benefit from these classes, the devicemust:
• have Apple’s Secure Enclave hardware.

Devices that have biometric security have Secure Enclave hardware.

• be running iOS 11 through themost recently released version as supported by MobileIron
• be runningMobile@Work 9.8 for iOS through themost recently released version as supported by MobileIron

MobileIron Go does not support this feature.

Securing sensitive data involves the following:
• Coding your app to secure sensitive data
• Configuring theMobileIron server to secure sensitive data for your app
• Debugging ACSensitiveData usage

Coding your app to secure sensitive data

The interfaces to use are:

@interface ACSensitiveData : NSData

@interface ACSensitiveMutubleData : ACSensitiveData

@interface ACSensitiveDataContainer : NSObject

These interfaces are defined in ACSensitiveData.h.

To secure your data, such as encryption keys, create an ACSensitiveData or ACSensitiveMutableData object and
populate it with your sensitive data.

For data that you want to keep for a long time period, create an ACSensitiveDataContainer to hold the
ACSensitiveData or ACSensitiveMutableData object.

Objective-C example

ACSensitiveData *key = [ACSensitiveData dataWithBytes:keyData.bytes length:keyData.length];

ACSensitiveDataContainer *containerizedKey =
[ACSensitiveDataContainer containerWithData:key];

Swift example

Codingyour app to secure sensitive data

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 118

let key = ACSensitiveData(bytes: keyData.bytes, length: UInt(keyData.length))

let containerizedKey = ACSensitiveDataContainer(data: key)

NOTE: Do not use the ACSensitiveDatamethods -copyWithZone: or -mutableCopyWithZone:.

Configuring theMobileIron server to secure sensitive data for your app

TheMobileIron server administrator configures whether the ACSensitiveData and ACSensitiveMutableData
objects are secured with Apple’s Secure Enclave. The administrator configures this choice per AppConnect app.
Therefore, in the documentation you provide theMobileIron server administrators, specify that your app uses the
Secure Enclave if it is available.

TheMobileIron server administrator uses the key namedMI_AC_CONTAINER_TYPE in the app’s app
configuration. The AppConnect library consumes this key. It is not passed to your app in Its configuration key-
value pairs.

The possible values for MI_AC_CONTAINER_TYPE are:

Value Description

ENCLAVE ACSensitiveData and ACSensitiveMutableData objects are stored in the Secure
Enclave, if available on the device.

LOCAL ACSensitiveData and ACSensitiveMutableData objects are not stored in the
Secure Enclave.

Debugging ACSensitiveData usage

Because it is a hardware feature, you cannot test Secure Enclave usage in the iOS simulator. However, when
running in debugmode on a device or in the iOS simulator, you can use the following environment variables on your
app to check if your ACSensitiveData objects are being held in memory for too long. The value of MI_AC_
CONTAINER_TYPE has no impact on using these environment variables.
• AC_SENSITIVE_DATA_MAX_LIFETIME

Set its value to a number of seconds. An exception is raised if an ACSensitiveData or
ACSensitiveMutableData object is not deallocated before the specified number of seconds since its allocation.
The call stack points to where the object was allocated.

• AC_SENSITIVE_DATA_MAX_RUN_LOOP_ITERATIONS
Set its value to a positive integer. An exception is raised if an ACSensitiveData or ACSensitiveMutableData
object is not deallocated before the run loop in which is was allocated completes the specified number of
iterations. The call stack points to where the object was allocated.

Configuring theMobileIron server to secure sensitive data for your app

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 119

iOS active state change notifications due to AppConnect
control switches
Control switches from an AppConnect app to theMobileIron client app and then back to the app in certain
situations. You can receive notifications when the app is about to move from or to the iOS active state due to these
AppConnect control switches.

Use these notifications to preserve your app’s state before it re-signs from the iOS active state, and restore your
app’s state when it moves back to the iOS active state. For example, if your app is in full screenmode, preserve
that fact so that the app can return to full screenmode.

Implement the following callback methods in the AppConnectDelegate protocol, defined in AppConnect.h:

-(void) applicationWillResignActiveForAppConnect:(AppConnect *)appConnect;

-(void) applicationDidBecomeActiveFromAppConnect:(AppConnect *)appConnect;

NOTE: If the callbackmethods are not implemented in -applicationWillResignActive and -
applicationDidBecomeActive:, the app's state is not immediately updated in theMobileIron
client.

Situations that trigger the state change notifications

The following situations trigger the iOS active state change notifications:
• The app checkin interval expires while an AppConnect app is running. TheMobileIron client app gets

AppConnect policy updates for all the AppConnect apps, and then control switches back to the app that was
running.

• The auto-lock time expires while an AppConnect is running.

Note that the following conditions also cause control to switch to theMobileIron client app, but do not trigger the
state change notifications:
• the first time an app is launched
• the first time an app is relaunched after iOS terminated it
• after the device is powered on and the device user first launches an AppConnect app.
• after the device user logs out of secure apps in theMobileIron client app, and then relaunches an AppConnect

app.

Furthermore, if control switches to theMobileIron client app, but, due to user actions, does not directly switch back
to the app, -applicationDidBecomeActiveFromAppConnect: is not triggered. For example,
-applicationDidBecomeActiveFromAppConnect: is not triggered if control switches from the app to the
MobileIron client app because the auto-lock time expires, but the user presses the Home button instead of entering
the AppConnect passcode.

iOSactive state changenotifications due toAppConnectcontrol switches

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 120

Secure file I/O API details
The AppConnect for iOS SDK provides the following types of secure file I/O APIs:
• POSIX-style secure file APIs
• ACFileHandle class for AppConnect secure file I/O
• Objective-C categories for AppConnect secure file I/O

These APIs:
• Encrypt all file contents when writing, and decrypt the contents when reading.
• Allow an app to share encrypted files with other AppConnect apps. See Secure file I/O API details.
• Fail if secure services are not available. See Secure services API details.
• Some of the ACFileHandle securemethods and some of the category methods take a pointer to an NSError

object as a parameter. See NSError objects that secure Objective-C methods return.

Note The Following:
• Do not use other file I/O methods on a file if you use AppConnect secure file I/Omethods on the file.

When you use secure file I/O APIs on a file, the first step is always to create the file using a secure file I/O API.
After that, use only secure file I/O APIs on the file.
Using both AppConnect secure file I/Omethods and other file I/Omethods can sometimes irreparably corrupt
the files. You can use both POSIX-style AppConnect secure file I/Omethods and the AppConnect secure file
Objective-C subclass and category methods.

• Do not use AppConnect secure file I/Omethods on a file if it contains no secure information.
Apps that write secure data sometimes also write data that does not need to be secured. For example, user
settings and preferences typically do not need to be secured. Use regular file I/Omethods to save this
information.

• Do not use AppConnect secure file I/Omethods to read files bundled with you app, such as strings files,
images, and plists.

POSIX-style secure file APIs

To secure the contents of your app’s files, your Objective-C or Swift app can use C-language, POSIX-style,
AppConnect secure file APIs declared in ACSecureFile.h. These APIs:
• Work only on regular files.

They do not work on directories, pipes, named pipes, character specials, block specials, or symbolic links.
• Encrypt all file contents when writing, and decrypt the contents when reading.
• Have the same parameters, return types, and functionality as their corresponding POSIX APIs, but with the

added encryption and decryption capabilities.
For information on the corresponding POSIX APIs, see, for example, the sections “Standard I/O Streams” and
“System Interfaces” at:
http://pubs.opengroup.org/onlinepubs/009696699/functions/contents.html

• Fail if secure services are not available.
• Provide additional error information besides setting errno.

The following table shows each secure file I/O API and its corresponding POSIX API:

Secure file I/OAPI details

http://pubs.opengroup.org/onlinepubs/009696699/functions/contents.html

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 121

Secure File I/O API Corresponding POSIX API

ACSecureFileClose() close()

ACSecureFileLseek() lseek()

ACSecureFileOpen() open()

ACSecureFilePread() pread()

ACSecureFilePwrite() pwrite()

ACSecureFileRead() read()

ACSecureFileReadv() readv()

ACSecureFileRename() rename()

ACSecureFileWrite() write()

ACSecureFileWritev() writev()

ACSecureFstat() fstat()

ACSecureFtruncate() ftruncate()

ACSecureLstat() lstat()

ACSecureTruncate() truncate()

TABLE 19. SECURE FILE I/OAPI AND CORRESPONDING POSIX API

Additional error returns using ACSecureFileLastError()

The secure file I/O APIs add a layer on top of the POSIX APIs to provide encryption. This layer allows the secure
file I/O APIs to providemore detailed error information than available in errno. This additional error information is
available through themethod ACSecureFileLastError(), defined in ACSecureFile.h:

int ACSecureFileLastError(int fd);

You can call this method when:
• a POSIX-style secure file I/O API has failed.
• the failedmethod operated on a valid and open file descriptor.

The ACSecureFileLastError() method returns one of the following enumeration values, defined in ACError.h:

Additionalerror returns usingACSecureFileLastError()

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 122

Return value Description

ACE_NO_ERROR No error occurred.

ACE_NO_KEYS_ERROR AppConnect encryption keys are not available.

This error occurs when secure services are not available. See The
secureServicesAvailability and secureFileIOPolicy properties .

ACE_FILE_TOO_BIG_ERROR The operation would result in exceeding themaximum file size, which
is 6,961,618,944 bytes.

ACE_NEGATIVE_FILE_LEN_ERROR The operation would result in a negative file size.

ACE_LOW_MEMORY_ERROR A memory alloc failed while trying to perform the operation.

ACE_BAD_KEY_OR_CORRUPT_DATA_
ERROR

An encryption operation failed, due to either a corrupt encryption key
or other corrupt data.

Some situations that can cause this error are:
• The device user has uninstalled and reinstalled theMobileIron

client app, and re-registered it with theMobileIron server.
• Mixing secure and regular file routines on a file.

ACE_INVALID_ARG One of the arguments had an invalid value.

ACE_REGULAR_FILE_ONLY_ERROR AnNSURL parameter is not a file URL. The operation is allowed only
on regular files.

ACE_INTERNAL_ERROR An error occurred in the encryption layer of the function. The file is
possibly no longer accessible.

TABLE 20.ACSECUREFILELASTERROR() RETURNVALUES

The following table shows which secure file I/O APIs set these additional error values:

Secure File I/O API Sets these additional return values

ACSecureFileClose() None

ACSecureFileLseek() • ACE_NO_KEYS_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_NEGATIVE_FILE_LEN_ERROR
• ACE_INVALID_ARG

ACSecureFileOpen() None

ACSecureFilePread() • ACE_NO_KEYS_ERROR
• ACE_READ_ON_WRITEONLY_ERROR
• ACE_INTERNAL_ERROR
• ACE_LOW_MEMORY_ERROR

TABLE 21.ADDITIONAL RETURNVALUES SET BY SECURE FILE I/OAPIS

Additionalerror returns usingACSecureFileLastError()

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 123

Secure File I/O API Sets these additional return values

• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR

ACSecureFilePwrite() • ACE_NO_KEYS_ERROR
• ACE_WRITE_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFileRead() • ACE_NO_KEYS_ERROR
• ACE_READ_ON_WRITEONLY_ERROR
• ACE_INTERNAL_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR

ACSecureFileReadv() • ACE_NO_KEYS_ERROR
• ACE_READ_ON_WRITEONLY_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFileRename() None

ACSecureFileWrite() • ACE_NO_KEYS_ERROR
• ACE_WRITE_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFileWritev() • ACE_NO_KEYS_ERROR
• ACE_WRITE_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFstat() • ACE_NO_KEYS_ERROR
• ACE_INTERNAL_ERROR

TABLE 21.ADDITIONAL RETURNVALUES SET BY SECURE FILE I/OAPIS (CONT.)

Additionalerror returns usingACSecureFileLastError()

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 124

Secure File I/O API Sets these additional return values

ACSecureFtruncate() • ACE_NO_KEYS_ERROR
• ACE_TRUNC_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_NEGATIVE_FILE_LEN_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_INTERNAL_ERROR

ACSecureLstat() None

ACSecureTruncate() None

TABLE 21.ADDITIONAL RETURNVALUES SET BY SECURE FILE I/OAPIS (CONT.)

ACFileHandle class for AppConnect secure file I/O

The AppConnect for iOS SDK provides oneObjective-C subclass for secure file I/O:

@interface ACFileHandle:NSFileHandle

ACFileHandle is declared in ACFileHandle.h.

To secure the contents of your app’s files, your app can use ACFileHandle instead of NSFileHandle. Note that
ACFileHandle:
• Works only on regular files.

It does not work on directories, sockets, pipes, or devices as NSFileHandle does.
• Overrides most of the NSFileHandlemethods, encrypting all file contents when writing, and decrypting the

contents when reading.
• Adds methods to support a special error indicating that the encryption key is not available. Thesemethods

encrypt all file contents when writing, and decrypt when reading.
Each of these addedmethods correspond to an overriddenmethod. The difference is that the addedmethod
takes a pointer to an NSError object as a parameter.

NOTE: Always use the addedmethod that has anNSError parameter rather than the corresponding
overriddenmethod. The NSError parameter allows you to code the error handling necessary
when the encryption key is not available.

• Does not support asynchronous file I/O.
ACFileHandle does not override themethods of NSFileHandle related to asynchronous I/O. Calling one of the
NSFileHandle asynchronous I/Omethods on a ACFileHandle object throws an exception.

• Cannot be used if secure services are not available.

Overridden and added NSFileHandle methods

ACFileHandle overrides many methods of NSFileHandle to provide secure file I/O. It also adds methods
corresponding to overriddenmethods to support an NSError parameter. The NSError parameter allows you to code
the error handling necessary when the encryption key is not available.

ACFileHandle class for AppConnect secure file I/O

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 125

The following table lists the overridden and addedmethods. Use themethods just as you would use the
corresponding NSFileHandlemethods, with the differences given in the table.

NOTE: If an overriddenmethodhas acorresponding addedmethod that includes anNSError
parameter, always use the addedmethod.

Overridden and added methods Usage differences with NSFileHandle
method

+ (id) fileHandleForReadingAtPath:(NSString *)path; The path parameter must be a regular file.

NOTE: Do not use. Use instead the
corresponding addedmethod
that includes anNSError
parameter.

+ (id) fileHandleForReadingAtPath:(NSString *)path

error:(NSError *__autoreleasing *) error;

The path parameter must be a regular file.

Adds an NSError parameter.

+ (id) fileHandleForReadingFromURL:(NSURL *)url

error:(NSError *__autoreleasing *) error;

The url parameter must be a file URL, and
point to a regular file.

+ (id) fileHandleForUpdatingAtPath:(NSString *)path; The path parameter must be a regular file.

NOTE: Do not use. Use instead the
corresponding addedmethod
that includes anNSError
parameter.

+ (id) fileHandleForUpdatingAtPath:(NSString *)path

error:(NSError *__autoreleasing *) error;

The path parameter must be a regular file.

Adds an NSError parameter.

+ (id) fileHandleForUpdatingURL:(NSURL *)url

error:(NSError *__autoreleasing *) error;

The url parameter must be a file URL, and
point to a regular file.

+ (id) fileHandleForWritingAtPath:(NSString *)path; The path parameter must be a regular file.

NOTE: Do not use. Use instead the
corresponding addedmethod
that includes anNSError
parameter.

+ (id) fileHandleForWritingAtPath:(NSString *)path

error:(NSError *__autoreleasing *) error;

The path parameter must be a regular file.

Adds an NSError parameter.

+ (id) fileHandleForWritingToURL:(NSURL *)url

error:(NSError *__autoreleasing *)error;

The url parameter must be a file URL, and
point to a regular file.

TABLE 22.NSFILEHANDLE OVERRIDDENAND ADDED METHODS

OverriddenandaddedNSFileHandlemethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 126

Overridden and added methods Usage differences with NSFileHandle
method

- (NSData *) availableData; No usage differences.

NOTE: Do not use. Use instead the
corresponding addedmethod
that includes anNSError
parameter.

- (NSData *) availableDataWithError:

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (NSData *) readDataToEndOfFile; No usage differences.

NOTE: Do not use. Use instead the
corresponding addedmethod
that includes anNSError
parameter.

- (NSData *) readDataToEndOfFileWithError:

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (NSData *) readDataOfLength:(NSUInteger) length; No usage differences.

NOTE: Do not use. Use instead the
corresponding addedmethod
that includes anNSError
parameter.

- (NSData *) readDataOfLength:(NSUInteger) length

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (void) writeData:(NSData *) data; No usage differences.

NOTE: Do not use. Use instead the
corresponding addedmethod
that includes anNSError
parameter.

- (void) writeData:(NSData *) data

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (unsigned long long) offsetInFile; No usage differences.

- (unsigned long long) seekToEndOfFile; No usage differences.

- (void) seekToFileOffset:

(unsigned long long)offset;

No usage differences.

TABLE 22.NSFILEHANDLE OVERRIDDENAND ADDED METHODS (CONT.)

OverriddenandaddedNSFileHandlemethods

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 127

Overridden and added methods Usage differences with NSFileHandle
method

- (void) truncateFileAtOffset:

(unsigned long long)offset;

No usage differences.

- (void) synchronizeFile; No usage differences.

- (void) closeFile; No usage differences.

TABLE 22.NSFILEHANDLE OVERRIDDENAND ADDED METHODS (CONT.)

ACFileHandle example

The following examplemakes a secure copy of an unsecured file. Specifically, the example:
1. Creates a secure file.
2. Writes the contents of the unsecured file /etc/group into it.
3. Reads the contents of the secure file.

NOTE: For brevity, the example does not include error handling.

- (void) ACFileHandleExample
{

NSString *secureFileName = @"/tmp/secureGroup";
NSError *error;

// Read the contents of /etc/group
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Use the default file manager to create the secure file.
[[NSFileManager defaultManager] createFileAtPath:secureFileName

contents:nil attributes:nil];

// Get the file handle for writing to the secure file just created.
ACFileHandle *acFileHandle =

[ACFileHandle fileHandleForWritingAtPath:secureFileName error:&error];

// Write the contents of /etc/group to the secure file.
[acFileHandle writeData:etcGroupData error:&error];

// Close the secure file.
[acFileHandle closeFile];

// Open the secure file for reading.
acFileHandle = [ACFileHandle fileHandleForReadingAtPath:secureFileName error:&error];

//read entire contents of the secure file.
NSData *duplicate = [acFileHandle readDataToEndOfFileWithError:&error];

// Close the secure file
[acFileHandle closeFile];

ACFileHandle example

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 128

// Note: The contents of NSData objects 'duplicate' and 'etcGroupData'
// are identical.

}

Objective-C categories for AppConnect secure file I/O

The AppConnect for iOS SDK provides the following categories, in which eachmethod corresponds to amethod in
the original class, but provides a secure version of the functionality.
• NSFileManager category
• NSData (ACSecureFile) category
• NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories
• NSKeyedArchiver category
• NSKeyedUnarchiver category
• NSDictionary category
• NSMutableDictionary category
• NSArray category
• NSMutableArray category

Note The Following:
• Thesemethods cannot be used if secure services are not available.
• Thesemethods provide a special error indicating that the encryption key is not available.

Methods that take a pointer to an NSError object as a parameter provide this error indication. See NSError
objects that secure Objective-C methods return.

• The header files are in the AppConnect.framework in <category name>.h.

NSFileManager category

Eachmethod in the NSFileManager category corresponds to amethod in the NSFileManager class, but provides a
secure version of the functionality. For more information about the functionality and usage, see NSFileManager in
developer.apple.com.

NOTE: The categorymethods return anNSError object. Themethods set the properties on the object as
described inNSError objects that secure Objective-Cmethods return.

The following table shows each addedmethod and its correspondingmethod in NSFileManager.

Objective-Ccategories for AppConnect secure file I/O

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 129

Method in category Corresponding method in NSFileManager

- (BOOL)createSecureFileAtPath:

(NSString *)path

contents:(NSData *)contents

attributes:(NSDictionary
*)attributes

error:(

NSError *__autoreleasing
*)error;

- (BOOL)createFileAtPath:

(NSString *)path

contents:(NSData *)contents

attributes:(NSDictionary
*)attributes;

- (BOOL)moveSecureFileAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(

NSError *__autoreleasing
*)error;

- (BOOL)moveItemAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(NSError **)error;

- (BOOL)moveSecureFileAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(

NSError *__autoreleasing
*)error;

- (BOOL)moveItemAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(NSError **)error;

- (BOOL)copySecureFileAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(

NSError *__autoreleasing
*)error;

- (BOOL)copyItemAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(NSError **)error;

- (BOOL)copySecureFileAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(

NSError *__autoreleasing
*)error;

- (BOOL)copyItemAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(NSError **)error;

TABLE 23.NSFILEMANAGER CATEGORY METHODS

NSFileManager category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 130

Method in category Corresponding method in NSFileManager

- (NSData *)secureContentsAtPath:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

- (NSData *)contentsAtPath:

(NSString *)path;

- (BOOL)secureContentsEqualAtPath:

(NSString *)path1

andPath:(NSString *)path2

error:(

NSError *__autoreleasing
*)error;

- (BOOL)contentsEqualAtPath:

(NSString *)path1

andPath:(NSString *)path2;

- (NSDictionary *)

attributesOfSecureFileAtPath:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

- (NSDictionary *)

attributesOfItemAtPath:

(NSString *)path

error:(NSError **)error;

TABLE 23.NSFILEMANAGER CATEGORY METHODS (CONT.)

Example:

The following example shows how tomove a secure file to a new location. Specifically, the example:
1. Creates a secure file.
2. Writes the contents of the unsecured file /etc/group into the secure file.
3. Moves the secure file to a new location using the NSFileManager+ACSecureData category methods.

NOTE: For brevity, the example does not include error handling.

- (void)NSFileManagerCategoryExample
{

NSError *error;

// Read the contents of /etc/group.
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Create a secure file with the contents of /etc/group.
NSString *secureFileName = @"/tmp/secureFile";
[[NSFileManager defaultManager] createSecureFileAtPath:secureFileName

contents:etcGroupData attributes:nil];

// Move the newly created secure file to a new location.
// First, create the source and destination file URLs.
NSString *anotherSecureFileName = @"/tmp/anotherSecureFile";
NSURL *sourceURL = [NSURL fileURLWithPath:secureFileName];

NSFileManager category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 131

NSURL *destinationURL = [NSURL fileURLWithPath:anotherSecureFileName];

// Move the secure file.
[[NSFileManager defaultManager] moveSecureFileAtURL:sourceURL

toURL:destinationURL error:&error];

// Note: The following line incorrectly moves a secure file.
// Mixing regular and secure file I/O on the same file can result
// in corrupted data.
// DO NOT USE.
// [[NSFileManager defaultManager] moveItemAtPath:sourceURL toPath:destinationURL

error:&error];
}

NSData (ACSecureFile) category

Use this category if you to encrypt the data that your app stores. If you want to share the encrypted data with
another AppConnect app, see NSData (ACSecureFile) category.

Eachmethod in the NSData (ACSecureFile) category corresponds to amethod in the NSData class, but provides
a secure version of the functionality. For more information about the functionality and usage, see NSData in
developer.apple.com.

Note The Following:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods that return an NSError object set the properties on the object as described in NSError

objects that secure Objective-C methods return.
• MobileIron recommends that you only use the category methods that return an NSError object. However, to be

consistent with the NSData class, the category includes secure versions of NSDatamethods that do not return
an NSError object.

The following table shows each addedmethod and its correspondingmethod in NSData.

NSData (ACSecureFile)category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 132

Method in category Corresponding method in NSData

+
(id)dataWithContentsOfSecureFile:

(NSString *)path;

+ (id)dataWithContentsOfFile:

(NSString *)path;

+
(id)dataWithContentsOfSecureFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfSecureURL:

(NSURL *)url;

+ (id)dataWithContentsOfURL:

(NSURL *)url;

+ (id)dataWithContentsOfSecureURL:

(NSURL *)url

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfURL:

(NSURL *)url

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

-
(id)initWithContentsOfSecureFile:

(NSString *)path;

- (id)initWithContentsOfFile:

(NSString *)path;

-
(id)initWithContentsOfSecureFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfSecureURL:

(NSURL *)url;

- (id)initWithContentsOfURL:

(NSURL *)url;

- (id)initWithContentsOfSecureURL:

(NSURL *)url

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfURL:

(NSURL *)url

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

TABLE 24.NSDATA (ACSECUREFILE)CATEGORY METHODS

NSData (ACSecureFile)category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 133

Method in category Corresponding method in NSData

- (BOOL)writeToSecureFile:

(NSString *)path

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToFile:

(NSString *)path

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)atomically;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)atomically;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToURL:

(NSURL *)aURL

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

TABLE 24.NSDATA (ACSECUREFILE)CATEGORY METHODS (CONT.)

Example:

The following example shows how to use NSData category methods to:
1. Create a secure file and write data to it.
2. Read the contents of the secure file.

NOTE: For brevity, the example does not include error handling.

- (void)NSDataCategoryExample
{

NSError *error;

// Read the contents of /etc/group.
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Write the contents of /etc/group to a secure file.
NSString *secureFileName = @"/tmp/group.sec";
[etcGroupData writeToSecureFile:secureFileName options:0 error:&error];

// Read the contents of the secure file.
NSData *secureFileData =

[NSData dataWithContentsOfSecureFile:secureFileName options:0 error:&error];

// Note: The contents of NSData objects 'secureFileData' and 'etcGroupData'
// are identical.

}

NSData (ACSecureFile)category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 134

NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories

Use these categories if you want to encrypt the data that your app stores and you want the app to share the data
with another AppConnect app. An encryption group ID determines which apps can share encrypted data. Each
method in these categories corresponds to amethod in NSData or NSFileHandle, and includes an encryption group
ID parameter. Themethods use the encryption group ID when encrypting and decrypting data. Therefore, any app
using the same encryption group ID can share the encrypted data.

Note The Following:
• If you do not want to share the data with another AppConnect app, use NSData (ACSharedSecureFile) and

ACFileHandle (ACSharedSecureFile) categories and NSData (ACSharedSecureFile) and ACFileHandle
(ACSharedSecureFile) categories.

• If you want to share data from aDocument View Controller extension to a host app, see Sharing secure files
from an extension.

Your app receives the encryption group ID in its app-specific configuration key-value pairs. Therefore, to use these
categories, do the following:
1. Define the encryption group ID key name that your app expects to receive in its app-specific configuration.

For example: com.sample.groupID

The number of characters in the key name is not limited.

2. Include information about the key in your documentation for MobileIron server administrators. The information
includes:
- The name of the key
- The other AppConnect apps that are sharing the encrypted data

Each of these other AppConnect apps also do these steps.
3. Handle receiving app-specific configuration as described in App-specific configuration API details .
4. Use the value of the encryption group ID key received in the app-specific configuration in themethods of these

categories.

Note The Following:
• The url parameter in these categories’ methods must be a file URL, and point to a regular file.
• The categories’ methods that return an NSError object set the properties on the object as described in NSError

objects that secure Objective-C methods return.
• MobileIron recommends that you only use themethods that return an NSError object. However, to be

consistent with the NSData and NSFileHandle classes, these categories include secure versions of NSData
and ACFileHandlemethods that do not return an NSError object.

The following table shows each addedmethod for NSData(ACSharedSecureFile) and its correspondingmethod in
NSData.

NSData (ACSharedSecureFile)andACFileHandle (ACSharedSecureFile)categories

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 135

Method in category Corresponding method in NSData

+ (id)dataWithContentsOfSecureFile:

(NSString *)path

encryptionGroupId:(NSString
*)groupId;

+ (id)dataWithContentsOfFile:

(NSString *)path;

+ (id)dataWithContentsOfSecureFile:

(NSString *)path

encryptionGroupId:(NSString
*)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfSecureURL:

(NSURL *)url

encryptionGroupId:(NSString
*)groupId;

+ (id)dataWithContentsOfURL:

(NSURL *)url;

+ (id)dataWithContentsOfSecureURL:

(NSURL *)url

encryptionGroupId:(NSString
*)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfURL:

(NSURL *)url

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfSecureFile:

(NSString *)path

encryptionGroupId:(NSString
*)groupId;

- (id)initWithContentsOfFile:

(NSString *)path;

- (id)initWithContentsOfSecureFile:

(NSString *)path

encryptionGroupId:(NSString
*)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfSecureURL:

(NSURL *)url

encryptionGroupId:(NSString
*)groupId;

- (id)initWithContentsOfURL:

(NSURL *)url;

- (id)initWithContentsOfSecureURL:

(NSURL *)url

- (id)initWithContentsOfURL:

(NSURL *)url

TABLE 25.NSDATA(ACSHAREDSECUREFILE)CATEGORY METHODS

NSData (ACSharedSecureFile)andACFileHandle (ACSharedSecureFile)categories

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 136

Method in category Corresponding method in NSData

encryptionGroupId:(NSString
*)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureFile:

(NSString *)path

encryptionGroupId:(NSString
*)groupId

atomically:(BOOL)flag;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureFile:

(NSString *)path

encryptionGroupId:(NSString
*)groupId

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToFile:

(NSString *)path

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

encryptionGroupId:(NSString
*)groupId

atomically:(BOOL)atomically;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)atomically;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

encryptionGroupId:(NSString
*)groupId

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToURL:

(NSURL *)aURL

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

TABLE 25.NSDATA(ACSHAREDSECUREFILE)CATEGORY METHODS (CONT.)

Example using NSData(ACSharedSecureFile) category methods:

The following example shows how to use NSData(ACSharedSecureFile) category methods to:
1. Create a shared secure file and write data to it.
2. Read the contents of the secure file.

NOTE: For brevity, the example does not include error handling.

- (void)NSDataSharedCategoryExample
{

NSError *error;

// This example assumes the app has already:

NSData (ACSharedSecureFile)andACFileHandle (ACSharedSecureFile)categories

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 137

// 1. Retrieved the encryption group Id value from the config property on
// the AppConnect object.
// 2. Stored the value in an NSString * property named groupId of the current object.

// Read the contents of /etc/group.
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Write the contents of /etc/group to a secure file to be shared with
// another AppConnect app.
NSString *secureFileName = @"/tmp/group.sec";
[etcGroupData writeToSecureFile:secureFileName

encryptionGroupId:self.groupId
options:0 error:&error];

// Read the contents of the secure file.
NSData *secureFileData =

[NSData dataWithContentsOfSecureFile:secureFileName
encryptionGroupId:self.groupId
options:0 error:&error];

// Note: The contents of NSData objects 'secureFileData' and 'etcGroupData'
// are identical.

}

Example using ACFileHandle(ACSharedSecureFile) category methods:

The following example shows how to use ACFileHandle(ACSharedSecureFile) category methods to:
1. Create a shared secure file and write data to it.
2. Read the encrypted contents of the secure file, decrypt the contents, and write it to a unsecured file.

NOTE: For brevity, the example does not include error handling.

- (void)ACFileHandleSharedCategoryExample
{

NSError *error;

// This example assumes the app has already:
// - Retrieved the encryption group Id value from the config property on
// the AppConnect object.
// - Stored the value in an NSString * property named groupId of the current object.
// - Stored URLs in NSString * properties destinationPathURL and decryptedURL
// of the current object.

// Read the contents of /etc/group.
NSError *err;
NSFileHandle *sourceFileHandle =

[NSFileHandle fileHandleForReadingAtPath:@"/etc/group" error:&err];

// Get a file handle to a file to share with another AppConnect app.
ACFileHandle *destFileHandle =

[ACFileHandle fileHandleForWritingToURL:self.destinationPathURL
withEncryptionGroupId:self.groupID
error:&err];

NSData (ACSharedSecureFile)andACFileHandle (ACSharedSecureFile)categories

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 138

//Read chunks and write them using the secure file handle.
NSData *data = nil;
while ((data = [sourceFileHandle readDataOfLength:1024]) && (data.length > 0)) {

[destFileHandle writeData:data error:&Serr];
NSLog(@"Wrote bytes (%@)", err.description);

}
[destFileHandle synchronizeFile];

// Read the contents of the secure file.
ACFileHandle *sharedEncryptedFileHandle =
[ACFileHandle fileHandleForReadingFromURL:self.destinationPathURL

withEncryptionGroupId:self.groupID
error:&err];

// Create an empty file.
[[NSFileManager defaultManager] createFileAtPath:self.decryptedURL.path

contents:nil
attributes:nil];

// Read the encrypted file, decrypt the data, and write it to an unencrypted file.
NSFileHandle *writeToFileHandle =

[NSFileHandle fileHandleForWritingAtPath:@"/etc/group-copy"];
NSData *decryptedData = nil;
while ((decryptedData = [sharedEncryptedFileHandle readDataOfLength:1024]) &&

(decryptedData.length > 0)) {
[writeToFileHandle writeData:decryptedData];

}
[writeToFileHandle synchronizeFile];
// Note: The contents of @"/etc/group" and @"/etc/group-copy" are identical.

}

NSKeyedArchiver category

Eachmethod in the NSKeyedArchiver category corresponds to amethod in the NSKeyedArchiver class, but
provides a secure version of the functionality. For more information about the functionality and usage, see
NSKeyedArchiver in developer.apple.com.

NOTE: The categorymethods return anNSError object. Themethods set the properties on the object as
described inNSError objects that secure Objective-Cmethods return.

The following table shows each addedmethod and its correspondingmethod in NSKeyedArchiver.

NSKeyedArchiver category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 139

Method in category Corresponding method in
NSKeyedArchiver

+ (BOOL)archiveRootObject:

(id)rootObject

toSecureFile:(NSString *)path

error:(

NSError *__autoreleasing
*)error;

+ (BOOL)archiveRootObject:

(id)rootObject

toFile:(NSString *)path;

+ (BOOL)archiveRootObject:

(id)rootObject

toSecureFile:(NSString *)path

atomically:(BOOL)atomically

error:(

NSError *__autoreleasing
*)error;

+ (BOOL)archiveRootObject:

(id)rootObject

toFile:(NSString *)path

atomically:
(BOOL)atomically;

TABLE 26.NSKEYEDARCHIVER CATEGORY METHODS

Example:

The following example shows how to use NSKeyedArchiver and NSKeyedUnarchiver category methods to:
1. Create a secure archive file and write data to it from amutable dictionary.
2. Read the contents of the secure archive file into another mutable dictionary.

NOTE: For brevity, the example does not include error handling.

- (void)NSKeyedArchiverCategoryExample
{

NSError *error;

// Create and populate a mutable dictionary.
NSMutableDictionary *dict = [NSMutableDictionary dictionary];

NSString *key1 = @"baseball";
NSString *value1 = @"white";
[dict setValue:value1 forKey:key1];

NSString *key2 = @"basketball";
NSString *value2 = @"orange";
[dict setValue:value2 forKey:key2];

// Archive the dictionary to a secure file.
NSString *archiveName = @"/tmp/secureArchive";

[NSKeyedArchiver archiveRootObject:dict toSecureFile:archiveName error:&error];

// Unarchive the secure file contents into another dictionary.
NSMutableDictionary *dictCopy = (NSMutableDictionary*)[NSKeyedUnarchiver

unarchiveObjectWithSecureFile:archiveName error:&error];

NSKeyedArchiver category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 140

// Note: The contents of NSMutableDictionary objects 'dict' and 'dictCopy'
// are identical.

}

NSKeyedUnarchiver category

Eachmethod in the NSKeyedUnarchiver category corresponds to amethod in the NSKeyedUnarchiver class, but
provides a secure version of the functionality. For more information about the functionality and usage, see
NSKeyedUnarchiver in developer.apple.com.

NOTE: The categorymethod returns anNSError object. Themethods set the properties on the object as
described inNSError objects that secure Objective-Cmethods return.

The following table shows each addedmethod and its correspondingmethod in NSKeyedUnarchiver.

Method in category Corresponding method in
NSKeyedUnarchiver

+
(id)unarchiveObjectWithSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

+
(id)unarchiveObjectWithFile:

(NSString *)path;

TABLE 27.NSKEYEDUNARCHIVER CATEGORY METHODS

For a code example, see NSKeyedUnarchiver category.

NSDictionary category

Eachmethod in the NSDictionary category corresponds to amethod in the NSDictionary class, but provides a
secure version of the functionality. For more information about the functionality and usage, see NSDictionary in
developer.apple.com.

Note The Following:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. Themethods set the properties on the object as described in

NSError objects that secure Objective-C methods return.

The following table shows each addedmethod and its correspondingmethod in NSDictionary.

NSKeyedUnarchiver category

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 141

Method in category Corresponding method in
NSDictionary

dictionaryWithContentsOfSecureFile:

+ (id) (NSString *)path

error:(

NSError *__autoreleasing
*)error;

+
(id)dictionaryWithContentsOfFil
e:

(NSString *)path;

+ (id)

dictionaryWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

+
(id)dictionaryWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfFile:

(NSString *)path;

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 28.NSDICTIONARY CATEGORY METHODS

Example:

NSDictionarycategory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 142

The following example shows how to use NSDictionary and NSMutableDictionary category methods to:
1. Create a secure file and write data to it from aNSMutableDictionary object.
2. Read the contents of the secure file into an NSDictionary object.

NOTE: For brevity, the example does not include error handling.

- (void)NSDictionaryCategoryExample
{

NSError *error;

// Create and populate a dictionary.
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:@"baseball",

@"white", @"basketball", @"orange", nil];

// Write the dictionary to a secure file.
NSString *secureFileName = @"/tmp/secureDictionary";
[dict writeToSecureFile:secureFileName atomically:TRUE error:&error];

// Create a dictionary with the contents of the secure file.
NSDictionary *dictCopy = [[NSDictionary alloc]

initWithContentsOfSecureFile:secureFileName error:&error];

// Note: The contents of objects 'dict' and 'dictCopy' are identical.
}

NSMutableDictionary category

Eachmethod in the NSMutableDictionary category corresponds to amethod in the NSMutableDictionary class,
but provides a secure version of the functionality. For more information about the functionality and usage, see
NSMutableDictionary in developer.apple.com.

Note The Following:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. Themethods set the properties on the object as described in

NSError objects that secure Objective-C methods return.

The following table shows each addedmethod and its correspondingmethod in NSMutableDictionary.

NSMutableDictionarycategory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 143

Method in category Corresponding method in
NSMutableDictionary

+ (id)

dictionaryWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

+
(id)dictionaryWithContentsOfFil
e:

(NSString *)path;

+ (id)

dictionaryWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

+
(id)dictionaryWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfFile:

(NSString *)path;

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 29.NSMUTABLEDICTIONARY CATEGORY METHODS

For a code example, see NSMutableDictionary category.

NSMutableDictionarycategory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 144

NSArray category

Eachmethod in the NSArray category corresponds to amethod in the NSArray class, but provides a secure
version of the functionality. For more information about the functionality and usage, see NSArray in
developer.apple.com.

Note The Following:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. Themethods set the properties on the object as described in

NSError objects that secure Objective-C methods return.

The following table shows each addedmethod and its correspondingmethod in NSArray.

Method in category Corresponding method in
NSArray

+ (id)

arrayWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfFile:

(NSString *)path;

+ (id)

arrayWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfFile:

(NSString *)path;

TABLE 30.NSARRAY CATEGORY METHODS

NSArraycategory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 145

Method in category Corresponding method in
NSArray

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 30.NSARRAY CATEGORY METHODS (CONT.)

Example:

The following example shows how to use NSArray and NSMutableArray category methods to:
1. Create a secure file and write data to it from aNSMutableArray object.
2. Read the contents of the secure file into an NSArray object.

NOTE: For brevity, the example does not include error handling.

- (void)NSArrayCategoryExample
{

NSError *error;

// Create an array and populate it.
NSArray *array = [NSArray arrayWithObjects:@"one fish", @"two fish", @"red fish",

@"blue fish", nil];

// Write the array to a secure file.
NSString *secureArrayFileName = @"/tmp/secureArray";
[array writeToSecureFile:secureArrayFileName atomically:TRUE error:&error];

// Create an array from the contents of the secure file.
NSArray *arrayCopy = [[NSArray alloc]

initWithContentsOfSecureFile:secureArrayFileName error:&error];

// The contents of the objects 'array' and 'arrayCopy' are identical.
}

NSArraycategory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 146

NSMutableArray category

Eachmethod in the NSMutableArray category corresponds to amethod in the NSMutableArray class, but provides
a secure version of the functionality. For more information about the functionality and usage, see NSMutableArray
in developer.apple.com.

Note The Following:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. Themethods set the properties on the object as described in

NSError objects that secure Objective-C methods return.

The following table shows each addedmethod and its correspondingmethod in NSMutableArray.

Method in category Corresponding method in
NSMutableArray

+ (id)

arrayWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfFile:

(NSString *)path;

+ (id)

arrayWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfFile:

(NSString *)path;

TABLE 31.NSMUTABLEARRAY CATEGORY METHODS

NSMutableArraycategory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 147

Method in category Corresponding method in
NSMutableArray

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 31.NSMUTABLEARRAY CATEGORY METHODS (CONT.)

For a code example, see NSMutableArray category.

NSError objects that secure Objective-Cmethods return

Some of the ACFileHandle securemethods and some of the category methods take a pointer to an NSError object
as a parameter. Thesemethods can set the domain and code properties on the NSError object to:
• the domain NSPOSIXErrorDomain, with the code property set to errno values.
• other domains, such as NSCocoaErrorDomain. The possible values of the code property are the same as

regular Objective-C methods.
• the domain ACErrorDomain, defined in ACError.h. The possible values of the code property are defined in the

enumeration in ACError.h. These values are the same values returned by the ACSecureFileLastError()
method.
Of particular interest when working with secure file I/O APIs are the errors ACE_NO_KEYS_ERROR and ACE_BAD_
KEY_OR_CORRUPT_DATA_ERROR. These errors indicate an encryption failure.
For more information, see NSError objects that secure Objective-C methods return.

Objective-C example

The following example shows how to check the NSError object returned in a secure write method:

- (void)errorHandlingExample
{

// Create data to be securely stored.
NSData *data = [@"secret data" dataUsingEncoding:NSASCIIStringEncoding];

// Set up a couple of data writing options.

NSError objects that secureObjective-Cmethods return

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 148

NSDataWritingOptions options = NSDataWritingAtomic | NSDataWritingFileProtectionComplete;

NSString *secureFilename = @"/tmp/data.sec";
NSError *error;

if (! [data writeToSecureFile:secureFilename options:options error:&error]) {

if ([[error domain] isEqualToString:ACErrorDomain] &&
[error code] == ACE_NO_KEYS_ERROR) {

// Provide logic to handle the situation when
// the encryption key is not available.

}
}

}

Swift example

The following example shows how to check the NSError object returned in a secure write method:

func errorHandlingExample() {

// Create data to be securely stored.
let data = "secret data".data(using: .ascii)! as NSData

// Set up a couple of data writing options.
let options: NSData.WritingOptions = [.atomic, .completeFileProtection]

let secureFilename = "/tmp/data.sec"

do {
try data.write(toSecureFile: secureFilename, options: options)

}

catch(let error as NSError) {

if (error.domain == ACErrorDomain && error.code == ACErrorNoKeys) {

// Provide logic to handle the situation when
// the encryption key is not available.

}
}

}

Sharing secure files from an extension
An AppConnect app can provide an app extension, specifically a Document View Controller extension, to share
secure files with other AppConnect apps. A file can be shared with all AppConnect apps or with only specific
AppConnect apps.

NOTE: To share secure files betweenAppConnect apps, see Secure file I/O API details.

Sharing secure files fromanextension

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 149

Sharing secure documents from an extension requires the following tasks:

l Setting up theMobileIron server for sharing files from an extension

l Setting up the provider app’s Info.plist

l Coding the provider app to share secure files with its extension

l Coding the extension to share files with the host app

l Coding the host app to access the shared file

The sample app SwiftFileSharing illustrates coding these tasks in Swift.

Setting up theMobileIron server for sharing files from an extension

If you want your AppConnect app’s extension to share secure files with other AppConnect apps, define values for
the keys MI_AC_SHARED_GROUP_ID andMI_AC_ACCESS_CONTROL_ID. In the documentation that you
provide to theMobileIron server administrator about your AppConnect, include:

l the values you define

l the AppConnect apps that you want to use your extension to access the secure files

The server administrator sets the key-value pairs in the app configuration of your app and each AppConnect app
that is to share the secure files. If the server administrator does not set MI_AC_SHARED_GROUP_ID, then all
AppConnect apps can access the shared secure files.

NOTE: In theMobileIronCore Admin Portal, app key-value pairs are set up in Policy & Configs >
Configurations, in theApp-specific Configurations section of anAppConnect App
Configuration. In theMobileIronCloudAdmin Portal, the key-value pairs are set up in the
AppConnect Custom Configuration section of the app.

Setting up the provider app’s Info.plist

For a provider app to share secure files through its extension, do the following:

1. Include the following key-value pairs in the app’s Info.plist:

l MI_APP_CONNECT
This key is the root key, and its value is a dictionary of key-value pairs

l MI_AC_KEYCHAIN_ACCESS_GROUP
This key provides a keychain access group that the AppConnect library uses to share secure files
between the provider app and its extension. The value is the app’s identifier prefix followed by a string
you define.
For example:

Settingup theMobileIron server for sharing files fromanextension

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 150

2. In the Xcode project, inCapabilities > Keychain Sharing, add the string you defined. In this example,
the string to add is com.mycompany.MyACSharedFiles.

Coding the provider app to share secure files with its extension

The following sample code illustrates the AppConnect APIs that the provider app uses to share secure files with its
extension. The sample code is followed by a table of the tasks involved.

// When the AppConnect isReady notification is triggered, enable extension support.
-(void)appConnectIsReady:(AppConnect *)appConnect {

[[AppConnect sharedInstance] enableAppExtensionSupport];
}

// Insert code to use the read-only config property on the AppConnect singleton to
// get the MI_AC_SHARED_GROUP_ID key-value pair, if available.

// In this example, the key-value pair was not included, so nil
// is passed to -getCryptoKeysForACFileEncryptionWithSharedGroupID:error: for the group ID.

// When secure services are available, create an encryption key for encrypting secure files.

-(void)appConnect:(AppConnect *)appConnect
secureServicesAvailabilityChangedTo:(ACSecureServicesAvailability)secureServicesAvailability

{

if (secureServicesAvailability == ACSECURESERVICESAVAILABILITY_AVAILABLE) {
NSData *secureKeyData =

[ACWrappedAppKey getCryptoKeysForACFileEncryptionWithSharedGroupID:nil error:nil];

// The secureKeyData object contains the encryption key.
// Store the secureKeyData object in a shared keychain that the extension
// can access.

}
}

Coding theprovider app to share secure files with its extension

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 151

Task AppConnect APIs

1. Enable
extension
support.

Call the -enableAppExtensionSupport: method on the AppConnect singleton object.

Header
• AppConnectInterface.h

2. Get the value of
theMI_AC_
SHARED_
GROUP_ID
key-value pair.

Use the read-only config property on the AppConnect singleton to get theMI_AC_
SHARED_GROUP_ID key-value pair, if available.

Related topics and header files
• App-specific configuration API details
• AppConnectInterface.h

3. Make sure
secure services
are available.

Check if the secureServicesAvailability property on the AppConnect singleton has
the value ACSECURESERVICESAVAILABILITY_AVAILABLE.

Continue only if secure services are available

Related topics and header files
• Secure services API details
• AppConnectInterface.h

TABLE 32.CODING THE PROVIDER APP TO SHARE SECURE FILESWITH ITS EXTENSION

Coding theprovider app to share secure files with its extension

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 152

Task AppConnect APIs

4. Create an
encryption key
for encrypting
shared files.

Method

+(NSData *)
getCryptoKeysForACFileEncryptionWithSharedGroupID:(NSString *)groupID

error:(NSError *_autoreleasing *)error;

Parameters
• groupID

Pass the value of theMI_AC_SHARED_GROUP_ID key-value pair. If this key-
value pair is not available, pass nil. Passing nil means that all AppConnect apps
can decrypt the shared file.

• error
If themethod fails to create an encryption key, error is set to the appropriate
NSError object.

Return value
• NSData object containing key used for shared file encryption

Header file

• ACWrappedAppKey.h

5. Store the
returned
encryption key
in a shared
keychain item
used by the
provider app and
its extension.

TABLE 32.CODING THE PROVIDER APP TO SHARE SECURE FILESWITH ITS EXTENSION (CONT.)

Coding the extension to share files with the host app

The following sample code illustrates what the Document View Controller extension does to share secure files with
a host app. The sample code is followed by a table of the tasks involved.

// Add the following ExtensionManager class to your extension code. Your extension will
// create a singleton instance of the class, which takes care of all the
// AppConnect-related operations.

@class ExtensionManager;

@protocol ExtensionManagerProtocol
-(void)extensionManager:(ExtensionManager *)extensionManager

appConnectAccessControlStateDeterminedAs:(ACExtensionAccessState)state;
@end

Coding theextension to share files with the hostapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 153

@interface ExtensionManager: NSObject <AppConnectExtensionInterfaceProtocol>
@property (weak) AppConnectExtensionInterface *acInterface;
@property (weak) id<ExtensionManagerProtocol> delegate;
@end

@implementation ExtensionManager

+(instancetype)sharedInstance {
static ExtensionManager *sharedInstance = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{

sharedInstance = [[ExtensionManager alloc] init];
sharedInstance.acInterface = [AppConnectExtensionInterface appConnectExtensionInstance];
sharedInstance.acInterface.delegate = sharedInstance;

});
return sharedInstance;

}

-(void)requestAccessControlState {
// Initiate a process that determines whether the host app is allowed to
// access the extension.
[self.acInterface determineAccessControlState];

}

-(void)appConnectAccessControlStateDeterminedAs:(ACExtensionAccessState)state {
[self.delegate extensionManager:self appConnectAccessControlStateDeterminedAs:state];

}

@end

//
//
// In your UIDocumentPickerExtensionViewController implementation, include the following
code:
//
//

-(void)prepareForPresentationInMode:(UIDocumentPickerMode)mode {

// Insert code to present a view controller appropriate for the picker mode.
// Then...

switch (mode) {
case UIDocumentPickerModeOpen:
case UIDocumentPickerModeImport:

ExtensionManager *extensionManager = [ExtensionManager sharedInstance];
[extensionManager setDelegate:self];
[extensionManager requestAccessControlState];

// Start a spinner while waiting to find out if the host app is allowed

Coding theextension to share files with the hostapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 154

// to access the extension.
[_spinner startAnimating];

}
}

//
//
// Your UIDocumentPickerExtensionViewController class implements
// the ExtensionManagerProtocol.
//

-(void)extensionManager:(ExtensionManager *)extensionManager
appConnectAccessControlStateDeterminedAs:(ACExtensionAccessState)state {

currentState = state;
[_spinner stopAnimating];

switch (currentState) {

case ACExtensionAccessStateNoRequest:
// A non-AppConnect App has launched the extension.
// Do not share the file. Take necessary steps, such as notifying the user.
break;

case ACExtensionAccessStateNotEnabled:
// Either the administrator did not configure MI_AC_ACCESS_CONTROL_ID for
// the provider app, or the provider app has not setup access control by
// calling -enableAppExtensionSupport:.
// Do not share the file. Take necessary steps, such as notifying the user.
break;

case ACExtensionAccessStateBlocked:
// The host app does not have access to this extension. It does not have
// the same MI_AC_ACCESS_CONTROL_ID as the provider app.
// Do not share the file. Take necessary steps, such as notifying the user.
break;

case ACExtensionAccessStateNotBlocked:
// Share the wrapped file. An AppConnect app has launched the extension.
break;

}
}

Coding theextension to share files with the hostapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 155

Task AppConnect APIs and sample code

1. Define an ExtensionManager class that is
derived from NSObject and implements the
AppConnectExtensionInterfaceProtocol.

The sample code provides a full implementation of an
ExtensionManager class that you can use.

It includes the implementation of:
• the AppConnectExtensionInterfacemethod:
-(BOOL) determineAccessControlState;

• the AppConnectExtensionInterfaceProtocol callback
method:

-(void) appConnectAccessControlStateDeterminedAs:
(ACExtensionAccessState)state;

Header file
• AppConnectExtensionInterface.h in the

AppConnectExtension.framework

2. Your
UIDocumentPickerExtensionViewController
class implements the
ExtensionManagerProtocol.

The sample code explains the handling of each
ACExtensionAccessState value in the
ExtensionManagerProtocol callback method. The app
continues to file sharing processing only if the value is
ACExtensionAccessStateNotBlocked.

3. Your
UIDocumentPickerExtensionViewController
object does the following:
- Creates a singleton instance of the

ExtensionManager class.
- Sets the ExtensionManager’s delegate

so that you can receive the callback.
- Initiates the request to determine if the

host app is allowed to use the extension.

The sample code shows this sequence in
-prepareForPresentationInMode:.

TABLE 33.CODING THEDOCUMENTVIEWCONTROLLER EXTENSION TO SHARE FILESWITH THE HOST APP

Coding theextension to share files with the hostapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 156

Task AppConnect APIs and sample code

4. When the ExtensionManagerProtocol
callback method is called with state set to
ACExtensionAccessStateNotBlocked,
read the encryption key stored as an
NSData object in the shared keychain item.

5. Wrap the selected file using the encryption
key.

Method

+(BOOL)wrapFileAtPath:(NSString *)path
toPath:(NSString *)toPath

withCryptoBlock:(NSData *)cryptoBlock
actualFileName:(NSString *fileName)
error:(NSError *_autoreleasing *)error;

Parameters
• path

Pass the file URL of the selected file.
• toPath

Pass the file URL of where the resulting wrapped file
should be stored.

• cryptoBlock
Pass the NSData object containing the encryption key.

• actualFileName
Optional. File name for the wrapped file, if it should be
different than the original file name.

• error
If themethod fails, error is set to the appropriate
NSError object.

Return value
• YES if successful. Otherwise NO.

Header file
• ACWrappedFile.h in the

AppConnectExtension.framework

TABLE 33.CODING THEDOCUMENTVIEWCONTROLLER EXTENSION TO SHARE FILESWITH THE HOST APP
(CONT.)

Coding the host app to access the shared file

The following sample code illustrates what the host app does to access the secure file shared by the extension.
The sample code is followed by a table of the tasks and header files involved.

// Insert code to use the read-only config property on the AppConnect singleton to
// get the MI_AC_SHARED_GROUP_ID key-value pair, if available.
// In this example, the key-value pair was not included. Therefore, nil
// is passed for the group ID parameter to -readWrappedFileAtPath:sharedGroupID:error:,

Coding the hostapp toaccess the shared file

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 157

// which gets the file handle of the shared, wrapped file.

-(NSURL *)getDecryptedFileURL:(NSURL *)url {

ACWrappedFileReadHandle *readHandle = [ACUnwrappedFile readWrappedFileAtPath:url.path
sharedGroupID:nil error:&error];

if (readHandle) {

NSFileHandle *writeToFileHandle =
[NSFileHandle fileHandleForWritingAtPath:decURL.path];

// Decrypt the file by reading it with the ACWrappedFileReadHandle object.
// This snippet then writes it to an unencrypted file.

NSData *decryptedData = nil;
while ((decryptedData =

[readHandle readDataOfLength:1024]) && (decryptedData.length > 0)) {

[writeToFileHandle writeData:decryptedData];
}

[writeToFileHandle synchronizeFile];
[writeToFileHandle closeFile];

// You can remove the wrapped file after decrypting it.
[[NSFileManager defaultManager] removeItemAtURL:url error:nil];
return decURL;

}
else if (error && error.code == ACWrappedFileReadErrorUnknownWrapperFormat) {

// The file is not wrapped. It is not from an AppConnect app’s extension.
// It can be used directly.
return url;

}
}

Coding the hostapp toaccess the shared file

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 158

Task AppConnect APIs

1. Get the value of the
MI_AC_SHARED_
GROUP_ID key-
value pair.

Use the read-only config property on the AppConnect singleton to get theMI_AC_
SHARED_GROUP_ID key-value pair, if available.

Related topics and header files
• App-specific configuration API details
• AppConnectInterface.h

2. Get the file handle
of the shared,
wrapped file.

Method

+(ACWrappedFileReadHandle *) readWrappedFileAtPath:(NSString *)path
sharedGroupID:(NSString *)groupID
error:(NSError *__autoreleasing *)error;

Parameters
• path

Pass the file URL of the file returned from the extension.
• sharedGroupID

Pass the value of theMI_AC_SHARED_GROUP_ID key-value pair. If this key-
value pair is not available, pass nil.

• error
If themethod fails, error is set to the appropriate NSError object.

Return value
• If successful, returns the file handle of the shared, wrapped file as a

ACWrappedFileReadHandle object. Otherwise, returns nil.

Header files
• ACUnwrappedFile.h in the AppConnect.framework
• ACWrappedFileReadHandle.h in the AppConnect.framework

3. Using the file
handle, read and
decrypt the file’s
contents.

Methods

Use themethods in ACFlleHandle.h to read and decrypt the file’s contents.

TABLE 34.CODING THE HOST APP TO ACCESS THE SHARED FILE

AppTunnel diagnostic API details
The AppTunnel diagnostic API provides troubleshooting information for an app’s use of AppTunnel with HTTP/S
tunneling. Typically, you add a user interface, such as amenu item, to invoke a diagnostic run for tunneling to a
specified URL. Your app then displays or logs the results of the diagnostic run. TheMobileIron server administrator
uses the results to troubleshoot AppTunnel configuration for the app.

NOTE: AnAppTunnel diagnostic API is also available for Xamarin projects. See "How to include the
XamarinC# binding in your Xamarin project" in Developing AppConnect Appswith Xamarin .

AppTunneldiagnostic API details

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 159

The AppTunnel diagnostic API provides the following AppTunnel information:
• Whether the device received any AppTunnel rules
• Whether the URL requestedmatched an AppTunnel rule
• Whether a valid pinned Standalone Sentry server certificate is available for tunneling. This is the certificate that

devices use to know that the Sentry used for AppTunnel is a trusted server.
• Whether a valid client identity is available. This client identity is used to authenticate the app to the Sentry.
• Whether the Sentry is reachable
• The HTTP/S status code returned from the backend server
• Whether AppTunnel is blocked
• Whether the device received data from the backend server
• Whether the backend server redirected the URL request
• Whether the backend server issued an authentication challenge

The API is defined in the Networking category of the AppConnect interface, in the header file
AppConnect+Networking.h.

Running an AppTunnel diagnostic

To run an AppTunnel diagnostic, use the followingmethod:

-(NSInteger)diagnoseTunnelingForURL:(NSURL *)url
resultHandler:(void (^)(ACTunnelingDiagnosticResult *result,

NSInteger runID)) resultHandler;

Themethod -diagnoseTunnelingForURL:resultHandler: makes successive calls to the resulthandler block
as it progresses through the diagnostic run for the specified URL. Each call to the resulthandler block contains
information about processing the URL for tunneling. When the diagnostic run is complete, -
diagnoseTunnelingForURL:resultHandler: makes a final call to the resulthandler block, passing it nil for
the result.

IMPORTANT: The URL request must have no side effects, suchasmodifying data on the server. This
requirement is because if the URL request is successful, the destination server receives the
request, but your appdoes not receive the response.

For example, the following code snippets (one for Objective-C and one for Swift):
• Passes a URL from a text field.
• Passes an in-line block to log the results of the diagnostic run.

Objective-C example

[[AppConnect sharedInstance] diagnoseTunnelingForURL:
[NSURL URLWithString:self.urlField.text]
resultHandler:^(ACTunnelingDiagnosticResult *result, NSInteger runID) {

if (result) {
NSLog(@"Diagnostic run %I result %@: %@", runID,

result.successful?@"Success":@"FAILURE",
result.resultDescription);

 } else {

RunninganAppTunneldiagnostic

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 160

NSLog(@"Diagnostic run %@I ended", runID);
 }

 }];

Swift example

AppConnect.sharedInstance()?.diagnoseTunneling (
for: URL(string: self.urlField.text)!,

resultHandler: { (result, runID) in

if (nil != result) {

print("Diagnostic run \(runID) result \(result!.isSuccessful ? "Success" :
"FAILURE"): \(result!.description)")

}
else {

print("Diagnostic run \(runID) ended")
}

}
)

}

Formore information, continue to:
• -diagnoseTunnelingForURL:resultHandler: parameters
• -diagnoseTunnelingForURL:resultHandler: return value
• The result handler for diagnostic runs
• The ACTunnelingDiagnosticResult class
• The ACTunnelingDiagnosticResultCode enumeration
• AppTunnel configuration troubleshooting checklist for MobileIron Core

-diagnoseTunnelingForURL:resultHandler: parameters

The following table describes the parameters that you pass to
-diagnoseTunnelingForURL:resultHandler:.

Parameter Description

url AnNSURL object specifying the URL to diagnose.

resultHandler A callback block that you define. It is called successive times with each result as the
diagnostic run progresses.

TABLE 35. PARAMETERS PASSED TO -DIAGNOSETUNNELINGFORURL:RESULTHANDLER

-diagnoseTunnelingForURL:resultHandler: return value

Themethod -diagnoseTunnelingForURL:resultHandler: returns an NSInteger value. The value is the same as
the value of the runID parameter returned to the resulthandler block. The runID is a unique number assigned by
each diagnostic run. The runID parameter is useful for distinguishing different runs of the AppTunnel diagnostic.

-diagnoseTunnelingForURL:resultHandler:parameters

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 161

For each call to -diagnoseTunnelingForURL:resultHandler:, you pass:
• a URL
• a resulthandler block

The runID associates the results passed back in the resulthandler block with the URL being diagnosed.

The result handler for diagnostic runs

In the resulthandler block, put the logic to handle the successive results of a diagnostic run. For example, log the
values of the properties of the result parameter.

The resulthandler block has the following parameters:

Parameter Description

result An ACTunnelingDiagnosticResult object returned with each callback to the result handler.

When the diagnostic run is complete, -diagnoseTunnelingForURL:resultHandler: makes a
final call to the resulthandler block, passing it nil for the result.

runID A variable to contain the ID that associates the returned result with a URL. The runID is a
unique number assigned by each diagnostic run. The runID parameter is useful for
distinguishing different runs of the AppTunnel diagnostic.

For each call to -diagnoseTunnelingForURL:resultHandler:, you pass:
• a URL
• a resulthandler block

The runID associates the results passed back in the resulthandler block with the URL being
diagnosed.

TABLE 36. RESULTHANDLER BLOCK PARAMETERS

The ACTunnelingDiagnosticResult class

The ACTunnelingDiagnosticResult class represents one of the results of a diagnostic run. The result handler
receives an instance of the ACTunnelingDiagnosticResult class.

The object has these properties:

The result handler for diagnostic runs

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 162

Property Description

resultCode A ACTunnelingDiagnosticResultCode value.

successful YES if the result was successful. Otherwise, NO.

timestamp AnNSDate object containing the timestamp for when the result occurred.

resultDescription A description of the result.

Important: These descriptions are for readability only, and possibly will change in
future releases. Do not depend on these strings for programmatic decisions. Use the
resultCode.

TABLE 37.ACTUNNELINGDIAGNOSTICRESULT PROPERTIES

The ACTunnelingDiagnosticResultCode enumeration

The ACTunnelingDiagnosticResultCode enumeration values are returned in each result of a diagnostic run. Not all
values are returned with each run, and some values can be returnedmore than once in each run. For example, if a
URL request is redirectedmore than once, ACTDR_REDIRECT is returnedmore than once.

The enumeration values fall into these categories:

Category Description

Diagnostic run life cycle codes Status of diagnostic run’s progress.

Policy integrity codes Information about the AppTunnel policy data for the app on the device.

Certificate challenges codes Whether using the available certificates is successful.

Networking codes Whether the Standalone Sentry is reachable.

Connection result codes Information about the HTTP/S connection

TABLE 38.ACTUNNELINGDIAGNOSTICRESULTCODE ENUMERATIONVALUES

The following table provides:
• the enumeration’s values
• a description of each value
• the values of the successful and resultDescription properties in the ACTunnelingDiagnosticResult

object.

IMPORTANT: These resultDescription strings are for readability only, andpossiblywill change in future
releases. Do not dependon these strings for programmatic decisions. Use the resultCode.

TheACTunnelingDiagnosticResultCodeenumeration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 163

Value Details

Diagnostic run life cycle codes

ACTDR_RUN_STARTED The run started properly.

successful: Always YES.

resultDescription:

Diagnostic run started. Requesting (URL)

ACTDR_REDIRECT The server redirected to a new URL.

successful: Always YES.

resultDescription:

Redirected by server to new URL (url)

ACTDR_COMPLETED Indicates whether the diagnostic run completed successfully.

successful: YES if completed without an error. Otherwise NO.

resultDescription:

Session completed normally

or

Session completed with error: (error)

ACTDR_ABORT_UNSUPPORTED_
AUTH

The diagnostic run ended because the server issued an authentication
challenge, such as basic authentication. This challenge is normally
handled by the app, so the diagnostic run cannot continue. Typically, if
the diagnostic run gets to this result, AppTunnel is working.

successful: Always YES.

resultDescription:

Server issued an auth challenge type that the diagnostic does not
support. Aborting the diagnostic and the auth challenge. Auth challenge
type is (auth type)

Policy integrity codes, evaluating AppTunnel policy information for the app on the device

ACTDR_RULE_MATCH Indicates whether the URLmatches an AppTunnel rule. If the URL
redirects, another result with this code is returned for the redirection
URL.

successful: YES if matched. Otherwise NO.

resultDescription:

Request matches a tunneling rule so it will be tunneled.

or

Request does not match a tunneling rule so it will not be tunneled.

TABLE 39.ACTUNNELINGDIAGNOSTICRESULTOBJECT DESCRIPTIONS FOR EACH RESULT CODE

TheACTunnelingDiagnosticResultCodeenumeration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 164

Value Details

or

AppTunnel policy has no tunneling rules.

ACTDR_POLICY_SERVER_CERT Indicates whether a valid pinned Sentry certificate is available for
tunneling. This is the certificate that the AppConnect Library in the app
uses to know that the Sentry used for AppTunnel is a trusted server.

Note different Sentrys can provide tunneling for different URL requests.
Each Sentry has its own pinned certificate.

successful: YES if the certificate is valid. Otherwise NO.

resultDescription:

Server certificate in the AppTunnel policy is valid.

or

Server certificate in the AppTunnel policy is invalid. It may have
expired.

or

No server certificate was found in the AppTunnel policy.

ACTDR_POLICY_CLIENT_IDENTITY Indicates whether a valid client identity is available. This client identity
is used to authenticate the app to the Sentry.

successful: YES if the client identity is valid. Otherwise NO.

resultDescription:

Client identity in the AppTunnel policy appears to be valid.

or

Client certificate in the AppTunnel policy is invalid. It may have expired.

or

No client identity in the AppTunnel policy.

Certificate challenges codes, indicating whether using the certificates is successful

ACTDR_SEND_CLIENT_CERT Indicates whether the app successfully authenticated the app to the
Sentry using the available client identity.

successful: YES if authentication to the Sentry succeeded. Otherwise
NO.

resultDescription:

Authenticated with client identity

ACTDR_EVALUATE_SENTRY_CERT Indicates whether the Sentry passed evaluation using the pinned
Sentry certificate. This is the certificate that the AppConnect Library in
the app uses to know that the Sentry used for AppTunnel is a trusted

TABLE 39.ACTUNNELINGDIAGNOSTICRESULTOBJECT DESCRIPTIONS FOR EACH RESULT CODE (CONT.)

TheACTunnelingDiagnosticResultCodeenumeration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 165

Value Details

server.

successful: YES if the certificate is trusted. Otherwise NO.

resultDescription:

Server certificate passed all evaluation

or

Server certificate was not trusted. The trust result was (trust result)

Networking codes

ACTDR_DNSLOOKUP_SENTRY Indicates whether a DNS lookup for the Sentry has succeeded.

successful: YES if the lookup succeeded. Otherwise NO.

resultDescription:

DNS resolution of the Sentry <Sentry hostname> succeeded

or

DNS resolution of the Sentry <Sentry hostname> failed

TABLE 39.ACTUNNELINGDIAGNOSTICRESULTOBJECT DESCRIPTIONS FOR EACH RESULT CODE (CONT.)

TheACTunnelingDiagnosticResultCodeenumeration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 166

Value Details

Connection result codes

ACTDR_RESPONSE Indicates that the server returned an HTTP status code. The value of
the HTTP status code is in the resultDescription.

successful: YES for HTTP status codes 1xx, 2xx, or 3xx. NO for 4xx
and 5xx.

resultDescription:

Received HTTP status code (code)

or

AppTunnel is blocked.

Note The Following:
• SomeHTTP status codes are handled and consumed by iOS, and

therefore do not generate a callback to the result handler.
• Blocking AppTunnel blocks access to web sites configured to use

AppTunnel. TheMobileIron administrator can block AppTunnel for a
device through amanual action or an automatic action triggered by
a security violation on the device.

ACTDR_RECEIVED_DATA Indicates that data was received from the backend server in the
HTTP/S response.

successful: Always YES.

resultDescription:

Received (bytes) bytes of data

NOTE: This result shows the bytes as theyare received, not the
total number of bytes.

TABLE 39.ACTUNNELINGDIAGNOSTICRESULTOBJECT DESCRIPTIONS FOR EACH RESULT CODE (CONT.)

AppTunnel configuration troubleshooting checklist for MobileIron Core

If an app is not successfully tunneling to its app server, check the following in theMobileIron Core Admin Portal:

AppTunnelconfiguration troubleshootingchecklist for MobileIronCore

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 167

Admin Portal location Troubleshooting actions

Settings >
Preferences

UnderAdditional Products, make sure you have enabled the appropriate
features.

Make sure you have selected Enable App Tunnel for third-party and in-house
apps, if you are using AppTunnel for any app besides Docs@Work.

Policies & Configs >
Policies

AppConnect global
policy

Check the AppConnect global policy configuration:
1. In theAppConnect field, make sure you have selectedEnabled.
2. Make sure AppConnect global policy is applied to a label belonging to the

device. If you are using the default AppConnect global policy, this step is not
necessary.

3. If you do not create an AppConnect container policy for the app, select
Authorize forApps without an AppConnect container policy.

Settings > Sentry Make sure the Standalone Sentry is configured with a certificate that devices use
to know that the Sentry used for AppTunnel is a trusted server.

To view the Sentry certificate in the Admin Portal for MobileIron Core.
1. Go toSettings > Sentry.
2. Find the line for the appropriate Sentry.
3. Click View Certificate.

Settings > Sentry Make sure the Standalone Sentry is configured for AppTunnel for the app:
1. Make sureEnable AppTunnel is selected.
2. InDevice Authentication Configuration, make sure the correct, valid

Trusted Root Certificate is uploaded.
3. InAppTunnel Configuration, make sure you have configured theServices.

Policies & Configs >
Configurations

AppConnect container
policy

Check the AppConnect container policy for the app. Make sure it is applied to a
label belonging to the device.

You do not need an AppConnect container policy if the AppConnect global policy
selects Authorize forApps without an AppConnect container policy.

Policies & Configs >
Configurations

AppConnect app
configuration

Check the AppConnect app configuration for the app:
1. Make sure theAppTunnel Rules point to the intended Sentry and service.
2. For Identity Certificate,make sure you have selected the correct certificate,

issued from the trusted root Certificate Authority indicated by the Trusted Root
Certificate uploaded to the Sentry.

3. Make sure the certificate has not expired and that its initial validity date is in the
past.

4. Make sure AppConnect app configuration is applied to a label belonging to the
device.

TABLE 40.APPTUNNEL CONFIGURATION TROUBLESHOOTINGCHECKLIST FORMOBILEIRONCORE

AppTunnelconfiguration troubleshootingchecklist for MobileIronCore

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 168

UIScene support
With iOS 13, Applemoved UIApplicationDelegate events handling to UISceneDelegate. To function properly,
AppConnect requires some of the events that are now handled by UIScene.

Therefore, if your app supports UIScene, when initializing the AppConnect library, call the AppConnect method
-sceneWillConnectToSessionWithOptions:.

Themethodmust be called from UISceneDelegate's -scene:willConnectToSession:options: method.
UIScene connection options need to be passed as input parameter to the AppConnect instancemethod
-sceneWillConnectToSessionWithOptions:.

Themethod has the parameter options:. The value for the parameter is the value provided to [UISceneDelegate
scene:willConnectToSession:options:].

See also, Initialize the AppConnect libraryHow to initialize your Xamarin app to use AppConnect C# APIs.

UIScene support

6

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 169

Best Practices Using the AppConnect for iOS
SDK

The following are best practices for developing secure enterprise apps:

l Display authorization status in the home screen

l Allow the user to enter credentials manually

l Use the AppConnectDelegate protocol for notifications

l Limit the size of configuration data from theMobileIron server

l Use the UIApplication’s delegate as you normally would

l Consider limitations when using the iOS simulator

l Enable the AppConnect library to blur screens when the app becomes inactive

l Do not put secure data in the app bundle

l Indicate to the user that the app is initializing

l Reject custom keyboard control

l Do not use UIWebView to upload sensitive data

l Provide documentation about your app to theMobileIron server administrator

Display authorization status in the home screen
When an app becomes unauthorized or retires, the authState property on the AppConnect object changes to
ACAUTHSTATE_UNAUTHORIZED or ACAUTHSTATE_RETIRED. Additionally, the authMessage property changes to a
string that explains to the device user why the app is unauthorized or retired. The string sometimes also explains
what the device user can do tomake the app authorized again.

The app should display the authMessage string. However, consider that since the app is now unauthorized or
retired, the appmust exit its secure functionality. Therefore, the best user experience is to display the string in a
home view that never contains secure information.

The following alternatives for displaying the authMessage string are not recommended:

l Do not display the string using UIAlertView on top of the current view. Beneath themessage, the current
view can still have secure information visible.

l Do not use the -displayMessage: method. This method does not match the look of your app.

l Do not exit the app without displaying the string.

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 170

Allow the user to enter credentials manually
Always provide a way for a user to enter login credentials manually in your app. Provide this user interface even if
you are receiving login credentials in app-specific configuration information from the AppConnect library.

As described in Configuration specific to the app, aMobileIron server administrator can set up configuration
information for your app on the server. Your app receives the information using the AppConnect for iOS SDK. This
information can include authentication credentials, such as username, password and certificates, for a corporate
service. Because the app receives the information, the device user does not have to enter the information.

However, if the credentials change, the amount of time for the change to reach your application can vary. Some
variables that impact this notification include:

l the app checkin interval that the administrator configured on theMobileIron server. This value is the
maximum number of minutes until devices running AppConnect apps receive updates of their AppConnect
policies and app-specific configurations.

l whether the device has network coverage.

Therefore, providing changes to devices is not a real-time process and can take up to several hours. Therefore, if
the corporate service rejects the credentials, provide a way for the user to enter the credentials manually.

Use the AppConnectDelegate protocol for notifications
Usemethods of the AppConnectDelegate protocol to receive notifications of changes to:

l the authorization status and associatedmessage.

l the permission status for copying content to the iOS pasteboard, using document interaction (Open In and
Open From), and print.

l app-specific configuration.

Do not use the iOS SDK’s key-value observing capabilities instead of AppConnectDelegate protocol notifications.

Consider the following scenario in which the AppConnect library receives a new authorization status:

1. The authState property on the AppConnect object changes from ACAUTHSTATE_AUTHORIZED to
ACAUTHSTATE_UNAUTHORIZED.

2. The authMessage property on the AppConnect object changes from “The app is authorized.” to “The app is
not authorized because your device OS is compromised.”

3. The AppConnect library calls the -appConnect:authStateChangedTo:withMessage method on the
AppConnectDelegate.

Now consider what can happen if you use key-value observing on the authState property. When authState
changes, an application typically displays to the user the string in authMessage. Because the authMessage string

Allow the user to enter credentialsmanually

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 171

has not yet changed, the user sees the original message that “The app is authorized.” However, the app is no
longer authorized.

Using only the AppConnectDelegate’s callback methods avoids such inconsistencies.

Limit the size of configuration data from theMobileIron server
Do not design your app to use large amounts of configuration data from theMobileIron server.

As described in Configuration specific to the app, aMobileIron server administrator can set up configuration
information for your app on the server. Your app receives the information using the AppConnect for iOS SDK. Use
this capability only for short strings and options, such as server addresses, authentication credentials, and
certificates.

Do not use it for larger data items, such as documents, large blocks of HTML, or images. For large data items, use
a web service to deliver the items. Use AppConnect configuration only to provide the URL for the web service.

Although no precise upper limit is defined for an item configured on theMobileIron server, a large item can impact
server performance. It can also slow connectivity between the server and theMobileIron client app. A very large
item can possibly cause the communication protocol between theMobileIron server and theMobileIron client app
to fail entirely.

Use the UIApplication’s delegate as you normally would
The AppConnect library depends on knowing about application life cycle events, such as when the application
becomes active. Requiring the app to pass every life cycle event to the AppConnect library would be toomuch of a
burden on the app. Therefore, the AppConnect library installs a UIApplicationDelegate proxy. This proxy sits
between the UIApplication and your application’s UIApplicationDelegate.

Your application does not do anything to support the proxy. Use your UIApplicationDelegate as you normally
would:

l The AppConnect library does not filter or modify any messages sent by iOS to the UIApplicationDelegate.

l You can still add custommethods to your UIApplicationDelegate. Call the custommethod as you normally
would, such as in the following statement:
[[UIApplication sharedApplication] delegate] customMethod];

The proxy passes themethod invocation to your UIApplicationDelegate.

l You can set a new UIApplicationDelegate as you normally would:
[[UIApplication sharedApplication] setDelegate:myOtherAppDelegate];

Until AppConnect 4.0 for iOS, the UIApplicationDelegate proxy caused side effects. Now these side effects do not
occur, The side effects of the proxy were:

Limit the size of configurationdata fromtheMobileIron server

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 172

l The following expression did not return your UIApplicationDelegate’s class:
[[[UIApplication sharedApplication] delegate] class]

Instead, it returned the proxy class.
Therefore, prior to AppConnect 4.0, using isKindofClass: was necessary. For example, the following
returned YES:
[[UIApplication sharedApplication] isKindOfClass:[MyAppDelegate class]]

l The following expression did not return your UIApplicationDelegate object:
[[UIApplication sharedApplication] delegate]

If you required access to your UIApplicationDelegate object, the AppConnectUIApplication class provided
a property called originalDelegate. Because this property is no longer necessary, it is deprecated.
See AppConnectUIApplication class.

Consider limitations when using the iOS simulator
To fully test an AppConnect app, debug on a tethered device using Xcode, as you would for any other app. On a
device, your testing includes theMobileIron client app, which is necessary for the complete flow of data from the
MobileIron server to your app.

You can do initial functionality testing in the iOS simulator in Xcode. You can link against the AppConnect library
when building for the iOS simulator as you normally would.

However, when using the AppConnect library in the iOS simulator, the AppConnect library always sets the
properties on the AppConnect singleton as follows:

l the authState property is set to ACAUTHSTATE_AUTHORIZED

l the config property has no entries

l the pasteboard property is set to ACPASTEBOARDPOLICY_AUTHORIZED

l the openInPolicy property is set to ACOPENINPOLICY_AUTHORIZED

l the openFromPolicy property is set to ACOPENFROMPOLICY_AUTHORIZED

l the printPolicy property is set to ACPRINTPOLICY_AUTHORIZED

This behavior is necessary because no simulator version of theMobileIron client app is available, and the
MobileIron client app is necessary for your app to receive notifications. Without notifications, the authState
property cannot change to ACAUTHSTATE_AUTHORIZED, and your app cannot execute its logic that accesses its
secure data and functionality. The AppConnect library’s special simulator behavior solves this problem, allowing
you to use the iOS simulator to test your app’s functionality. You cannot, however, use the simulator to test
handling notifications from the AppConnect library.

Consider limitations whenusing the iOS simulator

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 173

Enable the AppConnect library to blur screens when the app
becomes inactive
AppConnect 4.0 for iOS added support for blurring screens when the app becomes inactive. Use this capability of
the AppConnect library, as described in Enable screen blurring. If your app provided its own screen blurring,
remove that code. By using the AppConnect library’s screen blurring capability, all AppConnect apps behave
consistently.

Do not put secure data in the app bundle
Files that you package in your app bundle are not AppConnect-encrypted files. Also, files packaged with an app
cannot bemodified at runtime. Therefore, these files are not secure. Therefore, include only non-sensitive data in
the app bundle.

Indicate to the user that the app is initializing
Indicate in the user interface that the app is initializing if the app requires the AppConnect singleton’s instance
properties to determine what to do. For example, use an activity indicator (spinner). Remove the indication after the
app is notified that the AppConnect singleton is ready.

One reason this indication is important involves when to display sensitive data. Do not show any sensitive data
until the AppConnect singleton is ready, because until that time, the app cannot determine whether it is authorized.
Only an authorized app should show sensitive data.

Reject custom keyboard control
Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. This behavior has potential for harmful data loss.
MobileIron server administrators can control whether your app can use a custom keyboard by specifying a key-
value pair (MI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS) on your app’s configuration. Your app can control
whether custom keyboards are allowed if the server administrator has enabled the key-value pair.

To reject custom keyboards when the server administrator has enabled the key-value pair, implement the -
shouldAllowExtensionPointIdentifier: method on your AppDelegate as follows:

// Reject all non-native keyboards.
- (BOOL) application:(UIApplication *) application

shouldAllowExtensionPointIdentifier:(NSString *)extensionPointIdentifier
{

if ([extensionPointIdentifier
isEqualToString:UIApplicationKeyboardExtensionPointIdentifier])

Enable theAppConnect library toblur screenswhentheappbecomes inactive

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 174

{
return NO;

}
return YES;

}

Related topics

Custom keyboard control

Do not use UIWebView to upload sensitive data
When an app uploads data, such as a file or image, using UIWebView, the UIWebView object saves the data in a
folder on the device. The folder is Apps/<app name>/tmp. The data is then available using, for example, iExplorer.

Therefore, apps should not use UIWebView to upload sensitive data. If you cannot change the app’s use of
UIWebView, be sure to delete any sensitive data from the folder after each upload attempt, whether successful,
unsuccessful, or canceled.

Provide documentation about your app to theMobileIron server
administrator
Whether your app is an in-house app or is available from the Apple App Store, aMobileIron server administrator
configures the server with information about your app. Provide the server administrator documentation that
specifies:

l whether you app enforces the print policy.

The server administrator needs to know whether allowing or not allowing your app to use print capabilities has
impact on your app’s behavior.

Because the AppConnect library enforces the pasteboard andOpen In policies, the server administrator needs no
documentation from your app about how it handles it, even if you disable or enable special related user interfaces.

l whether your app handles the pasteboard policy.
Although the AppConnect library enforces the pasteboard policy, inform the server administrator if your app
enables or disables any special user interfaces depending on the policy status. This documentation allows
the administrator to better understand your app’s expected behavior.

l whether you app handles the Open In policy.
Although the AppConnect library enforces the Open In policy, provide information so that the server
administrator understands your app’s expected behavior and recommendations. Specifically, document
the following:

Donotuse UIWebView to uploadsensitive data

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 175

o Whether your app enables or disables any special user interfaces depending on the policy status.
o Whether your app informs end users when they tap to open a document in an app for which Open In is

not allowed. That is, document whether you have implemented the
-appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method.

o Whether you have a recommended list of whitelisted apps. If you do, document their bundle IDs.

l whether you app handles the Open From policy.
Although the AppConnect library enforces the Open From policy, provide information so that the server
administrator understands your app’s expected behavior and recommendations. Specifically, document
the following:

o Whether your app has any special user interfaces depending on the policy status.
o Whether your app informs end users when they have tapped another app to open a document in your

app, but your app is not allowed to receive documents from the other app. That is, document whether
you have implemented the
-appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method.

o Whether you have a recommended list of whitelisted apps. If you do, document their bundle IDs.

l whether you app enforces the secure file I/O policy.
The server administrator needs to know whether your app uses secure file I/O for its sensitive data.

l the app-specific configuration key-value pairs.
Provide a list of the key-value pairs that your app expects to receive through the AppConnect API. Provide
each key’s default value if it has one. Specify if the value should default to the device’s user’s LDAP user
ID, password, or email address.

l the encryption group Id app-specific configuration key name for shared secure files.
If your app uses the Secure file I/O API details to share encrypted files with other AppConnect apps,
provide the key name of the encryption group Id that your app expects to receive through the AppConnect
API. Also, list the AppConnect apps that your app expects to share files with, so the server administrator
can provide the same value to the encryption group Id key for each of those apps.

l the values for the app-specific configuration keys MI_AC_SHARED_GROUP_ID andMI_AC_ACCESS_
CONTROL_ID
If your app provides an extension to share secure files with other AppConnect apps, provide the value of
these keys. Your app receives these key-value pairs through the AppConnect API. Also, list the
AppConnect apps that your extension expects to share files with, so the server administrator can provide
the same key-value pairs for each of those apps.

l AppTunnel information
If your app expects to interact with internal servers using AppTunnel, specify whether your app expects to
work with AppConnect with HTTP/S tunneling, or whether it requires AppConnect with TCP tunneling.
Also, provide information about the internal servers.
For example:

Providedocumentationabout your app to theMobileIron server administrator

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 176

o Explain the type of servers your app interacts with, such as, for example, SharePoint servers.
o Specify if your app expects to receive internal servers’ host names using the app-specific

configuration API.
o Specify if your app expects to be able to interact with all internal servers.
o If you are an in-house app developer, provide the host names of the internal servers that your app

interacts with. Also, provide the port number on each internal server that the app connects to.

l HTTPS connections that your appmakes that use certificate authentication to an enterprise service.
For in-house app developers, provide the URLs of the enterprise services that use certificate
authentication.
If your app receives these URLs through app-specific configuration, make sure you listed the URLs in the
app-specific configuration key-value pair documentation.

l Dual-mode app behavior.
o Provide expected behavior and features in AppConnect mode versus non-AppConnect mode.
o If your app allows the device user to switch between AppConnect mode and non-AppConnect mode,

document what the device user must do.

l Whether your app uses the AppConnect-provided screen blurring capability
Server administrators need to know whether your app will be impacted if they disable screen blurring for
your app.

l Whether your app does not allow some or all custom keyboards.

l Whether your app includes theMI_AC_DISABLE_SCHEME_BLOCKING key set to YES in its Info.plist.

Providedocumentationabout your app to theMobileIron server administrator

7

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 177

AppConnect Library Log Messages

The AppConnect library logs informationmessages, warnings, and errors. Use these log entries combined with
your app’s own log entries to debug your app and its use of the SDK.

All AppConnect library log entries begin with:
AppConnect:<log level>

Informational logmessages
The AppConnect Library logs the following informationmessages:
• @"[AppConnect:Status] Starting. Library version: %@"

Logged when the app calls -startWithLaunchOptions:. The value of %@ is the version of the AppConnect
library.

• @"[AppConnect:Status] Checkin interval is unknown; attempting checkin.
Logged when the app runs for the first time, and the AppConnect library is about to contact the theMobileIron
client app.

• @"[AppConnect:Status] Checkin time is in the past; attempting checkin."
Logged when the checkin interval has expired, and the library is about to contact theMobileIron client app.

• @"[AppConnect:Status] User was inactive; triggering passcode challenge."
Logged when the AppConnect passcode auto-lock timeout has expired due to no activity in any AppConnect
app. The AppConnect library is about to contact theMobileIron client app to prompt the user to enter the
AppConnect passcode.

• @"[AppConnect:Status] Secure services are now available."
Logged when the AppConnect library has received the encryption key from theMobileIron client app, making
secure services become available.

• @"[AppConnect:Status] Secure services are now unavailable."
Logged when secure services become unavailable. This message is logged, for example, when the
AppConnect passcode’s auto-lock timeout expires.

• @"[AppConnect:Status] App is authorized but secure services are unavailable; attempting
checkin."
Logged when an app becomes authorized, but the AppConnect library has not yet received the encryption key
from theMobileIron client app. The AppConnect library will check in with theMobileIron client app to get the
key.

• @"[AppConnect:Status] Stopping."
Logged when the app calls -stop.

API usage errors and warnings
The AppConnect Library logs the following errors and warnings when the app has incorrectly called an API:

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 178

• @"[AppConnect:Error] AppConnect cannot be instantiated directly. Instead, call
+initWithDelegate: and then +sharedInstance."
The app called -init on an AppConnect instance, which is not allowed. Instead, call the static method
+initWithDelegate: of the AppConnect class once. Then use the AppConnect class method
+sharedInstance to get a reference to the AppConnect singleton.

• @"AppConnect error: +initWithDelegate: appConnectDelegate must not be nil."
The app called +initWithDelegate: with a nil appConnectDelegate parameter. Provide as the parameter
value an instance of the class that conforms to the AppConnectDelegate protocol.

• @"[AppConnect:Error] +initWithDelegate: has already been called. +initWithDelegate: should
only be called once per app launch."
The app called +initWithDelegate: more than once.

• @"[AppConnect:Error] Application called -authStateApplied:message: with ACPOLICY_
UNSUPPORTED. All applications must support all authStates."
Call -authStateApplied:message: with its ACPolicyState parameter set to either ACPOLICY_APPLIED or
ACPOLICY_ERROR.

• @"[AppConnect:Warning] Attempted to set policy state for a policy that isn't present, type
= %i."
This warning is unlikely to occur. The app called one of the notification acknowledgment methods, such as -
pasteboardPolicyApplied:message:, on a policy that the AppConnect library has not received from the
MobileIron client app. The policy type %i is a value that the AppConnect library uses internally.

• @"[AppConnect:Error] AppConnect is unable to start because [UIApplication
sharedApplication] is not an instance AppConnectUIApplication."
The call in main.m to the function UIApplicationMain is incorrect. Follow the instructions in Use
AppConnect’s UIApplication subclass.

Miscellaneous errors and warning
The AppConnect library logs the followingmiscellaneous errors and warnings:
• @"[AppConnect:Error] Invalid %@: URL."

The AppConnect library received an ac<bundleid>: URL, but the URLwas invalid. The AppConnect library
discards the URL. The value of %@ is the invalid URL.
If you are having issues using the AppConnect library, report these errors to MobileIron Technical Support.

• @"[AppConnect:Error] internal error"
If you are having issues using the AppConnect library, report any errors that begin with @"AppConnect
internal error" to MobileIron Technical Support.

Developing AppConnect Apps with Xamarin

l Overview of using AppConnect with Xamarin apps

l Available C# bindings

l Xamarin AppConnect sample apps

l How to include the Xamarin C# binding in your Xamarin project

Miscellaneous errors andwarning

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 179

l How to initialize your Xamarin app to use AppConnect C# APIs

l AppTunnel support in Xamarin apps

l AppTunnel Diagnostic API for Xamarin

Overview of using AppConnect with Xamarin apps
The AppConnect for iOS SDK provides a Xamarin C# binding for the AppConnect library APIs. This binding allows
you to develop iOS AppConnect apps using the Xamarin development platform.

If your AppConnect app is to be distributed from the Apple App Store, due to Apple App Store
requirements, your app is required to work as either an AppConnect app or a regular app. SeeDeveloping
Third-party Dual-mode Apps.

The Xamarin AppConnect C# binding, sample apps, and C# API documentation are available at these sites:
• https://developer.mobileiron.com in

appconnect-ios-xamarin-plugin<version>_<build>.zip
• https://support.mobileiron.com/support/CDL.html in the plugins/xamarin folder of the AppConnectiOSSDK_

V<version>_<build>.zip

The xamarin folder in these ZIP files contains:
• AppConnectSDKBinding.dll
• Docs folder

Contains theMonodoc documentation of Xamarin AppConnect C# APIs.
• Docs-html folder

Contains the HTML documentation of Xamarin AppConnect C# APIs, generated for convenience from the
Monodoc documentation.

• Samples folder
Contains the sample apps HelloAppConnectXamarin and DualMode.

For general information about AppConnect, see Introducing theMobileIron AppConnect for iOS SDK.

Available C# bindings
The Xamarin AppConnect C# binding supports all the Objective-C APIs available in the AppConnect library with
the following exceptions:
• APIs relating to getting upload status for tunneled HTTP/S requests
• Secure file I/O POSIX-style andObjective-C APIs
• The ACSensitiveData and ACSensitiveMutableData APIs
• The custom cryptography methods -derivedAppKeyWithIdentifier:error: and

-derivedSharedKeyWithIdentifier:error:
• The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method
• The -appConnectAttemptedDragAndDropToNonAppConnectApp: callback method
• The APIs relating to sharing secure files from an extension
• The APIs relating to the Open From policy (Note that the AppConnect library enforces the Open From policy)

Overviewof usingAppConnectwithXamarinapps

https://developer.mobileiron.com/
https://support.mobileiron.com/support/CDL.html

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 180

The AppConnect C# binding provides documentation for eachmethod, property and enumeration in HTML and in
Monodoc format. You can also refer to the information in the Objective-C API descriptions in AppConnect for iOS
API.

Xamarin AppConnect sample apps
The AppConnectiOSSDK_V<version>_<build>.zip contains sample apps that illustrate how to use the Xamarin
AppConnect C# binding.

These sample apps are:
• HelloAppConnectXamarin

This sample app demonstrates how an app uses the Xamarin AppConnect C# binding. The app displays its
authorization status, its app configuration, and its data loss prevention policies.

• DualMode
This sample app demonstrates the behavior of a dual-mode app.
For an overview of dual-mode apps, see Developing Third-party Dual-mode Apps.

The Xamarin AppConnect C# binding does not provide bindings for the AppConnect secure file
I/O APIs. However, it does provide bindings for the APIs that obtain an encryption key for use with custom
cryptography routines. Only Xamarin dual-mode apps that use custom cryptographic routines need to keep track of
the dual-mode data encryption states that are described in the dual-mode app section.

How to include the Xamarin C# binding in your Xamarin project
The Xamarin AppConnect C# binding is available in AppConnectiOSSDK_V<version>_<build>.zip in
AppConnectSDKBinding.dll.

To include AppConnectSDKBinding.dll in your Xamarin solution using Xamarin Studio:
1. Unzip AppConnectiOSSDK_V<version>_<build>.zip on to your computer.
2. Open your app’s solution in Xamarin Studio.
3. In the iOS project, select References > Edit References...
4. Select the .Net Assembly tab.
5. Click Browse to navigate to and select the AppConnectSDKBinding.dll in the unzipped AppConnect SDK

folders.
6. Click Open to select the DLL file.
7. Click OK.

The classes, methods, and properties of the Xamarin AppConnect C# APIs are now available for your app to use.

How to initialize your Xamarin app to use AppConnect C# APIs
To use the AppConnect C# APIs, do the following:

XamarinAppConnect sampleapps

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 181

1. Register as a handler of the AppConnect URL scheme

2. Declare the AppConnect URL scheme as allowed

3. Add AppConnect-related entries to your Info.plist

4. Use AppConnect’s UIApplication subclass

5. Initialize the AppConnect library

6. Wait for the AppConnect singleton to be ready

7. Optional: Specify app permissions and configurations in a plist file

Register as a handler of the AppConnect URL scheme

Your appmust handle the AppConnect URL scheme. TheMobileIron client app uses this URL scheme to
communicate with your app’s instance of the AppConnect library.

Register the AppConnect URL scheme by modifying the app’s Info.plist. You edit the key called URL types as
follows:

1. Set URL Identifier to the app’s bundle ID.
For example:
com.mobileiron.ios.xamarin.HelloAppConnect

2. Set URL Schemes to the app’s bundle ID, prefixed with ac.
For example:
accom.mobileiron.ios.xamarin.HelloAppConnect

For example, to edit Info.plist using Xamarin Studio:

1. Open your app’s Xamarin solution.

2. Open the app’s Info.plist in the property list editor.

3. Select Advanced.

4. Click Add URL Type.

5. Set URL Identifier to the app’s bundle ID.
For example:
com.mobileiron.ios.xamarin.HelloAppConnect

6. Set URL Schemes to the app’s bundle ID, prefixed with ac.
For example:
accom.mobileiron.ios.xamarin.HelloAppConnect

Declare the AppConnect URL scheme as allowed

Declare the appconnect and the alt-appconnectURL schemes in your app’s Info.plist as allowed URL schemes.
Your app’s instance of the AppConnect library:

Register as ahandler of theAppConnectURL scheme

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 182

l uses the appconnect URL scheme to communicate with Mobile@Work or MobileIron Go.

l uses the alt-appconnect URL scheme to communicate with MobileIron AppStation.

To allow the appconnect and alt-appconnect URL schemes, add a key called LSApplicationQueriesSchemes
to the app’s Info.plist as follows:

1. Add a key of type Array.

2. Set the name of the key to LSApplicationQueriesSchemes.

3. Add an item to the array.

4. Set the value of the item to appconnect.

5. Add another item to the array.

6. Set the value of the item to alt-appconnect.

Example : Editing the Info.plist using Xamarin Studio

1. Open your app’s Xamarin solution.

2. Open the app’s Info.plist in the property list editor.

3. Select Source.

4. Select Add new entry.

5. Select the +.

6. Change the name of the property from Custom Property to LSApplicationQueriesSchemes.

7. In the Type column, select Array.

8. Select Add new entry, which appears indented under the new property.

9. Select the +.

10. In theValue column for the new String item, enter appconnect.

11. Similarly, add a new entry to the LSApplicationQueriesSchemes array with the value alt-appconnect.

Add AppConnect-related entries to your Info.plist
• Enable screen blurring
• Allow Face ID

Enable screen blurring

The AppConnect library can automatically blur your app’s screen whenever it is not active. This security measure
protects the app’s data from being captured in screenshots. The AppConnect library blurs the screen when
-applicationWillResignActive: is called and unblurs it when -applicationDidBecomeActive: is called.

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a Boolean.
Set the value to YES.

AddAppConnect-relatedentries to your Info.plist

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 183

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, theMobileIron server administrators
can disable screen blurring by setting a key-value pair on the server for your app’s configuration. The server key is
MI_AC_ENABLE_SCREEN_BLURRINGwith the value false.

NOTE: If youalready implemented screenblurring in your app, remove that code anduse theMI_AC_
PROVIDE_SCREEN_BLURplist key. Using the plist key ensures that all AppConnect apps behave
consistently.

Allow Face ID

IncludePrivacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose of
Face ID use. For example, add the valueAppConnect. If youmanually add this key, its name is
NSFaceIDUsageDescription.

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through themost recently released version as supported by MobileIron.

Use AppConnect’s UIApplication subclass

To use AppConnect’s UIApplication subclass:

1. OpenMain.cs for editing.

2. Change the second argument of the call to UIApplication.Main() to
AppConnectBinding.Constants.kACUIApplicationClassName.
The second argument, the principalClassName argument, is the UIApplication class or subclass for the
app.

3. Make sure the third argument of the call to UIApplication.Main() is your UIApplicationDelegate
subclass name.

For example, in the HelloAppConnectXamarin app provided with the AppConnect for iOS SDK, the statement that
calls UIApplication.Main() is:

UIApplication.Main(args, AppConnectBinding.Constants.kACUIApplicationClassName,
"HACAppDelegate"));

NOTE: If you use a subclass of UIApplication for your app:

1. Derive your subclass fromAppConnectUIApplication instead of UIApplication.

2. Use the nameof yourAppConnectUIApplication subclass for the principalClassName argument in the call
to UIApplication.Main().

3. Whenyouoverride aUIApplicationmethod in yourAppConnectUIApplication subclass, always invoke the
method implementation of the superclass AppConnectUIApplication at the endof yourmethod.
If you donot invoke the superclass implementation, AppConnect features will not work in your app.

AllowFace ID

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 184

Initialize the AppConnect library

To initialize the AppConnect library for your app to use:

Edit your AppDelegate source file

1. Open your AppDelegate source file for editing.

2. Add the following line to your using statements:
using AppConnectBinding;

Create a subclass of AppConnectDelegate

In your AppDelegate source file:

1. Create a subclass of AppConnectDelegate. Do the following:

l Implement each abstract method in AppConnectDelegate.

l Implement each virtual method in AppConnectDelegate that your app’s functionality requires.
For example, in HelloAppConnectXamarin, in AppDelegate.cs, the HACAppConnectDelegate class
derives from the AppConnectDelegate class.
Details about eachmethod is available in the code. You can also refer to the corresponding Objective-C
method in AppConnect for iOS API.

2. If you want to retrieve you app’s original UIApplicationDelegate object, model your code from this line from
HelloAppConnectXamarin:

this.hacAppDelegate = (HACAppDelegate)
((AppConnectUIApplication)UIApplication.SharedApplication).OriginalDelegate;

NOTE: Xamarin appsmust use OriginalDelegate to get the UIApplicationDelegate object. Formore
information, see originalDelegate property (deprecated).

Initialize theAppConnect library

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 185

Modify your UIApplicationDelegate subclass

Modify your UIApplicationDelegate subclass as follows:

1. Instantiate the AppConnectDelegate subclass object.
For example, in HelloAppConnectXamarin:
this.appConnectDelegate = new HACAppConnectDelegate();

2. Call the static method InitWithDelegate() of the AppConnect class.Themethod takes as a parameter
an object of the AppConnectDelegate subclass.
For example, in HelloAppConnectXamarin, in the HACAppDelegate class implementation, themethod
FinishedLaunching() calls InitWithDelegate() as follows:
AppConnect.InitWithDelegate(this.appConnectDelegate);

3. Save the singleton instance of the AppConnect library.
For example, in HelloAppConnectXamarin, the HACAppDelegate object saves the singleton instance in
the appConnect member variable:
this.appConnect = AppConnect.SharedInstance;

4. Call the AppConnect singleton’s method StartWithLaunchOptions().
The appmust:

l Call this method from its AppDelegate’s method FinishedLaunching()

l Pass along its options parameter value.
For example, in HelloAppConnectXamarin:
this.appConnect.StartWithLaunchOptions(options);

After this step, the AppConnect singleton is initializing. However, the app cannot yet use the singleton’s
instance properties. The app can:

l use the AppConnect class properties.

l use themethods of the AppConnect singleton object.

5. If your application supports UIScene, call the AppConnect singleton’s method
SceneWillConnectToSessionWithOptions() from your UIScene delegate's void WillConnect
(UIScene scene, UISceneSession session, UISceneConnectionOptions connectionOptions)
method passing connectionOptions as an input parameter.
For example:

public class MySceneDelegate : UIWindowSceneDelegate {
public override void WillConnect (UIScene scene, UISceneSession session,

UISceneConnectionOptions connectionOptions)
{

AppConnect.SharedInstance.SceneWillConnectToSessionWithOptions(connectionOptions);
}

}

6. Indicate in the user interface that the app is initializing if the app requires the AppConnect singleton’s
instance properties to determine what to do. For example, use an activity indicator (spinner). Remove the

Modifyyour UIApplicationDelegate subclass

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 186

indication after the app is notified that the AppConnect singleton is ready.
One reason this indication is important involves when to display sensitive data. Do not show any sensitive
data until the AppConnect singleton is ready, because until that time, the app cannot determine whether it
is authorized. Only an authorized app should show sensitive data.

Wait for the AppConnect singleton to be ready

The app cannot use the AppConnect singleton’s instance properties until the Ready property on the AppConnect
singleton is set to true. It is set to true when the callback method AppConnectIsReady() in your
AppConnectDelegate subclass is called. The app can now access the instance properties, such as AuthState and
PasteboardPolicy, on the AppConnect singleton.

Before accessing any instance properties, use the Ready getter to make sure the properties are accessible.

For example, in HelloAppConnectXamarin, the AppConnectIsReady() callback method calls UpdateLabels().
The UpdateLabels() method calls various methods that access the instance properties on the AppConnect
singleton. Because other methods also call
UpdateLabels(), UpdateLabels() first checks the Ready property:

if (this.appConnect.Ready) {

// Call methods that access instance properties.
}
else {

authInfoText = "Ready: NO (AppConnect is not ready yet)";
policyInfoText = "AppConnect is not ready yet";
configInfoText = "AppConnect is not ready yet";

}

For details about the AppConnectIsReady() callback method andthe Ready property, see the code. You can
also refer to the corresponding Objective-C information in AppConnect ready API details .

Optional: Specify app permissions and configurations in a plist file

If your app is an in-house app, you can specify default values for:

l the data loss prevention policies, such as the Open In policy

l the key-value pairs for your app-specific configuration

Specifically, you can provide a special plist file called AppConnect.plist as part of your in-house app that:

l specifies whether your app should be allowed by default to copy to the iOS pasteboard, use document
interaction (Open In andOpen From), and print.

l specifies app-specific configuration keys and default values.

Wait for theAppConnect singleton tobe ready

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 187

These default values are used by MobileIron server to make it easier for the server administrator to set up your app
with the correct data loss prevention policies and app-specific configurations. Your app never reads the
AppConnect.plist.

When you include the AppConnect.plist in your app:
1. When an administrator uploads your in-house app to theMobileIron server, the server uses this plist file to

automatically create server policies that contain your specified data loss prevention policies and app-specific
configuration.

2. The administrator can then edit these policies.
For example:
- If one of your app-specific configuration keys requires a URL of an enterprise server, the administrator

provides that value.
- If the administrator requires stricter data loss prevention policies than your app’s default values, the

administrator changes the values.
3. The administrator then applies these policies to the appropriate set of devices.
4. When your app runs, it receives the data loss prevention policies and app-specific configuration by using the

AppConnect for iOS APIs.
For example, to handle app-specific configurations, you use the Config property (an NSDictionary object) and
the callback method ConfigChanged().

5. If the administrator later changes the data loss prevention policies or app-specific configuration, your app
receives the updates by using the AppConnect for iOS APIs.

An example of an AppConnect.plist file as viewed in Xamarin Studio looks like the following:

Create the AppConnect.plist in Xamarin Studio

To create an AppConnect.plist file in your Xamarin solution using Xamarin Studio:
1. Open your app’s Xamarin solution.
2. Select Resources > Add New File.

Create theAppConnect.plist inXamarinStudio

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 188

3. Select iOS.
4. Select Property List.
5. ForName, enter AppConnect.plist.
6. Click New.

Edit the AppConnect.plist
1. In the Root key of AppConnect.plist, place a key called bundleid with the type String, and set the value to the

bundle ID of your app.
2. In the Root key of AppConnect.plist, create two keys called policy and config, each with the type Dictionary.
3. In the policy dictionary, create keys called openin, openinwhitelist, openfrom,

openfromwhitelistpasteboard, and print, each with the type String.
4. Set these keys’ values as given in the following table:

Edit theAppConnect.plist

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 189

Key Possible values and meanings

openin • allow
Document interaction is allowed with all other apps.

• disable
Document interaction is not allowed.

• whitelist
Only documents in the openinwhitelist list can open documents from your
app.

• appconnect
Document interaction is allowed with all other AppConnect apps.

NOTE: This value results in the app receiving awhitelist in the Open In policy
API. The whitelist contains the list of all currently authorized
AppConnect apps. Youdo not enter an openinwhitelist key in the
plist. See The openInPolicy andopenInWhitelist properties .

openinwhitelist Semi-colon separated list of the bundle IDs of the apps with which document
interaction is allowed. This key is necessary when the openin key has the value
whitelist.

pasteboard • allow
Pasteboard interaction is allowed with all other apps. That is, this option allows
the device user to be able to copy content from your app to the iOS pasteboard.
Then, any app can copy from the content from the pasteboard.

• disable
Pasteboard interaction is not allowed.

• appconnect
Pasteboard interaction is allowed only with other AppConnect apps. That is, this
option allows the device user to be able to copy content from your app to the iOS
pasteboard. Then, only other AppConnect apps can copy from the content from
the pasteboard.

print • allow
Printing is allowed.

• disable
Printing is not allowed.

TABLE 41.APPCONNECT.PLIST KEYS AND VALUES

5. In the config dictionary, create keys as required for your app.
6. Optionally, add values for the keys. The values must be String types.

The value $USERID$ in the example tells MobileIron Core to substitute the device user’s user ID for the value. Other
possible variables for Core are $EMAIL$ and $PASSWORD$. Depending on the Core configuration, custom variables
called $USER_CUSTOM1$ through $USER_CUSTOM4$ are sometimes available.

Convert the AppConnect.plist to binary format

TheMobileIron server requires that the AppConnect.plist uses binary plist format. When creating an iOS app with
Xamarin Studio, youmust manually convert the AppConnect.plist to binary format. You can convert

Convert theAppConnect.plist to binary format

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 190

AppConnect.plist using a custom build command.

Do the following:
1. In Xamarin Studio, select your project.
2. Select Options.
3. Select Build > Custom Commands.

4. ForConfiguration, select Release.
5. ForPlatform, select iPhone.
6. Select Before Build.
7. In theCommand field, enter:

plutil -convert binary1 Resources/AppConnect.plist
8. SetWorking Directory to ${ProjectDir}.
9. Click OK.
10. Repeat steps, this time selectingDebug for theConfiguration field.

AppTunnel support in Xamarin apps
Apps built with the Xamarin development platform can access network servers various ways. AppTunnel with
HTTP/S tunneling is supported only as follows:
• The app uses the NSURLConnection or NSURLSession APIs exposed to C# through the Xamarin.iOS

binding.
• The app uses theModernHttpClient library with NSURLSession. TheModernHttpClient library with

CFNetwork will not work.
For example, the app initializes the instance of theModernHttpClient as follows:

var httpClient = new HttpClient (new NativeMessageHandler ());

AppTunnel support inXamarinapps

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 191

AppTunnel Diagnostic API for Xamarin
The AppTunnel Diagnostic API for Xamarin provides troubleshooting information for an app’s use of AppTunnel
with HTTP/S tunneling. Typically, you add a user interface, such as amenu item, to invoke a diagnostic run for
tunneling to a specified URL. Your app then displays or logs the results of the diagnostic run. The API performs the
following diagnostics:

Diagnostic Description

Run life cycle Tests the beginning, ending, and restarting of connections. Redirects restart the
connection with a new URL, new cookies, and/or new connection settings.

Policy integrity Checks that the following elements in the AppTunnel policy that relate to the
request are valid:
• Client identity
• Server certificate
• At least one tunneling rule in the policy
• A rule that matches the request

Certificate challenges Evaluates the certificate from the sentry, and uses the client identity to
authenticate with the server. If both of these challenges succeed, the API
establishes a connection with the sentry. If you start another run while the
connection is still established, the new run will not perform any certificate related
diagnostics.

Connection results Presents the data received by the app from the backend server.

TABLE 42.DIAGNOSTICS PERFORMED BYAPPTUNNEL DIAGNOSTICAPI FOR XAMARIN

Set up your app to use the AppTunnel Diagnostic API for Xamarin

SeeAppTunnel Diagnostic API for Xamarin for instructions on setting up your app to use this API.

Run the API

This API is a copy of the native AppTunnel diagnostic API, with the exception that C# nomenclature is used. For
details on running this API, please refer to the AppConnect C# binding which provides documentation for each
method, property and enumeration in HTML and inMonodoc format.

API Response

The API returns the following series of messages to the console:

AppTunnelDiagnostic API for Xamarin

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 192

Message Message Content Description

1 Success:

Diagnostic run started. Requesting (URL)

Failure:

N/A

Indicates successful start of the API run.

2 Success:

Request matches a tunneling rule so it will be
tunneled.

Failure:
• Request does not match a tunneling rule

so it will not be tunneled
• AppTunnel policy has no tunneling rules.

Succeeds if an initial or redirected request
matched a tunneling rule, or fails otherwise.

3 Success:

Server certificate in the AppTunnel policy is
valid.

Failure:
• No server certificate was found in the

AppTunnel policy.
• Server certificate in the AppTunnel policy

is invalid. It may have expired.

Succeeds if the policy contains a valid server
certificate, or fails otherwise.

4 Success:

Server certificate passed all evaluation

Failure:

Server certificate was not trusted. The trust
result was (trust result)

Succeeds if the sentry's server-side certificate
is valid, or fails otherwise.

5 Success:

Failure:
• Server issued an auth challenge type that

the diagnostic does not support.
• Aborting the diagnostic and the auth

challenge. Auth challenge type is (auth
type)

Returns message if the diagnostic is aborted
because the server issued an auth challenge
that the diagnostic does not support. Returns
nomessage on success.

6 Success:

Client identity in the AppTunnel policy appears
to be valid.

Failure:
• No client identity in the AppTunnel policy.

Succeeds if the policy contains a valid client
identity, or fails otherwise.

TABLE 43.APPTUNNEL DIAGNOSTICAPI RESPONSE MESSAGES

API Response

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 193

Message Message Content Description

• Client certificate in the AppTunnel policy is
invalid. It may have expired.

7 Success:

Authenticated with client identity

Failure:

There was a previous failure of the client auth
challenge.

Succeeds if the client-side certificate was
sent, or fails otherwise.

8 Success:

The server redirected to a new URL.
Redirected by server to new URL (url)

Failure:

N/A

Always succeeds.

9 Success:

Received HTTP status code
(1xx, 2xx, or 3xx)

Failure:

Received HTTP status code
(4xx or 5xx)

The server returns an HTTP status code.
Status codes in the 1xx, 2xx, and 3xx range
indicate success. Status codes in the 4xx and
5xx range indicate failure.

10 Success:

Received (bytes) bytes of data

Failure:

Nomessage appears

If data is received, the API returns amessage.

11 Success:

Session completed normally

Failure:

Session completed with error: (error)

Fails if the session completed with an error, or
succeeds otherwise.

TABLE 43.APPTUNNEL DIAGNOSTICAPI RESPONSE MESSAGES (CONT.)

API Response

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 194

Sample response

Sample response

8

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 195

FIPS Compliance in an AppConnect SDK App

You canmake an AppConnect app FIPS compliant. FIPS compliance information is available at:

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

The following features of the AppConnect for iOS SDK allow you tomake a FIPS compliant AppConnect app:
• The SDK is FIPS compliant on all iOS devices running supported versions of iOS as listed in Product versions

required .
It is not FIPS compliant on devices running previous iOS versions.

The AppConnect for iOS SDK uses ECDH and AES-256-GCM protocols for the inter-app communication bus
between AppConnect apps andMobile@Work.

• The SDK uses FIPS compliant algorithms for all cryptographic operations.
• The SDK uses OpenSSL for cryptography.

The use of OpenSSL allows you to link into a FIPS compliant version of the OpenSSL library in your app.

Tomake your app is FIPS compliant with regard to its use of the AppConnect for iOS SDK, do the following:
• Link into anOpenSSL library built in FIPS mode. When you link your OpenSSL library to your Xcode project,

make sure it is listed higher than the AppConnect.framework in Xcode under Linked Frameworks and
Libraries.

MobileIron has verified that the AppConnect for iOS SDK works correctly using OpenSSL library version 1.0.2h.
Check OpenSSL documentation to determine differences with other OpenSSL library versions.

• Make sure that you have initialized OpenSSL in FIPS mode before calling any AppConnect for iOS APIs.
• If you use your own libcrypto.a file, make sure it is FIPS compliant. The libcrypto.a file included in the

AppConnect.framework is FIPS compatible.

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

9

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 196

Testing for Third-party App Developers

l Third-party AppConnect app testing overview

l Set upMobileIron Core

l Set up your end-user device

l Test authorization status handling

l Test data loss prevention policy handling

l Test AppConnect configuration change handling

l Test using AppTunnel

l Test loggingmessages to the console or files

l Test the app documentation

Third-party AppConnect app testing overview
Test your app using the instructions in this chapter or the instructions in Testing for In-house App Developers
based on the following table:

Your role Testing instructions

Third-party app developer This chapter

In-house app developer whose organization uses MobileIron
Cloud

This chapter

In-house app developer whose organization uses MobileIron
Core or Connected Cloud.

See Testing for In-house App Developers.

TABLE 44.WHERE TO FIND THE RIGHT TESTING INSTRUCTIONS

Testing with MobileIron Core as described in this chapter is necessary to verify the AppConnect-related
functionality of your AppConnect app. If your app accesses servers behind a firewall using AppTunnel, a
Standalone Sentry is necessary to verify the AppTunnel feature. All AppConnect apps require Mobile@Work to
interact with Core.

For testing your app, MobileIron provides you access toMobileIron Connected Cloud, the cloud offering of the on-
premise server MobileIron Core. MobileIron also provides you access to Standalone Sentry if necessary. You then
use a web portal called the Admin Portal to make configuration changes necessary for testing your app.

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 197

NOTE: Apps that you test withMobileIronConnectedCloudandMobile@Work will also work with
MobileIronCloudand supported versions ofMobileIronGo. However, some AppConnect
features are not supportedbyMobileIronCloudandMobileIronGo.

Use an enterprise build of your app for testing. When your app is completely tested, build a distribution build for
distributing the app through the Apple App Store. These procedures are for testing only.

Before you begin:
• Contact MobileIron to provide you with a Core (Connected Cloud) and (if necessary) Standalone Sentry.
• Get Mobile@Work from the Apple App Store.

Set upMobileIron Core
To set up Core for testing your AppConnect app, do the following high-level steps:
1. Login to the Admin Portal.
2. Enable AppConnect onMobileIron Core.
3. Configure the AppConnect global policy.
4. Create an AppConnect container policy.

NOTE: These instructions are for Core 9.7.0.0.

Login to the Admin Portal

MobileIron provides you with the following information about your test MobileIron Core:
• the URL for accessing the Core’s Admin Portal

The Admin Portal is a web portal for configuring Core. The URL has the format:
https://m.mobileiron.net/<app partner name>

• a user ID and password for accessing the Admin Portal
You also use this user ID to register a device with Core.

• a port number for Core, used when you register a device with Core.
The port number is typically four or five digits.

To login to Core:
1. Open a browser to the URL for accessing the Core’s Admin Portal.

Use the URL of your test Core, appended with /mifs. For example:
https://m.mobileiron.net/myCompany/mifs

2. Enter your Username and Password.
3. Click Sign In.

You are now in the Admin Portal.
Change your password when prompted.

Enable AppConnect onMobileIron Core

To enable AppConnect on Core:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.

Set upMobileIronCore

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 198

3. Select AppConnect For Third-party And In-house Apps if it is not already selected.
4. Click Save.

Configure the AppConnect global policy

An AppConnect global policy is necessary for your AppConnect app to work properly.

To configure an AppConnect global policy:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the row that says Default AppConnect Global Policy for the Policy Name.
3. Click Edit in the right-hand pane.
4. For AppConnect, select Enabled.

The display now shows all the AppConnect global policy fields.
5. In the AppConnect Passcode section, for Passcode Type, select Numeric.
6. In the AppConnect Passcode section, select Passcode Is Required For iOS Devices.
7. Click Save.

NOTE: Do not select Authorize in the fieldAppsWithout AnAppConnect Container Policy in the section
Data Loss Prevention Policies in the AppConnect global policy. Youwill authorize the appwith
anAppConnect container policy instead.

Create an AppConnect container policy

An app is authorized only if an AppConnect container policy for the app is present on the device.

To create an AppConnect container policy:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > Container Policy.
3. Enter a name for the AppConnect container policy.

For example: My App’s Container Policy
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. Click Save.

The dialog box closes and the new AppConnect container policy appears in the list.
6. Select the AppConnect container policy you just created.
7. Select Actions > Apply To Label.
8. Select iOS.
9. Click Apply.
10. Click OK.

Set up your end-user device
To set up your end-user device, do the following high-level steps:
1. Set upMobile@Work on an iOS device.
2. Install your app on the device.
3. Set up the AppConnect passcode on the device.

Configure theAppConnectglobalpolicy

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 199

Set upMobile@Work on an iOS device

To set upMobile@Work for iOS on your device:
1. Download and install Mobile@Work from the Apple App Store.
2. Tap theMobileIron app icon to launchMobile@Work.
3. Enter the user name that MobileIron gave you.

You use the same user name that you use to log into the Admin Portal.
4. Enter the server as follows:

m.mobileiron.net:<port number>
where <port number> is the port number you received fromMobileIron along with your user name and
password.
For example:
m.mobileiron.net:27643

5. Enter the password.
Enter the password that you created when you first logged into the Admin Portal.

6. Follow the prompts fromMobile@Work to complete its setup.
Allow Mobile@Work to use the current location.
Install new profiles and certificates when prompted.

Install your app on the device

Install your app on the device in the sameway you install any app that you are testing.

Set up the AppConnect passcode on the device

When you run your app for the first time, Mobile@Work prompts you to create the AppConnect passcode. Follow
the steps to create the AppConnect passcode.

Test authorization status handling
You canmake changes to Core configuration to test your app’s handling of the different authorization statuses:
authorized, unauthorized, and retired.

Change the status to authorized or unauthorized

A security policy on Core specifies the requirements for a device. If a device is not compliant with a requirement,
the security policy specifies a compliance action. One compliance action is to block AppConnect apps on the
device, whichmeans that the apps become unauthorized.

The list of requirements that can impact authorization is long, but for testing your app, you need to work with only
one requirement. The requirement involves a list of devicemodels that are not allowed to use AppConnect apps.

Therefore, to unauthorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the Default Security Policy.

Set upMobile@Workonan iOSdevice

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 200

3. Click Edit in the right-hand pane.
4. Scroll down to the section called Access Control, under For iOS Devices.
5. Select Block Email, AppConnect Apps, And Send Alert For The Following Disallowed Devices.
6. Move themodel of your test device to the Disallowed area.
7. Click Save.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is unauthorized. Otherwise, it receives the notification
the next time it runs.

Verify that your app correctly handles the change to the unauthorized state. Specifically, verify that your app:
• exits any sensitive part of the application.
• stops allowing the user to access sensitive data and views.
• displays themessage received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

To re-authorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the Default Security Policy.
3. Click Edit in the right-hand pane.
4. In the section called Access Control, under For iOS Devices, uncheck Block Email, AppConnect Apps, And

Send Alert For The Following Disallowed Devices.
5. Click Save.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Change the status to retired

An app is authorized only if an AppConnect container policy for the app is present on the device. If you remove the
AppConnect container policy from the device, the app becomes retired.

To retire the app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.

Change the status to retired

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 201

2. Select the AppConnect container policy for your app.
3. Select Actions > Remove From Label.
4. Select iOS.
5. Click Remove.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is retired. Otherwise, it receives the notification the next
time it runs. Themessage string in the notification is the default unauthorizedmessage:
“Your administrator has not authorized this app.”

Verify that your app correctly handles the change to the retired state. Specifically, verify that your app:
• exits any sensitive part of the application.
• deletes all sensitive data, including any stored authentication credentials, data in files, keychain items,

pasteboard data, and any other persistent storage.
• displays themessage received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

Reauthorize a retired app

A retired app is sometimes re-authorized at a later time.

To reauthorize the retired app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Apply To Label.
4. Select iOS.
5. Click Apply.
6. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• dismisses any user interface that displays that the user is not authorized to use the app.
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Reauthorize a retiredapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 202

Test data loss prevention policy handling
The AppConnect container policy for your app specifies its data loss prevention (DLP) policies. In this policy, you
specify whether your app is allowed to:
• copy content to the iOS pasteboard.
• drag and drop content to other apps
• print by using AirPrint, any future iOS printing feature, any current or future third-party libraries or apps that

provide printing capabilities.
• share documents with other apps.

By changing the AppConnect container policy, you can test:
• your app’s behavior for each data loss prevention policy.
• how your app handles changes to the policies in the notification callback methods in the AppDelegateProtocol.

To change the DLP policies:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Click Edit in the right-hand pane.
4. Allow or prohibit features relating to data loss prevention policies as follows:

DLP policy Description

Allow Print Select Allow Print if you want the app to use the device’s print capabilities.

Allow Copy/Paste To Select Allow Copy/Paste To if you want the device user to be able to copy content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to copy content from the
AppConnect app and paste it into any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to copy content
from the AppConnect app and paste it into only other AppConnect apps.

Allow Drag and Drop Select Allow Drag and Drop if you want the device user to be able to drag content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to drag content from the
AppConnect app to any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to drag content
from the AppConnect app to only other AppConnect apps.

Allow Open In Select Allow Open In if you want the app to be allowed to use the device’s Open In

TABLE 45.DLP POLICY DESCRIPTIONS

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 203

DLP policy Description

(document interaction) feature.

When you select this option, then select either:
• All Apps

Select All Apps if you want the app to be able to send documents to any other
app.

• AppConnect Apps
Select AppConnect Apps to allow an AppConnect app to send documents to
only other AppConnect apps.

NOTE: This option results in the openInPolicy property having the value
ACOPENINPOICY_WHITELIST. Also, the openInWhitelist property
contains the list of currently authorizedAppConnect apps.

• Whitelist
Select Whitelist if you want the app to be able to send documents only to the
apps that you specify.
Enter the bundle ID of each app, one per line, or in a semicolon delimited list.
For example:
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

TABLE 45.DLP POLICY DESCRIPTIONS (CONT.)

5. Click Save.
6. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notifications for the updated DLP policies. Otherwise, it receives the
notifications the next time it runs.

Verify that your app correctly handles the data loss prevention policy changes, as shown in the following table:

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 204

Policy change What to verify

Allow copy/paste to for all
apps

• Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow copy/paste to for
AppConnect Apps only

• Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

• Verify that the user can paste the data from the pasteboard only into other
AppConnect apps.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Do not allow copy/paste to • Verify that the user cannot to cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is removed or disabled.

• Verify your implementation of the callback method
-appConnect:copyAttemptedWhenUnauthorized:.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow drag and drop to only
AppConnect apps

Verify your implementation of the callback method
-appConnectAttemptedDragAndDropToUnauthorizedApp:.

Allow open in for all apps Verify that your app enables user interfaces, if any, that give the user the option
to useOpen In.

Also, verify that your app calls the -openInPolicyApplied:message: method.

Allow open in for
AppConnect apps

Verify that:
• your app enables user interfaces, if any, that give the user the option to use

Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Allow open in for
whitelisted apps

Verify that:
• your app enables user interfaces, if any, that give the user the option to use

Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

TABLE 46.WHAT TO VERIFY WHENADLP POLICY CHANGES

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 205

Policy change What to verify

callback method, if implemented, behaves as you expect.

Do not allow open in Verify that:
• your app disables user interfaces, if any, that give the user the option to use

Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Allow print For each part of your app that allows the user to print secure data, verify the
capability is enabled.

Also, verify that your app calls the -printPolicyApplied:message: method.

Do not allow print For each part of your app that allows the user to print secure data, verify the
capability is removed or disabled.

Also, verify that your app calls the -printPolicyApplied:message: method.

TABLE 46.WHAT TO VERIFY WHENADLP POLICY CHANGES (CONT.)

Test AppConnect configuration change handling
AppConnect app configuration onMobileIron Core specifies key-value pairs for configuring your app. You add, and
edit, key-value pairs using the Admin Portal.

By changing the AppConnect app configuration, you can test your app’s -appConnect:configChangedTo:
method in the AppDelegateProtocol.

Create an AppConnect app configuration

To create an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.
3. Enter a name for the AppConnect app configuration.

For example: My App’s App Configuration
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. In the App-specific Configurations section, click Add+ to add a key-value pair.
6. Enter the key-value pairs.

TestAppConnectconfigurationchangehandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 206

Key The key is any string that the app recognizes as a configurable item.

For example: userid, appURL

Value Enter the value. The value is either:
• a string

The string can have any value that is meaningful to the app. It can also include
one or more of theseMobileIron Core variables: $USERID$, $EMAIL$, $USER_
CUSTOM1$, $USER_CUSTOM2$, $USER_CUSTOM3$, $USER_
CUSTOM4$.
If you do not want to provide a value, enter $NULL$. The $NULL$ value tells the
app that the app user will need to provide the value.
Examples:
$USERID$
https://someEnterpriseURL.com

• a Certificate Enrollment or Certificates setting
Certificate Enrollment and Certificate settings that are configured in Policies &
Configs > Configurations appear in the dropdown list. When you choose a
Certificate Enrollment or Certificate setting, Core sends the contents of the
certificate as the value. The contents are base64-encoded.
If the certificate is password-encoded, Core automatically sends another key-
value pair. The key’s name is the string <name of key for certificate>_MI_
CERT_PW. The value is the certificate’s password.

TABLE 47. KEY-VALUE PAIRS IN ANAPPCONNECT APP CONFIGURATIONKEY

7. Click Save.
8. Click Yes to confirm.
9. Select the new AppConnect app configuration.
10. Select Actions > Apply To Label.
11. Select iOS.
12. Click Apply.
13. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the notification
the next time it runs.

Verify that your app correctly handles the new configuration, correctly applying and using the configured options
according to your app’s requirements and design.

Update the AppConnect app configuration

To update the AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.

Update theAppConnectappconfiguration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 207

2. Select the your app’s AppConnect app configuration.
3. Click Edit in the right-hand pane.
4. In the App-specific Configurations section, click Add+ to add a key-value pair. To delete a key-value pair, click

the X on the row.
5. Update the key-value pairs as described in Create an AppConnect app configuration.
6. Click Save.
7. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the updated configuration. Otherwise, it receives the
notification the next time it runs.

Verify that your app correctly handles the updated configuration, correctly applying and using the configured
options according to your app’s requirements and design.

Test using AppTunnel
UsingMobileIron’s AppTunnel feature, your app can securely tunnel HTTP and HTTPS network connections from
the app to servers behind an organization’s firewall. Your app does not take any special actions related to tunneling;
the AppConnect library, Mobile@Work, and a Standalone Sentry handle tunneling for the app.

You can test the HTTP/S tunneling capability using the providedMobileIron Core and Sentry. Using the Admin
Portal, you configure app-specific AppTunnel settings for Core and Sentry.

Before you begin:Contact MobileIron to provide you with a Standalone Sentry.

To test your app’s use of AppTunnel with HTTP/S tunneling, do these high-level steps:
1. Enable AppTunnel onMobileIron Core.
2. Use an existing certificate or generate a new one.

If you have an existing certificate, see Use an existing certificate.
Otherwise, seeGenerate a certificate.

3. Configure the Sentry with an AppTunnel service.
4. Configure the AppTunnel service in the AppConnect app configuration.

Enable AppTunnel onMobileIron Core

To enable AppTunnel onMobileIron Core:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it isn’t already selected.
4. Select AppTunnel For Third-party And In-house Apps if it isn’t already selected.
5. Click Save.

Test usingAppTunnel

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 208

Use an existing certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity certificate to present to the Standalone Sentry. The identity certificate is

provisioned from the certificate authority (CA) that originated the root certificate.

If you already have an existing certificate, typically a .p12 file, you can use it for both purposes.

To upload the certificate toMobileIron Core:
1. In the Admin Portal, go to Policies & Configs > Configurations.
2. Select Add New > Certificate Enrollment > Single File Identity.
3. For Name, enter any name.

For example: Tunneling Identiity Certificate
4. For Certificate 1, click Browse to select the .p12 or .pfx file of the identity certificate.
5. For Password 1, enter the password for the certificate’s private key, if applicable.
6. Click Save.

Generate a certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

One convenient way to get these certs iinvolves makingMobileIron Core a local certificate authority (CA).

This process involves the following high-level steps:
1. Create a certificate authority for using AppTunnel with HTTP/S tunneling
2. Create a local certificate enrollment setting

Create a certificate authority for using AppTunnel with HTTP/S tunneling

To create a local certificate authority onMobileIron Core to be used in generating certificates:
1. In the Admin Portal, select Services > Local CA.
2. Select Add > Generate Self-Signed Cert
3. Enter a name for Local CA Name.

For example: CA for AppTunnel
4. Set Key Length to 2048.
5. Set the Issuer Name to “CN=Tunneling CA”.
6. Click Generate.

A screen titled Certificate Template displays.
7. Click Save.
8. Click View Certificate next to your new local certificate authority.

Useanexistingcertificate

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 209

9. Copy all the text in into a text file.
10. Save the text file.

You will upload this text file later as the root certificate for authenticating devices to the Standalone Sentry.

Create a local certificate enrollment setting

After you configureMobileIron Core as a local CA, you create a local certificate enrollment setting. This setting
configures MobileIron Core acting as a local CA to generate identity certificates for the devices to present to
Standalone Sentry.

To create a local certificate enrollment setting:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select Add New > Certificate Enrollment > Local.

A dialog appears entitled New Local Certificate Enrollment Setting.
3. Enter a descriptive name in the Name field.

For example: Tunneling certificate
4. For Local CA, select the certificate authority you created for AppTunnel.
5. For Subject, enter “cn=tunneling”.

The value can be any string.
6. For Key Length, select 2048.
7. Click Issue Test Certificate.

The issued test certificate displays.
8. Click OK to close the displayed certificate.
9. Click Save to save the local certificate enrollment setting.

Configure the Sentry with an AppTunnel service

To support AppTunnel with HTTP/S tunneling, configure the Sentry with the internal servers that your app uses.

Createa localcertificate enrollment setting

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 210

Do the following:
1. In the Admin Portal, go to Services > Sentry.
2. Select Add New > Standalone Sentry.
3. Enter the host name of the Sentry that MobileIron provides you.
4. Select Enable AppTunnel.
5. For Device Authentication Configuration:

If you already had a certificate, select Group Certificate.
If you created a local certificate authority, select Identity Certificate.

6. Click Upload Certificate.
If you already had a certificate, upload it.
If you created a local certificate authority, upload the certificate text file that you created in Create a certificate
authority for using AppTunnel with HTTP/S tunneling. It is the root certificate for authenticating devices to the
Standalone Sentry.

7. In the AppTunnel Configuration section, click + to add a new service.
8. Enter a Service Name.

The service name is any unique identifier for the internal server or servers that your AppConnect app tunnels to.
Entering <ANY> means that the app can reach any of your internal servers.
Service Name examples:
SharePoint
HumanResources

9. For Server Auth, select Pass Through.
This field selects the authentication scheme for the Standalone Sentry to use to authenticate the user to the
internal server. Pass Throughmeans that the Sentry passes through the authentication credentials, such as the
user ID and password (basic authentication) or NTLM, to the internal server.

NOTE: The other option is Kerberos. Kerberosmeans that the Sentry uses KerberosConstrained
Delegation (KCD). The corporate environment must be set up for KerberosConstrained
Delegation.

10. Enter a Server List.
Enter a semicolon-separated list of internal server host names or IP addresses and the port that the Sentry can
access.
For example:
sharepoint1.companyname.com:443;sharepoint2.companyname.com:443.
When you enter multiple servers, the Sentry uses a round-robin distribution to load balance the servers. That is,
it sets up the first tunnel with the first internal server, the next with the next internal server, and so on.

NOTE: If you selected <ANY> for the Service Name, the Server List is not applicable.
11. Select TLS Enabled if the internal servers require SSL.

Although port 443 is typically used for https and requires SSL, the internal server can use other port numbers
requiring SSL.

NOTE: If you selected <ANY> for the Service Name, do not select TLS Enabled.
12. Do not fill in Server SPN List. It applies only when the Server Auth field is Kerberos.
13. Select Proxy/ATC only if your testing requires that you direct the AppTunnel service traffic through a proxy

server. The proxy server is located behind the firewall and sits between the Sentry and corporate resources.
This deployment allows you to access corporate resources without having to open the ports that Sentry would
otherwise require.
If selected, also configure the Server-side Proxy fields: Proxy Host Name / IP and Proxy Port.

14. Click Save.
15. Click View Certificate on the row with your new Sentry.

Configure the SentrywithanAppTunnel service

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 211

This action copies the Sentry’s self-signed certificate that you created toMobileIron Core.

Configure the AppTunnel service in the AppConnect app configuration

The AppConnect app configuration specifies the AppTunnel services that your app uses. You configured these
services on the Sentry.

To configure AppTunnel with HTTP/S tunneling on an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.

NOTE: If youalready have createdanAppConnect appconfiguration for your app, select it andclick
Edit in the right-handpane.

3. Enter a name for the AppConnect app configuration if this is a new one.
For example: My App’s App Configuration

4. In the Application field, enter the bundle ID of your app if this is a new app configuration.
For example: com.MyCompany.MySecureApp

5. In the AppTunnel Rules section, click Add+ to add a new AppTunnel configuration.
6. For Sentry, select the Sentry from the drop-down list.
7. For Service, select the service name from the drop-down list.

You created this service name in Configure the Sentry with an AppTunnel service.
8. For the URLWildcard, enter the host name or URL of the internal app server with which the app

communicates. If the Service specified for this server in Configure the Sentry with an AppTunnel service is
<ANY>, the host name can use the wildcard character *.
If a URL request in your appmatches the value you enter here, the request uses AppTunnel with HTTP/S
tunneling.
Examples:
sharepoint1.yourcompany.com
*.yourcompanyname.com

9. For Port, enter the port number that the app connects to.
10. For Identity Certificate:

If you already had a certificate, select the certificate setting that you created in Use an existing certificate.
If you created a local certificate authority, select the local certificate enrollment setting that you created in
Create a local certificate enrollment setting. This selection will result in the device receiving an identity
certificate from Core that it will present to the Standalone Sentry for device authentication.

11. Click Save.

If you are creating a new AppConnect app configuration:
1. Select the new AppConnect app configuration.
2. Select Actions > Apply To Label.
3. Select iOS.
4. Click Apply.
5. Click OK.

Push the changes to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.

Configure theAppTunnel service in theAppConnectappconfiguration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 212

4. Tap Force Device Check-in.

If your app is running, Mobile@Work launches and updates the AppConnect app configuration. If your app is not
running, Mobile@Work launches and updates the configuration the next time that you run your app. When
Mobile@Work has updated the configuration, your app will use AppTunnel with HTTP/S tunneling for the URLs
you specified.

Verify that your app’s networking capabilities work as expected.

Test loggingmessages to the console or files
• Log levels
• Debug code for verbose and debug log levels
• Logging to files
• Log file details
• Configuring logging to files
• Pushing the new log level to the device
• Activating verbose or debug logging on the device
• Sending log files in an email

Log levels

A MobileIron Core administrator can configure Core with the log level for your app. By default, the log level for an
app is ACLOGLEVEL_STATUS.

The administrator has a choice of four log levels as shown in the following table:

Administrator log level for
app

Corresponding ACLogLevel value for app

Status ACLOGLEVEL_STATUS

Info ACLOGLEVEL_INFO

Verbose ACLOGLEVEL_VERBOSE

Debug ACLOGLEVEL_DEBUG

TABLE 48. LOG LEVELS

Debug code for verbose and debug log levels

When the administrator chooses verbose or debug, the administrator also configures a debug code. The debug
code is any string. Mobile@Work requires the device user to enter that string before changing the app’s log level.
This extra security is becausemessages logged at verbose and debug log levels may contain sensitive data.

Test loggingmessages to theconsole or files

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 213

Logging to files

The detailed log data for your AppConnect app, and the AppConnect library contained in the app, is logged to the
device’s console. The administrator can choose to write the log data for the app to files on the device in addition to
writing the data to the device’s console.

Log file details

Details regarding the log files for each app are:
• The log files for each app are saved to the following directory:

Apps/<app name>/Library/Application Support/AppConnectLogs
• The log file for each app is named appConnect.log.
• The log file is at most 1MB.
• When appconnect.log exceeds 1MB:
1. It is renamed to appconnect.log.<timestamp>.

Example: appconnect.log.2015-05-28 15:13:21
2. Logging begins in a new file named appconnect.log.
3. If 20 log files already exist, the oldest file is deleted.

Configuring logging to files

To log data to a file for an AppConnect app, add a key-value pair to the app’s AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select the app configuration for the app and click Edit.

If the app does not already have an app configuration, select Add New > AppConnect > App Configuration.
Enter a name and description for the new app configuration and the app’s bundle ID.

3. In App-specific Configurations, click Add+ to add a key-value pair.
4. EnterMI_AC_ENABLE_LOGGING_TO_FILE in the key field.

The key name is case-sensitive.
5. EnterYes in the value field.
6. Click Add+ to add another key-value pair for the log level.
7. EnterMI_AC_LOG_LEVEL in the key field.

The key name is case-sensitive.
8. Enter one of the following in the value field: error (the default), info, verbose, or debug.

This value is not case-sensitive.
9. If you entered verbose or debug, click Add+ to add another key-value pair.
10. EnterMI_AC_LOG_LEVEL_CODE in the key field.

The key name is case-sensitive.
11. Enter a string for the value.

The device user will enter this string to activate the verbose or debug log level. You canmake up any string. For
example, enter 37!8D. For themost security, use a code that is difficult to guess.
The string is case-sensitive.

12. Click Save.

If you created a new AppConnect app configuration, apply the appropriate labels to it.

Logging to files

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 214

Pushing the new log level to the device

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. TapSettings.
3. TapCheck for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the notification
the next time it runs. If the log level is verbose or debug, device user interaction is required to activate the new
log level.

Verify that your app correctly handles the new log levels according to your app’s requirements and design.

Activating verbose or debug logging on the device

Log levels verbose and debug require device user interaction. Your app is not notified of these log levels until the
device user activates debugmode inMobile@Work. This activation switch appears in Mobile@Work’s detailed
status display for your app. The detailed status display for your app is available after you have launched your app
the first time.

The detailed status display for an AppConnect app includes a DebugMode switch only when you have configured
both of the following in the app’s AppConnect app configuration:
• a log level of verbose or debug
• a debug code

In this case, a detailed status display screen for an AppConnect app shows the DebugMode switch:

Screenshot from Mobile@Work 9.1

Pushing the new log level to thedevice

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 215

NOTE: Regarding the keysMI_AC_LOG_LEVEL andMI_AC_LOG_LEVEL_CODE:
• They are not included in the configuration count on an app’s detailed status display.
• They are not included in the configuration your app receives through the AppConnect for iOS API.
• If the administrator makes changes to the AppConnect app configuration that involve only these keys, the

AppConnect library does not call the -appConnect:configChangedTo: notificationmethod.

To activate verbose or debug level logging, do the following on the device:
1. OpenMobile@Work on the device.
2. TapSettings.
3. TapCheck For Updates.
4. Tap Force Device Check-In to make sure that Mobile@Work has received the updated log level.
5. TapSettings.
6. TapSecure Apps.
7. Tap the app for which you want verbose or debug level logging.

Screenshot from Mobile@Work 9.1

8. TapDebug Mode.

Activatingverbose or debug loggingonthedevice

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 216

Screenshot from Mobile@Work 9.1

9. Enter the debug code.
10. TapNext.

Verify that your app correctly handles the verbose and debug levels according to your app’s requirements and
design.

Verbose or debug level logging is activated for 24 hours, after which it is automatically deactivated the next time
that you launch or switch to the app. However, you can deactivate it any time by tapping DebugMode again. When
deactivated, your app’s log level returns to the default, which is ACLOGLEVEL_STATUS.

Sending log files in an email

You can useMobile@Work for iOS to send log files to an email address of your choice as a convenient way to view
the files. This feature requires Mobile@Work 9.8 for iOS through themost recently released version as supported
by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

NOTE: The displayedoption is disabled if the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, only if all of the following are true:
• You included the key-value pairs for the app in its app configuration onMobileIron Core:

- MI_AC_LOG_LEVEL set to debug

Sending log files inanemail

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 217

- MI_AC_LOG_LEVEL_CODE set to a chosen string
- MI_AC_ENABLE_LOGGING_TO_FILE set toYes

• In Mobile@Work inSettings > Secure Apps > <app name>, you have turned onDebug Mode and entered
the string fromMI_AC_LOG_LEVEL_CODE.

Test the app documentation
A MobileIron Core administrator configures Core with information about your app. You provide this information in
documentation about your app. Test whether your app correctly handles what your documentation specifies.

For more information, see Best Practices Using the AppConnect for iOS SDK.

Test theappdocumentation

10

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 218

Testing for In-house App Developers

l In-house AppConnect app testing overview

l Set upMobileIron Core

l Set up your end-user device

l Test authorization status handling

l Test data loss prevention policy handling

l Test AppConnect configuration change handling

l Test using AppTunnel

l Test loggingmessages to the console or files

l Test the app documentation

In-house AppConnect app testing overview
Test your app using the instructions in this chapter or the instructions in Testing for Third-party App Developers
based on the following table:

Your role Testing instructions

In-house app developer whose organization uses MobileIron
Core or Connected Cloud.

This chapter.

In-house app developer whose organization uses MobileIron
Cloud

See Testing for Third-party App
Developers

Third-party app developer See Testing for Third-party App
Developers

TABLE 49.WHERE TO FIND THE RIGHT TESTING INSTRUCTIONS

Testing with MobileIron Core as described in this chapter is necessary to verify the AppConnect-related
functionality of your AppConnect app. If your app accesses servers behind a firewall using AppTunnel, a
Standalone Sentry is necessary to verify the AppTunnel feature. All AppConnect apps require Mobile@Work to
interact with Core.

As an in-house AppConnect app developer, contact your organization’s Core administrator to get access to a Core
and Standalone Sentry (if necessary) for testing. You then use a web portal called the Admin Portal to make
configuration changes necessary for testing your app.

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 219

Mobile@Work is available from the Apple App Store.

Set upMobileIron Core
To set upMobileIron Core for testing your AppConnect app, do the following high-level steps:
1. Login to the Admin Portal.
2. Enable AppConnect onMobileIron Core.
3. Create a label for testing your app.
4. Upload your app toMobileIron Core if you use AppConnect.plist.
5. Verify your AppConnect.plist settings.
6. Configure the AppConnect global policy.
7. Create an AppConnect container policy, if necessary.

NOTE: These instructions are for Core 9.7.0.0.

Login to the Admin Portal

Contact your organization’s MobileIron Core administrator to get the following information about the Core to test
with:
• the URL for accessing the Core’s Admin Portal

The Admin Portal is a web portal for configuring Core. It has the format:
https://<Core domain name>/mifs

• a username and password for accessing the Admin Portal
• a username and password for registering a device with Core

Depending on your Core administrator, this username and password can be the same as the username and
password for accessing the Admin Portal.

To login to Core:
1. Open a browser to the URL for accessing the Core’s Admin Portal.

For example:
https://myCore.mycompany.com/mifs

2. Enter your Username and Password for accessing the Admin Portal.
3. Click Sign In.

You are now in the Admin Portal.

Enable AppConnect onMobileIron Core

To test your AppConnect app, ensure that AppConnect is enabled onMobileIron Core.
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it is not already selected.
4. Click Save.

Set upMobileIronCore

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 220

Create a label for testing your app

MobileIron Core uses labels to associate policies and apps with devices. For testing your app, create a new label
so that your testing impacts only your test device.
1. In the Admin Portal, go to Devices & Users > Labels.
2. Click Add Label.
3. Enter a name for the label.

For example: AppConnect Test
4. Enter a description.

For example: Use only for devices testing new AppConnect apps.
5. Select Manual for the Type.
6. Click Save.

Upload your app toMobileIron Core if you use AppConnect.plist

If your app uses an AppConnect.plist, upload your app toMobileIron Core. Uploading your app causes Core to
create and populate an AppConnect container policy and AppConnect app configuration with the values you
entered in the AppConnect.plist.

To upload your app:
1. In the Admin Portal, select Apps > App Catalog.
2. Select iOS for Platform.
3. Click Add+.

The iOS Add AppWizard starts.
4. Click In-House.
5. Click Browse to select your app’s .ipa file.
6. Click Next.
7. Click Next.
8. Click Finish.

The app is now in Core’s App Catalog. Core has created an AppConnect container policy and AppConnect app
configuration based on your AppConnect.plist.

9. Select the row listing your app.
10. Select Actions > Apply To Label.
11. Select the label that your created in Create a label for testing your app.
12. Click Apply.

Core applies the label to your app. It also applies it to the AppConnect container policy and AppConnect app
configuration.

Verify your AppConnect.plist settings

Once you have uploaded your app toMobileIron Core, verify that the AppConnect.plist settings are correctly
reflected in the AppConnect container policy and AppConnect app configuration.

To verify the AppConnect.plist settings:
1. On the Admin Portal, go to Policies & Configs > Configurations.
2. Select the row with the name of your app and the Setting Type APPCONFIG.

Createa label for testingyour app

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 221

3. Click Edit in the right-hand pane.
4. In the App-specific Configurations section, verify the keys and values are what you entered in the

AppConnect.plist.
5. Click Cancel.
6. Select the row with the name of your app and the Setting Type APPPOLICY.
7. Click Edit in the right-hand pane.
8. Verify the data loss prevention settings are what you entered in the AppConnect.plist.
9. Click Cancel.

If any of the key-value pairs or data loss prevention policies are not what you expected, review the contents of your
AppConnect.plist.

Configure the AppConnect global policy

An AppConnect global policy is necessary for your AppConnect app to work properly.

To configure an AppConnect global policy:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select Add New > AppConnect.
3. Enter a name for the AppConnect global policy.

For example: Test AppConnect Global Policy.
4. For AppConnect, select Enabled.

The display now shows all the AppConnect global policy fields.
5. In the AppConnect Passcode section, for Passcode Type, select Numeric.
6. In the AppConnect Passcode section, select Passcode Is Required For iOS Devices.
7. Click Save.

The dialog box closes and the new AppConnect global policy appears in the list.
8. Select the AppConnect global policy that you just created.
9. Select More Actions > Apply To Label.
10. Select the test label that you created in Create a label for testing your app.
11. Click Apply.
12. Click OK.

NOTE: Do not select Authorize in the fieldAppsWithout AnAppConnect Container Policy in the section
Data Loss Prevention Policies in the AppConnect global policy. Youwill authorize the appwith
anAppConnect container policy instead.

Create an AppConnect container policy, if necessary

An app is authorized only if an AppConnect container policy for the app is present on the device. If you have an
AppConnect.plist in your app, and uploaded the app toMobileIron Core, Core creates an AppConnect container
policy automatically. If you do not have an AppConnect.plist in your app, manually create an AppConnect container
policy.

To create an AppConnect container policy:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > Container Policy.

Configure theAppConnectglobalpolicy

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 222

3. Enter a name for the AppConnect container policy.
For example: My App’s Container Policy

4. In the Application field, enter the bundle ID of your app.
For example: com.MyCompany.MySecureApp

5. Click Save.
The dialog box closes and the new AppConnect container policy appears in the list.

6. Select the AppConnect container policy you just created.
7. Select Actions > Apply To Label.
8. Select the test label that you created in Create a label for testing your app.
9. Click Apply.
10. Click OK.

Set up your end-user device
To set up your end-user device, do the following high-level steps:
1. Set upMobile@Work on an iOS device.
2. Install your app on the device.
3. Set up the AppConnect passcode on the device.

Set upMobile@Work on an iOS device

To set upMobile@Work for iOS on your device:
1. Download and install Mobile@Work from the Apple App Store.
2. Tap theMobileIron app icon to launchMobile@Work.
3. Enter the user name that the Core administrator gave you for registering your test device.
4. Enter the server name that the Core administrator gave you.

For example: myCore.mycompany.com
5. Enter the password.

Enter the password that the Core administrator gave you for registering your test device.
6. Follow the prompts fromMobile@Work to complete its setup.

Allow Mobile@Work to use the current location.
Install new profiles and certificates when prompted.

Install your app on the device

Install your app on the device in the sameway you install any app that you are testing.

Set up the AppConnect passcode on the device

When you run your app for the first time, Mobile@Work prompts you to create the AppConnect passcode. Follow
the steps to create the AppConnect passcode.

Set upyour end-user device

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 223

Test authorization status handling
You canmake changes to theMobileIron Core configuration to test your app’s handling of the different
authorization statuses: authorized, unauthorized, and retired.

Change the status to authorized or unauthorized

A security policy onMobileIron Core specifies the requirements for a device. If a device is not compliant with a
requirement, the security policy specifies a compliance action. One compliance action is to block AppConnect
apps on the device, whichmeans that the apps become unauthorized.

The list of requirements that can impact authorization is long, but for testing your app, you need to work with only
one requirement. The requirement involves a list of devicemodels that are not allowed to use AppConnect apps.

Therefore, to unauthorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select Add New > Security.
3. Enter a name.

For example: AppConnect test security policy
4. Scroll down to the section called Access Control, under For iOS Devices.
5. Select Block Email, AppConnect Apps, And Send Alert For The Following Disallowed Devices.
6. Move themodel of your test device to the Disallowed area.
7. Click Save.

Core creates the new security policy.
8. Select the row listing the new security policy.
9. Select More Actions > Apply To Label.
10. Select the test label that you created in Create a label for testing your app.
11. Click Apply.
12. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is unauthorized. Otherwise, it receives the notification
the next time it runs.

Verify that your app correctly handles the change to the unauthorized state. Specifically, verify that your app:
• exits any sensitive part of the application.
• stops allowing the user to access sensitive data and views.
• displays themessage received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

To re-authorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.

Testauthorization status handling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 224

2. Select the security policy that you created.
3. Click Edit in the right-hand pane.
4. In the section called Access Control, under For iOS Devices, uncheck Block Email, AppConnect Apps, And

Send Alert For The Following Disallowed Devices.
5. Click Save.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Change the status to retired

An app is authorized only if an AppConnect container policy for the app is present on the device. If you remove the
AppConnect container policy from the device, the app becomes retired.

To retire the app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Remove From Label.
4. Select the label that you created in Create a label for testing your app.
5. Click Remove.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is retired. Otherwise, it receives the notification the next
time it runs. Themessage string in the notification is the default unauthorizedmessage:
“Your administrator has not authorized this app.”

Verify that your app correctly handles the change to the retired state. Specifically, verify that your app:
• exits any sensitive part of the application.
• deletes all sensitive data, including any stored authentication credentials, data in files, keychain items,

pasteboard data, and any other persistent storage.
• displays themessage received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

Change the status to retired

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 225

Reauthorize a retired app

A retired app is sometimes re-authorized at a later time.

To reauthorize the retired app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Apply To Label.
4. Select the label that you created in Create a label for testing your app.
5. Click Apply.
6. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• dismisses any user interface that displays that the user is not authorized to use the app.
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Test data loss prevention policy handling
The AppConnect container policy for your app specifies its data loss prevention (DLP) policies. In this policy, you
specify whether your app is allowed to:
• copy content to the iOS pasteboard.
• drag and drop content to other apps
• print by using AirPrint, any future iOS printing feature, any current or future third-party libraries or apps that

provide printing capabilities.
• share documents with other apps.

By changing the AppConnect container policy, you can test:
• your app’s behavior for each data loss prevention policy.
• how your app handles changes to the policies in the notification callback methods in the AppDelegateProtocol.

To change the DLP policies:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Click Edit in the right-hand pane.
4. Allow or prohibit features relating to data loss prevention policies as follows:

Reauthorize a retiredapp

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 226

DLP policy Description

Allow Print Select Allow Print if you want the app to use the device’s print capabilities.

Allow Copy/Paste to Select Allow Copy/Paste to if you want the device user to be able to copy content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to copy content from the
AppConnect app and paste it into any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to copy content
from the AppConnect app and paste it into only other AppConnect apps.

Allow Drag and Drop Select Allow Drag and Drop if you want the device user to be able to drag content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to drag content from the
AppConnect app to any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to drag content
from the AppConnect app to only other AppConnect apps.

Allow Open In Select Allow Open In if you want the app to be allowed to use the device’s Open In
(document interaction) feature.

When you select this option, then select either:
• All Apps

Select All Apps if you want the app to be able to send documents to any other
app.

• AppConnect Apps
Select AppConnect Apps to allow an AppConnect app to send documents to
only other AppConnect apps.

NOTE: This option results in the openInPolicy property having the value
ACOPENINPOICY_WHITELIST. Also, the openInWhitelist property
contains the list of currently authorizedAppConnect apps.

• Whitelist
Select Whitelist if you want the app to be able to send documents only to the
apps that you specify.
Enter the bundle ID of each app, one per line, or in a semicolon delimited list.
For example:
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

TABLE 50.DLP POLICY DESCRIPTIONS

5. Click Save.
6. Click Yes to confirm.

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 227

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notifications for the updated DLP policies. Otherwise, it receives the
notifications the next time it runs.

Verify that your app correctly handles the data loss prevention policy changes, as shown in the following table:

Policy change What to verify

Allow copy/paste to • Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow copy/paste to for
AppConnect Apps only

• Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

• Verify that the user can paste the data from the pasteboard only into
other AppConnect apps.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Do not allow copy/paste to • Verify that the user cannot to cut or copy text, images, or other data to
the pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is removed or disabled.

• Verify your implementation of the callback method
-appConnect:copyAttemptedWhenUnauthorized:.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow drag and drop to only
AppConnect apps

Verify your implementation of the callback method -
appConnectAttemptedDragAndDropToUnauthorizedApp:.

Allow open in for all apps Verify that your app enables user interfaces, if any, that give the user the
option to useOpen In.

Also, verify that your app calls the -openInPolicyApplied:message:
method.

Allow open in for AppConnect Verify that:

TABLE 51.WHAT TO VERIFY WHENADLP POLICY CHANGES

Testdata loss preventionpolicyhandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 228

Policy change What to verify

apps • your app enables user interfaces, if any, that give the user the option to
useOpen In.

• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Allow open in for whitelisted
apps

Verify that:
• your app enables user interfaces, if any, that give the user the option to

useOpen In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Do not allow open in Verify that:
• your app disables user interfaces, if any, that give the user the option to

useOpen In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Allow print For each part of your app that allows the user to print secure data, verify the
capability is enabled.

Also, verify that your app calls the -printPolicyApplied:message:
method.

Do not allow print For each part of your app that allows the user to print secure data, verify the
capability is removed or disabled.

Also, verify that your app calls the -printPolicyApplied:message:
method.

TABLE 51.WHAT TO VERIFY WHENADLP POLICY CHANGES (CONT.)

Test AppConnect configuration change handling
AppConnect app configuration onMobileIron Core specifies key-value pairs for configuring your app. You add, and
edit, key-value pairs using the Admin Portal.

By changing the AppConnect app configuration, you can test your app’s -appConnect:configChangedTo:
method in the AppDelegateProtocol.

If your app includes an AppConnect.plist, and you uploaded your app to Core, Core already has created a default
AppConnect app configuration. Go to Update the AppConnect app configuration.

If your app does not include an AppConnect.plist, create an AppConnect app configuration.

TestAppConnectconfigurationchangehandling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 229

Create an AppConnect app configuration

To create an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.
3. Enter a name for the AppConnect app configuration.

For example: My App’s App Configuration
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. In the App-specific Configurations section, click Add+ to add a key-value pair.
6. Enter the key-value pairs:

Key The key is any string that the app recognizes as a configurable item.

For example: userid, appURL

Value Enter the value. The value is either:
• a string

The string can have any value that is meaningful to the app. It can also include
one or more of theseMobileIron Core variables: $USERID$, $EMAIL$,
$USER_CUSTOM1$, $USER_CUSTOM2$, $USER_CUSTOM3$, $USER_
CUSTOM4$.
If you do not want to provide a value, enter $NULL$. The $NULL$ value tells the
app that the app user will need to provide the value.
Examples:
$USERID$
https://someEnterpriseURL.com

• a Certificate Enrollment or Certificates setting
Certificate Enrollment and Certificate settings that are configured in Policies &
Configs > Configurations appear in the dropdown list. When you choose a
Certificate Enrollment or Certificate setting, Core sends the contents of the
certificate as the value. The contents are base64-encoded.
If the certificate is password-encoded, Core automatically sends another key-
value pair. The key’s name is the string <name of key for certificate>_MI_
CERT_PW. The value is the certificate’s password.

TABLE 52. KEY-VALUE PAIRS IN ANAPPCONNECT APP CONFIGURATION

7. Click Save.
8. Click Yes to confirm.
9. Select the new AppConnect app configuration.
10. Select Actions > Apply To Label.
11. Select the label that you created in Create a label for testing your app.
12. Click Apply.
13. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.

CreateanAppConnectappconfiguration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 230

3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the notification
the next time it runs.

Verify that your app correctly handles the new configuration, correctly applying and using the configured options
according to your app’s requirements and design.

Update the AppConnect app configuration

To update the AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the your app’s AppConnect app configuration.
3. Click Edit in the right-hand pane.
4. In the App-specific Configurations section, click Add+ to add a key-value pair. To delete a key-value pair, click

the X on the row.
5. Update the key-value pairs as described in Create an AppConnect app configuration.
6. Click Save.
7. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the updated configuration. Otherwise, it receives the
notification the next time it runs.

Verify that your app correctly handles the updated configuration, correctly applying and using the configured
options according to your app’s requirements and design.

Test using AppTunnel
UsingMobileIron’s AppTunnel feature, your app can securely tunnel HTTP and HTTPS network connections from
the app to servers behind an organization’s firewall. Your app does not take any special actions related to tunneling;
the AppConnect library, Mobile@Work, and a Standalone Sentry handle tunneling for the app.

You can test the HTTP/S tunneling capability using the providedMobileIron Core and Sentry. Using the Admin
Portal, you configure app-specific AppTunnel settings for Core and Sentry.

Before you begin:Contact your Core administrator to find out the host name or IP address of the Sentry to use for
the AppTunnel feature.

To test your app’s use of AppTunnel with HTTP/S tunneling, do these high-level steps:
1. Enable AppTunnel onMobileIron Core.
2. Use an existing certificate or generate a new one.

Update theAppConnectappconfiguration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 231

If you have an existing certificate, see Use an existing certificate.
Otherwise, seeGenerate a certificate.

3. Configure the Sentry with an AppTunnel service.
4. Configure the AppTunnel service in the AppConnect app configuration.

Enable AppTunnel onMobileIron Core

To enable AppTunnel onMobileIron Core if it isn’t already enabled:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it isn’t already selected.
4. Select AppTunnel For Third-party And In-house Apps if it isn’t already selected.
5. Click Save.

Use an existing certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

To upload the certificate toMobileIron Core:
1. In the Admin Portal, go to Policies & Configs > Configurations.
2. Select Add New > Certificate Enrollment > Single File Identity.
3. For Name, enter any name.

For example: Tunneling Identiity Certificate
4. For Certificate 1, click Browse to select the .p12 or .pfx file of the identity certificate.
5. For Password 1, enter the password for the certificate’s private key, if applicable.
6. Click Save.

Generate a certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

One convenient way to get these certs involves makingMobileIron Core a local certificate authority (CA).

This process involves the following high-level steps:
1. Create a certificate authority for using an AppTunnel with HTTP/S tunneling
2. Create a local certificate enrollment setting

EnableAppTunnelonMobileIronCore

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 232

Create a certificate authority for using an AppTunnel with HTTP/S tunneling

To create a local certificate authority onMobileIron Core to be used in generating certificates:
1. In the Admin Portal, select Services > Local CA.
2. Select Add > Generate Self-Signed Cert
3. Enter a name for Local CA Name.

For example: CA for AppTunnel
4. Set Key Length to 2048.
5. Set the Issuer Name to “CN=Tunneling CA”.
6. Click Generate.

A screen titled Certificate Template displays.
7. Click Save.
8. Click View Certificate next to your new local certificate authority.

9. Copy all the text into a text file.
10. Save the text file.

You will upload this text file later as the root certificate for authenticating devices to the Standalone Sentry.

Createacertificateauthority for usinganAppTunnelwithHTTP/S tunneling

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 233

Create a local certificate enrollment setting

After you configureMobileIron Core as a local CA, you create a local certificate enrollment setting. This setting
configures MobileIron Core acting as a local CA to generate identity certificates for the devices to present to
Standalone Sentry.

To create a local certificate enrollment setting:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select Add New > Certificate Enrollment > Local.

A dialog appears entitled New Local Certificate Enrollment Setting.
3. Enter a descriptive name in the Name field.

For example: Tunneling certificate
4. For Local CA, select the certificate authority you created for AppTunnel.
5. For Subject, enter “cn=tunneling”.

The value can be any string.
6. For Key Length, select 2048.
7. Click Issue Test Certificate.

The issued test certificate displays.
8. Click OK to close the displayed certificate.
9. Click Save to save the local certificate enrollment setting.

Configure the Sentry with an AppTunnel service

To support AppTunnel with HTTP/S tunneling, configure the Sentry with the internal servers that your app uses.

Do the following:
1. In the Admin Portal, go to Services > Sentry.
2. Click the edit icon next to the Sentry that your MobileIron Core Administrator has designated for your

AppTunnel testing.
3. Select Enable AppTunnel if it is not already selected.
4. For Device Authentication Configuration:

If you already had a certificate, select Group Certificate.
If you created a local certificate authority, select Identity Certificate.

5. Click Upload Certificate.
If you already had a certificate, upload it.
If you created a local certificate authority, upload the certificate text file that you created in Create a certificate
authority for using an AppTunnel with HTTP/S tunneling. It is the root certificate for authenticating devices to
the Standalone Sentry.

6. In the AppTunnel Configuration section, click + to add a new service.
7. Enter a Service Name.

The service name is any unique identifier for the internal server or servers that your AppConnect app tunnels to.
Entering <ANY> means that the app can reach any of your internal servers.
Service Name examples:
SharePoint
HumanResources

8. For Server Auth, select Pass Through.

Createa localcertificate enrollment setting

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 234

This field selects the authentication scheme for the Standalone Sentry to use to authenticate the user to the
internal server. Pass Throughmeans that the Sentry passes through the authentication credentials, such as the
user ID and password (basic authentication) or NTLM, to the internal server.

NOTE: The other option is Kerberos. Kerberosmeans that the Sentry uses KerberosConstrained
Delegation (KCD). The corporate environment must be set up for KerberosConstrained
Delegation.

9. Enter a Server List.
Enter a semicolon-separated list of internal server host names or IP addresses and the port that the Sentry can
access.
For example:
sharepoint1.companyname.com:443;sharepoint2.companyname.com:443.
When you enter multiple servers, the Sentry uses a round-robin distribution to load balance the servers. That is,
it sets up the first tunnel with the first internal server, the next with the next internal server, and so on.

NOTE: If you selected <ANY> for the Service Name, the Server List is not applicable.
10. Select TLS Enabled if the internal servers require SSL.

Although port 443 is typically used for https and requires SSL, the internal server can use other port numbers
requiring SSL.

NOTE: If you selected <ANY> for the Service Name, do not select TLS Enabled.
11. Do not fill in Server SPN List. It applies only when the Server Auth field is Kerberos.
12. Select Proxy/ATC only if your testing requires that you direct the AppTunnel service traffic through a proxy

server. The proxy server is located behind the firewall and sits between the Sentry and corporate resources.
This deployment allows you to access corporate resources without having to open the ports that Sentry would
otherwise require.
If selected, also configure the Server-side Proxy fields: Proxy Host Name / IP and Proxy Port.

13. Click Save.
14. Click View Certificate on the row with your new Sentry.

This action copies the Sentry’s self-signed certificate that you created to Core.

Configure the AppTunnel service in the AppConnect app configuration

The AppConnect app configuration specifies the AppTunnel services that your app uses. You configured these
services on the Sentry.

To configure AppTunnel on an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.

NOTE: If youalready have anAppConnect appconfiguration for your app, select it andclick Edit in the
right-handpane.

3. Enter a name for the AppConnect app configuration if this is a new one.
For example: My App’s App Configuration

4. In the Application field, enter the bundle ID of your app if this is a new app configuration.
For example: com.MyCompany.MySecureApp

5. In the AppTunnel Rules section, click Add+ to add a new AppTunnel configuration.
6. For Sentry, select the Sentry from the drop-down list.
7. For Service, select the service name from the drop-down list.

You created this service name in Create a certificate authority for using an AppTunnel with HTTP/S tunneling.

Configure theAppTunnel service in theAppConnectappconfiguration

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 235

8. For the URLWildcard, enter the host name or URL of the app server with which the app communicates. If the
Service specified for this server in Configure the Sentry with an AppTunnel service is <ANY>, the host name
can use the wildcard character *.
If a URL request in your appmatches the value you enter here, the request uses AppTunnel with HTTP/S
tunneling.
Examples:
sharepoint1.yourcompany.com
*.yourcompanyname.com

9. For Port, enter the port number that the app connects to.
10. For Identity Certificate:

If you already had a certificate, select the certificate setting that you created in Use an existing certificate.
If you created a local certificate authority, select the local certificate enrollment setting that you created in
Create a local certificate enrollment setting. This selection will result in the device receiving an identity
certificate from Core that it will present to the Standalone Sentry for device authentication.

11. Click Save.

If you are creating a new AppConnect app configuration:
1. Select the new AppConnect app configuration.
2. Select Actions > Apply To Label.
3. Select the label that you created in Create a label for testing your app.
4. Click Apply.
5. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If app is running, Mobile@Work launches and updates the AppConnect app configuration. If your app is not
running, Mobile@Work launches and updates the configuration the next time that you run your app. When
Mobile@Work has updated the configuration, your app will use AppTunnel with HTTP/S tunneling for the URLs
you specified.

Verify that your app’s networking capabilities work as expected.

Test loggingmessages to the console or files
• Log levels
• Debug code for verbose and debug log levels
• Logging to files
• Log file details
• Configuring logging to files
• Pushing the new log level to the device
• Activating verbose or debug logging on the device
• Sending log files in an email

Test loggingmessages to theconsole or files

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 236

Log levels

A MobileIron Core administrator can configure Core with the log level for your app. By default, the log level for an
app is ACLOGLEVEL_STATUS.

The administrator has a choice of four log levels as shown in the following table:
:

Administrator log level for
app

Corresponding ACLogLevel value for app

Status ACLOGLEVEL_STATUS

Info ACLOGLEVEL_INFO

Verbose ACLOGLEVEL_VERBOSE

Debug ACLOGLEVEL_DEBUG

TABLE 53. LOG LEVELS

Debug code for verbose and debug log levels

When the administrator chooses verbose or debug, the administrator also configures a debug code. The debug
code is any string. Mobile@Work requires the device user to enter that string before changing the app’s log level.
This extra security is becausemessages logged at verbose and debug log levels may contain sensitive data.

Logging to files

The detailed log data for your AppConnect app, and the AppConnect library contained in the app, is logged to the
device’s console. The administrator can choose to write the log data for the app to files on the device in addition to
writing the data to the device’s console.

Log file details

Details regarding the log files for each app are:
1. The log files for each app are saved to the following directory:

Apps/<app name>/Library/Application Support/AppConnectLogs
• The log file for each app is named appConnect.log.
• The log file is at most 1MB.
• When appconnect.log exceeds 1MB:
1. It is renamed to appconnect.log.<timestamp>.

Example: appconnect.log.2015-05-28 15:13:21
2. Logging begins in a new file named appconnect.log.
3. If 20 log files already exist, the oldest file is deleted.

Log levels

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 237

Configuring logging to files

To log data to a file for an AppConnect app, add a key-value pair to the app’s AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select the app configuration for the app and click Edit.

If the app does not already have an app configuration, select Add New > AppConnect > App Configuration.
Enter a name and description for the new app configuration and the app’s bundle ID.

3. In App-specific Configurations, click Add+ to add a key-value pair.
4. EnterMI_AC_ENABLE_LOGGING_TO_FILE in the key field.

The key name is case-sensitive.
5. EnterYes in the value field.
6. Click Add+ to add another key-value pair for the log level.
7. EnterMI_AC_LOG_LEVEL in the key field.

The key name is case-sensitive.
8. Enter one of the following in the value field: error (the default), info, verbose, or debug.

This value is not case-sensitive.
9. If you entered verbose or debug, click Add+ to add another key-value pair.
10. EnterMI_AC_LOG_LEVEL_CODE in the key field.

The key name is case-sensitive.
11. Enter a string for the value.

The device user will enter this string to activate the verbose or debug log level. You canmake up any string. For
example, enter 37!8D. For themost security, use a code that is difficult to guess.
The string is case-sensitive.

12. Click Save.

If you created a new AppConnect app configuration, apply the appropriate labels to it.

Pushing the new log level to the device

Push the change to your device immediately, by doing the following steps on the device:
1. LaunchMobile@Work.
2. TapSettings.
3. TapCheck for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the notification
the next time it runs. If the log level is verbose or debug, device user interaction is required to activate the new
log level.

Verify that your app correctly handles the new log levels according to your app’s requirements and design.

Activating verbose or debug logging on the device

Log levels verbose and debug require device user interaction. Your app is not notified of these log levels until the
device user activates debugmode inMobile@Work. This activation switch appears in Mobile@Work’s detailed
status display for your app. The detailed status display for your app is available after you have launched your app
the first time.

Configuring logging to files

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 238

The detailed status display for an AppConnect app includes a DebugMode switch only when you have configured
both of the following in the app’s AppConnect app configuration:
• a log level of verbose or debug
• a debug code

In this case, a detailed status display screen for an AppConnect app shows the DebugMode switch:

Screenshot from Mobile@Work 9.1

NOTE: Regarding the keysMI_AC_LOG_LEVEL andMI_AC_LOG_LEVEL_CODE:
• They are not included in the configuration count on an app’s detailed status display.
• They are not included in the configuration your app receives through the AppConnect for iOS API.
• If the administrator makes changes to the AppConnect app configuration that involve only these keys, the

AppConnect library does not call the -appConnect:configChangedTo: notificationmethod.

To activate verbose or debug level logging, do the following on the device:
1. OpenMobile@Work on the device.
2. TapSettings.
3. TapCheck For Updates.
4. Tap Force Device Check-In to make sure that Mobile@Work has received the updated log level.
5. TapSettings.
6. TapSecure Apps.
7. Tap the app for which you want verbose or debug level logging.

Activatingverbose or debug loggingonthedevice

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 239

Screenshot from Mobile@Work 9.1

8. TapDebug Mode.

Screenshot from Mobile@Work 9.1

9. Enter the debug code.
10. TapNext.

Activatingverbose or debug loggingonthedevice

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 240

Verify that your app correctly handles the verbose and debug levels according to your app’s requirements and
design.

Verbose or debug level logging is activated for 24 hours, after which it is automatically deactivated the next time
that you launch or switch to the app. However, you can deactivate it any time by tapping DebugMode again. When
deactivated, your app’s log level returns to the default, which is ACLOGLEVEL_STATUS.

Sending log files in an email

You can useMobile@Work for iOS to send log files to an email address of your choice as a convenient way to view
the files.. This feature requires Mobile@Work 9.8 for iOS through themost recently released version as supported
by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

NOTE: The displayedoption is disabled if the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, only if all of the following are true:
• You included the key-value pairs for the app in its app configuration onMobileIron Core:

- MI_AC_LOG_LEVEL set to debug
- MI_AC_LOG_LEVEL_CODE set to a chosen string
- MI_AC_ENABLE_LOGGING_TO_FILE set toYes

• In Mobile@Work inSettings > Secure Apps > <app name>, you have turned onDebug Mode and entered
the string fromMI_AC_LOG_LEVEL_CODE.

Test the app documentation
Once your app is ready for in-house distribution, aMobileIron Core administrator configures Core with information
about your app. You provide this information in documentation about your app. Test whether your app correctly
handles what your documentation specifies.

For more information, see Best Practices Using the AppConnect for iOS SDK.

Sending log files inanemail

11

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 241

Derived Credential Handling

l Derived credential handling overview

l Derived credential header files

l Before adding derived credentials code

l Sending derived credentials to theMobileIron client

Derived credential handling overview
Only use the APIs relating to derived credentials if you are developing an app that obtains derived credentials from
a derived credential provider and delivers the credentials to theMobileIron client.

A derived credential is derived from the primary credential on a user’s smart card and stored on the user’s mobile
device. The derived credential contains X.509 public key identity certificates derived from the primary credential’s
identity certificates.

The APIs allow your app to:
• Send a derived credential to theMobileIron client.
• Receive a request from theMobileIron client to get a new derived credential and deliver it to theMobileIron

client.

Besides implementing this derived credential capability, your appmust implement the necessary AppConnect
APIs to behave as an AppConnect app.

Regarding derived credentials, when your app decides to get a derived credential, such as due to user interaction,
your app does the following high-level steps:
1. Makes sure that theMobileIron client is installed and that it supports derived credentials.
2. Makes sure that sending derived credentials to theMobileIron client is currently allowed.
3. Obtains a derived credential from the derived credential provider.
4. Indicate which certificate in the derived credential is for what kind of use by AppConnect apps. The uses are

authentication, signing, and encryption.
5. Sends the derived credential to theMobileIron client.

After theMobileIron client has the derived credential, AppConnect apps on the device can use the certificates that
comprise the derived credential. Whether the AppConnect apps use the derived credential’s certificates or other
certificates depends on configuration settings on theMobileIron server.

Also, at any time, theMobileIron client can request a new derived credential from your app. At that time, your app
repeats the above steps.

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 242

Derived credential header files
The following header files in the AppConnect.framework contain themethods, properties, and enumerations you
use to deliver derived credentials to theMobileIron client.

Header file Description

ACDerivedCredential.h Defines the ACDerivedCredential object that contains the
certificates that comprise the derived credential. Your app
sends an ACDerivedCredential object to theMobileIron client.

AppConnectDerivedCredentialService.h Defines the ACDerivedCredentialService object which you
use to:
• Check if theMobileIron client is installed and supports

derived credentials.
• Check if sending derived credentials is currently allowed.
• Inform theMobileIron client about the custom URL

scheme to use to communicate to your app.
• Send a derived credential to theMobileIron client.

TABLE 54.DERIVED CREDENTIAL HEADER FILES

Before adding derived credentials code
Before adding code to your app to send derived credentials to theMobileIron client, do the following tasks:
• Making your app an AppConnect app
• Declaring the appConnectdc URL scheme as allowed
• Registering as a handler of a URL scheme you define

Making your app an AppConnect app

Your appmust be an AppConnect app and thereforemust implement the AppConnect APIs to handle:
• AppConnect authorization
• AppConnect data loss prevention policies if applicable
• Dual mode behavior
• App-specific configuration if applicable

Therefore, follow the instructions in:
• Getting started tasks to set up your app to use the AppConnect library.
• Derived Credential Handling to handle AppConnect app authorization, data loss prevention policies, and app-

specific configuration
• Developing Third-party Dual-mode Apps tomake your app choose to behave in AppConnect mode (managed

by MobileIron) or non-AppConnect mode.

Derivedcredentialheader files

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 243

Declaring the appConnectdc URL scheme as allowed

Declare the appconnectdc URL scheme in your app’s Info.plist as an allowed URL scheme. Your app’s instance
of the AppConnect library uses the appconnectdc URL scheme to communicate with theMobileIron client.

To allow the appconnectdc URL scheme, add an item to the key called LSApplicationQueriesSchemes, which
you already created to contain an item for the appconnect URL scheme. Add an item named appconnectdc.

The following screenshot from Xcode 7.3.1 illustrates the appconnectdc and appconnect items.

Registering as a handler of a URL scheme you define

TheMobileIron client uses a custom URL scheme that your app defines to communicate with your app about
derived credentials. Specifically, theMobileIron client can send a request to your app to create a new derived
credential. The scheme theMobileIron client uses is:
<URL scheme you define>://new

Register your URL scheme by modifying the app’s Info.plist, illustrated in the following Xcode 7.3.1 screenshot.

Declaring theappConnectdcURL schemeas allowed

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 244

Sending derived credentials to theMobileIron client
Sending a derived credential to theMobileIron client requires the following tasks in your app:
• Handling the custom URL scheme in your app delegate
• Checking if theMobileIron client supports derived credentials
• Checking if sending credentials to MobileIron client is currently allowed
• Getting a derived credential
• Preparing a certificates array
• Preparing an ACDerivedCredential object
• Creating an ACDervicedCredentialService object
• Sending the certificates to theMobileIron client
• Handling secure services becoming available

Handling the custom URL scheme in your app delegate

You registered as a handler of a custom URL scheme that theMobileIron client uses to send your app derived
credential requests. How to register as a handler is described in Registering as a handler of a URL scheme you
define.

Add code to handle the custom URL scheme in your application delegate.

Objective-C example

-(BOOL)application:(UIApplication *)app openURL:(NSURL *) url
options:(NSDictionary<NSString*,id> *) options {

// If the URL is your app’s custom URL scheme for receiving derived credential
// communications from the MobileIron client (in this example “myappderivedcredential”),
// and the command is “new”...

if ([url.scheme isEqualToString:@"myappderivedcredential"]
&& [url.host isEqualToString:@"new"]) {

// begin the logic for creating a new derived credential.
}

}

Swift example

Sendingderivedcredentials to theMobileIronclient

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 245

func application(_ app: UIApplication, open url: URL,
options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

// If the URL is your app’s custom URL scheme for receiving derived credential
// communications from the MobileIron client (in this example “myappderivedcredential”),
// and the command is “new”...

if (url.scheme == "myappderivedcredential" && url.host == "new") {

// begin the logic for creating a new derived credential.
}

return true
}

Checking if theMobileIron client supports derived credentials

Before beginning the logic to create a derived credential and send it to theMobileIron client, check whether a
MobileIron client is installed that supports derived credentials.

Header file: ACDerivedCredentialService.h

Method:
+(ACDerivedCredentialServiceSupport)derivedCredentialSupport;

In a typical call flow, the app does not call this method until:
• after the app is authorized (the authState property on the AppConnect object is ACAUTHSTATE_AUTHORIZED)
• after the app is in AppConnect Mode (the managedPolicy property on the AppConnect object is

ACMANAGEDPOLICY_MANAGED)

Return values:

Themethod returns a value from the enumeration ACDerivedCredentialServiceSupport:

typedef NS_ENUM (NSInteger, ACDerivedCredentialServiceSupport) {
ACDerivedCredentialServiceSupportPresent = 0,
ACDerivedCredentialServiceSupportOldClient,
ACDerivedCredentialServiceSupportMissingClient

}

Example:

ACDerivedCredentialServiceSupport supportStatus =
[ACDerivedCredentialService derivedCredentialSupport];

if (ACDerivedCredentialServiceSupportOldClient == supportStatus)
{

// Notify user to upgrade MobileIron client app to latest version.
// The version running does not support derived credentials.

}
else if (ACDerivedCredentialServiceSupportMissingClient == supportStatus)

Checking if theMobileIronclient supports derivedcredentials

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 246

{
// Typically, this case won’t happen if the app does not call +derivedCredentialSupport
// until after the app is in AppConnect mode.

}
else
{

// Continue with code to check if sending credentials to the MobileIron client
// is currently allowed.

}

Checking if sending credentials to MobileIron client is currently allowed

Before your app obtains derived credentials and prepares them for delivery to theMobileIron client, make sure
sending credentials is currently allowed. It is allowed only if secure services are available and theMobileIron client
supports receiving derived credentials. At this point, you have already verified that theMobileIron client supports
derived credentials, but secure services are not necessarily available.

Header file: ACDerivedCredentialService.h

Method:
+(BOOL) canSendCredential;

Return values:

Returns YES if a MobileIron client that supports derived credentials is installed and secure services are available.
Otherwise, returns NO.

Example:

if (![ACDerivedCredentialService canSendCredential])
{

// Notify user that derived credentials cannot be obtained at this time.
// When secure services become available, the AppConnect library calls
// the notification method -appConnect:secureServicesAvailabilityChangedTo:.
// At that time, the app can continue with the logic to get derived credentials
// and deliver them to the MobileIron client.

}
else
{

// Continue with code to get derived credential.
}

Getting a derived credential

Your app gets a derived credential only after both of the following are true:
• Your app has determined that derived credentials are supported (+derivedCredentialSupport)
• Your app has determined that it is allowed to send derived credentials to theMobileIron client at this time

(+canSendCredential)

Your app gets the certificates that comprise the derived credential according to its own requirements.

Checking if sendingcredentials toMobileIronclient is currentlyallowed

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 247

Preparing a certificates array

After your app has obtained the certificates that comprise the derived credential, prepare an NSArray of the
certificates. Each array entry is an NSDictionary object. The following table describes each entry in the
NSDictionary object.

Entry Key Value

The
certificate
tag

ACDerivedCredentialPayloadKeyTag AnNSString object

The value describes the expected use of the
certificate. TheMobileIron client uses the
value to determine which certificates to deliver
to an AppConnect app.

The value is one of the certificate tags defined
in ACDerivedCredential.h:
•

ACDerivedCredentialTagAuthenticati
on

• ACDerivedCredentialTagSigning
• ACDerivedCredentialTagEncryption
• ACDerivedCredentialTagEscrow

You can use each value in only one
NSDictionary object in the NSArray. That is,
you can associate each value with only one
certificate in the derived credential.

The
certificate
contents

ACDerivedCredentialPayloadKeyCert AnNSData object

The object contains the DER-encoded
certificate data.

The
certificate’
s private
key

ACDerivedCredentialPayloadKeyPrivateK
ey

AnNSData object

The object contains the DER-encoded private
key of the certificate. The private key must be
in PKCS #8 format.

TABLE 55. ENTRIES IN THENSDICTIONARY OBJECTOF ACERTIFICATE ARRAY ENTRY

Header file:ACDerivedCredential.h -- contains definitions of constants

Example:

Preparingacertificates array

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 248

#import <AppConnect/ACDerivedCredential.h>

NSData *certificateData; // contains DER-encoded certificate data
NSData *privateKeyData; // contains DER-encoded private key, in PKCS #8 format.

// Insert code that gets the certificate used for authentication and its private key.

NSDictionary *authCertificatePackage = @{
ACDerivedCredentialPayloadKeyTag : ACDerivedCredentialTagAuthentication,
ACDerivedCredentialPayloadKeyCert : certificateData,
ACDerivedCredentialPayloadKeyPrivateKey : privateKeyData

};

// Insert similar code for populating NSDictionary objects with certificates to be used for
// encryption or signing. The number of NSDictionary objects you populate depends on the
// number of different uses for certificates your app supports.

// Place the NSDictionary entries into an array
NSArray *certificatesArray =

@[authCertificatePackage, encryptCertificatePackage, signingCertificatePackage];

Preparing an ACDerivedCredential object

After you have prepared the certificates array, create and initialize an ACDerivedCredential object.

Header file: ACDerivedCredential.h

Method:

-(instancetype)initWithName:(NSString *)name
serialNumber:(NSString *)serialNumber
expirationDate:(NSDate *)expirationDate
certificates:(NSArray *)certificates NS_DESIGNATED_INITIALIZER;

Parameter Description

name A human readable name for this derived credential payload. TheMobileIron client
displays this namewith the derived credential information.

serialNumber A unique identifier for the derived credential. Typically, this serial number is
provided to your app by your derived credential provider.

expirationDate The expiration date of the derived credential. This date is not necessarily the same
as the expiration date of each certificate in the derived credential. It is the
responsibility of the derived credential provider to enforce this expiration date
according to the provider’s requirements.

certificates The array of certificates that comprise the derived credential.

TABLE 56. PARAMETERS FOR -INITWITHNAME:SERIALNUMBER:EXPIRATIONDATE:CERTIFICATES:

Return values:

PreparinganACDerivedCredentialobject

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 249

• Returns an ACDerivedCredential object if no errors occur.
• Returns nil if:

- the name or serialNumber parameter is nil or an empty string
- the expirationDate parameter is nil.
- the certificates parameter is nil or an empty array

NOTE: The AppConnect librarywithin the app logs anerror to the device’s console when thismethod
returns nil.

Example:

ACDerivedCredential *derivedCredential =
[[ACDerivedCredential alloc] initWithName:@"Derived Credential Name"

serialNumber:@"123-4567-8910"
expirationDate:expirationDate
certificates:certificatesArray];

Creating an ACDervicedCredentialService object

Create an ACDerivedCredentialService object for communicating with theMobileIron client.

Header file: ACDerivedCredentialService.h

Method:

-(instancetype)initWithBrand:(NSString *)brand
callbackScheme:(NSString *)callbackScheme NS_DESIGNATED_INITIALIZER;

Parameter Description

brand The name of the derived credentials provider.

callbackScheme The custom URL scheme that your app defines for theMobileIron client to
communicate with your app about derived credentials.

TABLE 57. PARAMETERS FOR -INITWITHBRAND:CALLBACKSCHEME:

Return values:
• Returns an ACDerivedCredentialService object if no errors occur
• Returns nil if either of the following are true:

- any parameter is nil or an empty string
- theMobileIron client does not support derived credentials

NOTE: The AppConnect librarywithin the app logs anerror to the device’s console when thismethod
returns nil.

Example:

ACDerivedCredentialService *derivedCredentialService =
[[ACDerivedCredentialService alloc] initWithBrand:@"Derived Credential Provider Name"

callbackScheme:@"MyCustomDcScheme"];

CreatinganACDervicedCredentialService object

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 250

Sending the certificates to theMobileIron client

After creating the ACDerivedCredential and ACDerivedCredentialService objects, send the derived credential to
theMobileIron client.

Header file: ACDerivedCredentialService.h

Method:

-(BOOL)sendDerivedCredential:(ACDerivedCredential*)derivedCredential withError:(NSError **)er-
ror;

Parameter Description

derivedCredential The ACDerivedCredential object you created and initialized.

error A reference to an NSError pointer.

If an error occurs, themethod returns NO and updates the pointer to point to an
NSError object describing the problem. Possible values of the NSError object’s
code property are defined in the enumeration
ACDerivedCredentialServiceErrorCode.

Although allowed, passing NULL for this parameter is not recommended, since the
app’s error handling would be limited.

TABLE 58. PARAMETERS FOR -SENDDERIVEDCREDENTIAL:WITHERROR:

Return values:

Returns YES if the certificates have been sent to theMobileIron client. Otherwise, returns NO.

NOTE: When the return value is YES, theMobileIron client is launched. Control does not automatically
return to the app. Therefore, a typical behavior in this case is to change to a “home” screen that
offers options for what the device user cando next.

Example:

NSError *error = nil;
BOOL credentialSent = [derivedCredentialService sendDerivedCredential:derivedCredential

withError:&error];

if (!credentialSent) {
// Sending the derived credential to the MobileIron client failed.
// Examine the error and handle appropriately, notifying the user as necessary.

// If the error is ACDerivedCredentialErrorServiceUnavailable, notify the user
// and wait for the callback method -appConnect:secureServicesAvailabilityChangedTo:
// to indicate that secure services are available before trying again.

}

Sending thecertificates to theMobileIronclient

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 251

else {
// The derived credential was successfully sent to the MobileIron client.

}

Handling secure services becoming available

Sending derived credentials to theMobileIron client requires AppConnect’s secure services to be available. Your
app calls themethod +canSendCredential, which checks if secure services are available and theMobileIron
client supports receiving them.

If +canSendCredential returns YES, your app proceeds with getting and delivering derived credentials. However,
secure services could become unavailable before you deliver the derived credentials to theMobileIron client. In that
case, your appmust take the appropriate actions. If +canSendCredential returns NO, your app notifies the user
andmust wait for secure services to become available.

Therefore, implement the notificationmethod -appConnect:secureServicesAvailabilityChangedTo: in the
AppConnectDelegate protocol, defined in AppConnect.h:

-(void) appConnect:(AppConnect *)appConnect secureServicesAvailabilityChangedTo:
(ACSecureServicesAvailability)secureServicesAvailability;

Example:

-(void)appConnect:(AppConnect *)appConnect secureServicesAvailabilityChangedTo:
(ACSecureServicesAvailability)secureServicesAvailability {

if (ACSECURESERVICESAVAILABILITY_AVAILABLE == secureServicesAvailability) {
// Notify the user as necessary, according to your app state.
// The app can now proceed to logic for getting and delivering derived credentials.

}
else {

// Secure services are not available.
// The app cannot deliver derived credentials to the MobileIron client.
// Notify the user as necessary, and change your app state appropriately.

}
}

Handling secure services becomingavailable

12

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 252

AppConnect for iOS SDKRevision History

l AppConnect 4.7.0 for iOS SDK revision history

l AppConnect 4.6.0 for iOS SDK revision history

l AppConnect 4.5.3 for iOS SDK revision history

l AppConnect 4.5.2 for iOS SDK revision history

l AppConnect 4.5.1 for iOS SDK revision history

l AppConnect 4.5.0 for iOS SDK revision history

l AppConnect 4.4.2 for iOS SDK revision history

l AppConnect 4.4.1 for iOS SDK revision history

l AppConnect 4.4.0 for iOS SDK revision history

l AppConnect 4.3.1 for iOS SDK revision history

l AppConnect 4.3.0 for iOS SDK revision history

l AppConnect 4.2.1 for iOS SDK revision history

l AppConnect 4.2 for iOS SDK revision history

l AppConnect 4.1.1 for iOS SDK revision history

l AppConnect 4.1 for iOS SDK revision history

l AppConnect 4.0 for iOS SDK revision history

l AppConnect 3.5 for iOS SDK revision history

l Releases prior to AppConnect 3.5 for iOS SDK revision history

AppConnect 4.7.0 for iOS SDK revision history
This release provides the following:

l New features and enhancements summary

l Resolved issues

l Known issues

l Limitations

New features and enhancements summary
This release includes the following new features and enhancements:

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 253

l Avoid pasteboard notifications: To avoid pasteboard notifications on users' devices when using
AppConnect apps, set up an AppGroup for your AppConnect apps. Setting up an AppGroup reduces
flipping between the AppConnect app and theMobileIron client and avoids pasteboard notifications. For
more information, seeOptional: Avoiding pasteboard notifications.

Resolved issues

This release includes the following new resolved issues:

l AP-5578: Fixed an issue due to which the check-in request failed when users were prompted to
authenticate.

Known issues

This release includes the following new known issues:

l AP-5557: On iOS 12 devices, users are not required to authenticate when using AppConnect 4.7.0 apps.
This is an intermittent issue.
Workaround: Upgrade to iOS 13 through the latest version as supported by MobileIron.

l AP-5567: The following issue is seen if the AppConnect Global policy is applied to some AppConnect
apps and the AppConnect Container policy is applied to other AppConnect apps, and Authorize is not
checked for the optionApps without an AppConnect container policy. AppConnect apps that are
packaged using the 4.7.0 SDK and do not have a container policy will not go into an unauthorized state till
the next check in.
Workaround: Shorten the check in interval to reduce the time interval where the unauthorized apps
continue to work until the next checkin.

l AP-5484: Instead of displaying a failed to authenticate error message on theMobileIron client, users are
asked to contact their IT administrator.

l AP-5482: When users cancel Touch ID authentication, they are shown a 'Contact Admin' error message
instead of a 'Failed to authenticate' user error message.

Limitations

This release includes the following new limitations:

l AP-5497: On iOS 12 or earlier versions as supported by MobileIron, device users are prompted for
biometric authenticationmore than once.

l AP-5504: To accommodate pasteboard changes in iOS 14, users cannot copy from AppConnect 4.6
(previous versions of AppConnect apps as supported by MobileIron) apps to AppConnect 4.7 apps if the
Data Loss Prevention policy only allows copy/paste to other AppConnect apps. Copy/paste works when
copying from 4.7 to older apps or when the policy is set to allow all apps.

Resolved issues

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 254

l AP-5563: Since the Pasteboard is used for sending logs, notifications are seen when sending AppConnect
app logs.

l AP-5559: If an AppConnect app is set up to avoid pasteboard notifications (MI_AC_ACCESS_GROUP
key in added to the app's Info.plist file), sometimes theMobileIron client may log out while the user is still
using the AppConnect app. As a result, users are prompted to authentication when they activate the app.

l AP-5553: App status is not updated from pending to authorized state till the next app check in.

AppConnect 4.6.0 for iOS SDK revision history
This release provides the following:

l New features summary

l Resolved issues

New features summary
This release includes the following new features and enhancements:

l Improvements to memory consumption: Secure File I/O APIs have been optimized to decrease
memory consumption while processing large files.

l Two SDK variants: Due to Apple deprecating the UIWebView class, the AppConnect for iOS SDK is
available in two variants: one with UIWebView andWKWebView support, and another withWKWebView
support, but no UIWebView support. The AppConnect SDK without UIWebView support is provided for
apps that will be submitted to the App Store.
See AppConnect for iOS SDK variants and AppConnect for iOS SDK contents.

l Support for UIScene: A new method -sceneWillConnectToSessionWithOptions: is provided to
support apps using UIScene. If your application supports UIScene, call themethod
-sceneWillConnectToSessionWithOptions: when initializing the AppConnect library.
See Initialize the AppConnect library and UIScene support.

Resolved issues

This release includes the following new resolved issues:

l AP-5422: Fixed issue with tunneled requests authentication when app implements
URLSession:didReceiveChallenge:completionHandler: method of the URLSessionDelegate protocol.

l AP-5328: Fixed an issue where AppConnect apps flipped to theMobileIron client app for password
authentication. Now the passcode prompt is seen within the wrapped app.

AppConnect 4.6.0 for iOS SDK revisionhistory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 255

AppConnect 4.5.3 for iOS SDK revision history
This release provides the following:

l Resolved issues

Resolved issues

This release provides the following new resolved issues in the SDK and wrapper:

l AP-5376, APG-1177: Fixed an issue where redirected server requests could fail to connect.

AppConnect 4.5.2 for iOS SDK revision history
This release does not provide any updates to the SDK.

AppConnect 4.5.1 for iOS SDK revision history
This release does not provide any updates to the SDK.

AppConnect 4.5.0 for iOS SDK revision history
This release provides the following:

l Resolved issues

l Known issues

Resolved issues

This release provides the following new resolved issues:

l AP-5256: Workaround for a bug in a third-party app security framework, which caused a crash when used
with AppConnect.

l AP-5241: Fixed crash [ACAppInterfaceBus displayMessage:scheme:completion:].

l AP-5199: Sometimes AppConnect apps failed to unlock using biometric authentication if the device
passcode was set as the fallback option. Users may have seen this issues if the Check-in interval and the
AutoLock interval are small and equivalent. This issue is fixed.

Known issues

This release includes the following new known issues:

AppConnect 4.5.3 for iOS SDK revisionhistory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 256

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

AppConnect 4.4.2 for iOS SDK revision history
This release provides the following:

l Resolved issues

l Known issues

Resolved issues

This release provides the following new resolved issues:

l AP-5245: Fixed a Secure File I/O thread-safety issue which could cause I/O errors when writing tomultiple
files simultaneously. Note that I/O to individual files should always be done from a single thread.

l AP-5253: Fixed an exception when launching apps in the Xcode Simulator.

Known issues

This release includes the following new known issue:

l AP-5252: Web@Work 2.9.0.0 for iOS with Chromium does not trust some sites. For more information, see
the following Knowledge Base article in theMobileIron Community: Web@Work - Certain sites may not be
trusted when using Chromium engine.

AppConnect 4.4.1 for iOS SDK revision history
This release provides the following:

l Resolved issues

l Known issues

Resolved issues

This release includes the following new resolved issues:

l AP-5233: Under certain conditions when adding cookies to a network request, the cookies were dropped
after receiving an HTTP 302 redirect. This issue is fixed.

Known issues

This release includes the following new known issues:

AppConnect 4.4.2 for iOS SDK revisionhistory

https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine
https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 257

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

AppConnect 4.4.0 for iOS SDK revision history
This release provides the following:

l New features summary

l Resolved issues

l Limitations

New features summary
This release includes the following new features and enhancements:

l Support for iOS 13: AppConnect apps work as expected on iOS 13 devices.

l The -displayMessage method is updated: The followingmethod is deprecated:
-(void)displayMessage:(NSString *)message;

Instead, use the following new method:
-(void)displayMessage:(NSString *)message withCompletion:(void(^)(BOOL
success))completion;

The native sample apps included with the SDK are updated.

l armv7s architecture: Support for the armv7s architecture has been dropped.

Resolved issues

This release provides the following new resolved issues:

l AP-5158: iOS 13 changed the identification for iPad devices. If your iPad is upgraded to iOS 13, MobileIron
recommends that you also upgrade toMobileIron Core to one of the following patch releases: 10.2.0.2,
10.3.0.2, or 10.4.0.1. These patches contain the fixes for the changes in iOS 13 for iPad identification.

l AP-5179: On devices running iOS 13, openURL does not return the bundle ID of the calling app if the team
ID is not the same. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to
AppConnect 4.4.0.

l AP-5201: Previously, the NSProxy instance proxying application delegate did not receive application
lifecycle callbacks. This issue is fixed.

l AP-5207: On devices running iOS 13, AppConnect apps canOpen files to other apps whenOpen In is
disabled. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect
4.4.0.

l AP-5166: On devices running iOS 13, NSURLSession failed. This issue is fixed with AppConnect 4.4.0 for
iOS. To address the issue, update to AppConnect 4.4.0.

l AP-5169: On devices running iOS 13, Email+ for iOS displayed a black background in app switcher. This
issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect 4.4.0.

AppConnect 4.4.0 for iOS SDK revisionhistory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 258

l AP-5174: Fixed the root cause due to which Email+ for iOS crashed intermittent.

l AP-5206: Previously, the AppConnect for iOS SDK was not calling applicationDidBecomeActive. This
issue is fixed.

Limitations

This release includes the following new limitations:

l AP-5186: The openURL API in iOS 13 provides the bundle ID of the calling app only if the calling app has
the same team ID. Due to this limitation, the Open From feature does not work on iOS 13 devices.

l AP-5164: Sharing files with the Chrome extension if Open In is restrictedmay cause the application to
freeze.

l AP-5159: On devices running iOS 13, the "Unable to Share Document with selected application" prompt is
not shown unless the Share dialog is closed.

AppConnect 4.3.1 for iOS SDK revision history
This release does not provide any new features.

Support for the armv7s architecture is deprecated.

Resolved issues

This release provides the following new resolved issue:

l APG-1132: Fixed a potential crash in the NSURLSession delegate_task:didCompleteWithError: method.

AppConnect 4.3.0 for iOS SDK revision history

New features
• Support for MobileIron AppStation

Apps built with the AppConnect 4.3.0 for iOS SDK can run with MobileIron AppStation as theMobileIron client
app instead of MobileIron Go. Administrators can useMobileIron AppStation on devices which are interacting
with aMobileIron Cloud tenant that supports Mobile Apps Management (MAM) but not Mobile Device
Management (MDM).
For your AppConnect app to support AppStation:
- Declare the alt-appconnectURL scheme in your app’s Info.plist as another allowed URL scheme.

See Declare the AppConnect URL schemes as allowed.
- Rebuild your app with the AppConnect 4.3.0 for iOS SDK.

See Task lists for upgrading the SDK in your app.
• Support for Open From data loss prevention policy

The AppConnect 4.3.0 for iOS SDK adds support for the Open From data loss protection policy. Although the
AppConnect library enforces the policy as configured on theMobileIron server, apps can implement methods
that allow them to inform the end user about the policy. For details, seeOpen From policy API details .

Limitations

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 259

At the date of this AppConnect release, no MobileIron servers support this policy.

• iOS 9 no longer supported
AppConnect 4.3.0 for iOS is not supported on iOS 9 devices.
See Product versions required .

AppConnect 4.2.1 for iOS SDK revision history

New features
• Allow AppConnect apps to send custom cookies in web requests

Someweb pages inject custom cookies into web requests. For example, when an end user taps on a link in a
web page, the page's JavaScript injects a custom cookie. If a user makes such a request from aweb page
displayed in an AppConnect app, by default AppConnect does not include the injected cookies in the web
request, which can cause the request to fail. AppConnect now includes the custom cookies in the request if the
MobileIron server administrator includes the following key in the app's app-specific configuration on the
MobileIron server: MI_AC_USE_ORIGINAL_COOKIES_FOR_DOMAINS. The value of the key is a comma-separated
string listing the domains for which the custom cookies should be included. Make sure no spaces are included
in the value.
For example:
www.somewebsite.com,somename.someotherwebsite.com

Limitations
• AP-5026: A Xamarin app crashes if it uses custom code to copy text rather than the native iOS copy

functionality.

AppConnect 4.2 for iOS SDK revision history

New features
• Added support for escrow certificates for apps that use the derived credentials APIs to deliver derived

credentials to theMobileIron client. Note that MobileIron support for this feature will be available only when all
involvedMobileIron products support this feature.
See Sending derived credentials to theMobileIron client.

Resolved issues
• AP-4919: Fixed an issue that caused an AppConnect app to crash when it used the same object as a delegate

for multiple UI elements.
• AP-4150: After an AppConnect SDK or Cordova app became inactive and the AppConnect library blurred the

screen, a noticeable delay occurred when removing the blur when the app became active. This issue has been
fixed.

Known issues
• AP-4940: The LookUp option in the iOS context menu allows data to be shared to non-AppConnect apps

regardless of theOpen In andCopy/Paste To data loss prevention policies.

AppConnect 4.2.1 for iOS SDK revisionhistory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 260

AppConnect 4.1.1 for iOS SDK revision history
This AppConnect release has no new features.

Resolved issues
• AP-4920: When an AppConnect’s app upload request is redirected, the request failed when using AppTunnel.

This issue has been fixed by converting the stream request to a body request when using AppTunnel. Note that
you can override the conversion by adding a key-value pair to the app’s AppConnect configuration. AddMI_
AC_DISABLE_HTTP_STREAM_CONVERSION with the value Yes.

• AP-4917: Fixed compilation issues when using the AppConnect for iOS SDK with projects containing
Objective-C++ files.

• APG-1118: Fixed an issue where apps subclassing NSProxy could crash on launch with the error -[NSProxy
doesNotRecognizeSelector:_ACDecoratorClass].

• APG-1097: Provides a workaround to a known bug in NSURLSession that sometimes causes the form body to
bemissing in connections in AppConnect apps when using AppTunnel.

Known issues
• AP-4919: If an AppConnect app uses the same object as a delegate for multiple UI elements, the app crashes.

AppConnect 4.1 for iOS SDK revision history
This AppConnect release has several new features. It has no new known or resolved issues or limitations.

New features
• Certificate pinning support
• Lock AppConnect apps when screen is off
• Overriding the Open In Policy for openURL: with themailto: scheme
• SwiftFileSharing demonstrates sharing secure files from an extension

Certificate pinning support

This AppConnect release supports certificate pinning for AppConnect apps to heighten security for communication
between AppConnect apps and enterprise servers or cloud services.

Using certificate pinning requires:
• Configuration on theMobileIron server.

For MobileIron Core, see “Certificate pinning for AppConnect apps” in theMobileIron Core AppConnect and
AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through themost recently released version as supported by MobileIron.

This feature requires no additional development in the app.

AppConnect 4.1.1 for iOS SDK revisionhistory

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 261

Lock AppConnect apps when screen is off

This AppConnect release supports automatically logging out device users from AppConnect apps when the device
screen is turned off due to either inactivity or user action.

This feature requires:
• Configuration on theMobileIron server.

For MobileIron Core, see “Configuring the AppConnect global policy” in theMobileIron Core AppConnect and
AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through themost recently released version as supported by MobileIron.

This feature requires no additional development in the app.

Overriding the Open In Policy for openURL: with the mailto: scheme

This AppConnect release allows either the app or MobileIron server administrator to override the Open In policy
when the policy blocks the iOS native email app when the app calls openURL: with the mailto: scheme.

The AppConnect library overrides the Open In policy for native email if either of the following are true:
• TheMobileIron server administrator added the key MI_AC_DISABLE_SCHEME_BLOCKINGwith the value

true to the app’s app-specific configuration.
• The app’s Info.plist contains theMI_APP_CONNECT dictionary with the key MI_AC_DISABLE_SCHEME_

BLOCKINGwith the value YES.

NOTE: THEMI_APP_CONNECT dictionary is new in this release.

SeeOpen In policy API details .

SwiftFileSharing demonstrates sharing secure files from an extension

This AppConnect release has enhanced the SwiftFileSharing sample app to demonstrate how to share secure files
from an app’s extension using AppConnect APIs.

See Sharing secure files from an extension.

AppConnect 4.0 for iOS SDK revision history

New features
• iOS 8 no longer supported
• Dynamic frameworks
• Swift support
• Secure file sharing from an extension
• Drag and Drop data loss prevention policy support
• Native email control using the Open In DLP policy
• App extension control using the Open In DLP policy
• Custom keyboard use controlled by MobileIron server

LockAppConnectappswhenscreen is off

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 262

• Screen blurring
• Requirement for Face ID usage Info.plist entry
• Support for sending AppConnect logs fromMobile@Work
• Securing sensitive data such as encryption keys
• New category ACFileHandle (ACSharedSecureData)
• New custom cryptography methods
• Automatic policy status updates sent to MobileIron server

iOS 8 no longer supported

AppConnect 4.0 for iOS is not supported on iOS 8 devices.

See Product versions required .

Dynamic frameworks

The AppConnect 4.0 for iOS SDK changes the AppConnect.framework from a static to dynamic framework.
Therefore, to upgrade an app that used a previous AppConnect SDK, or to incorporate the SDK for the first time
into your app, seeGetting Started with the AppConnect for iOS SDK.

One of the necessary steps in using the dynamic AppConnect.framework is to remove extra architectures from the
AppConnect app’s binary. Removing desktop architectures is required before submitting your app to the Apple App
Store. The AppConnect for iOS SDK provides a script for this purpose. The script is called post_embed_
actions.sh.

Also, as part of the reorganization relating to dynamic frameworks, AppConnect.h is now an umbrella header which
imports all the AppConnect.framework headers. AppConnectInterface.h now contains the definitions of the
AppConnect interface and the AppConnectDelegate protocol. See Header files in AppConnect.framework.

Swift support

The AppConnect 4.0 for iOS SDK supports Swift apps. See Using the AppConnect framework in a Swift app.

Secure file sharing from an extension

An AppConnect app can now provide an app extension, specifically a Document View Controller extension, to
share secure files with other AppConnect apps. A file can be shared with all AppConnect apps or with only specific
AppConnect apps. The files that the extension shares must be secure files, written with the secure file I/O APIs.

See Sharing secure files from an extension.

Drag and Drop data loss prevention policy support

MobileIron server administrators can set a drag and drop policy for each AppConnect app. It specifies whether
AppConnect apps can drag content to all other apps, to only other AppConnect apps, or not at all.

iOS 8 no longer supported

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 263

The AppConnect library enforces this policy. When the policy allows dragging content to only other AppConnect
apps, the AppConnect library notifies your app when the device user attempts to drag content to a non-AppConnect
app. Your app can then notify the device user of the situation. Your app provides no other code to support the drag
and drop policy.

NOTE: This feature is not supportedwithMobileIronCloud.

See:
• Drag and drop policy API details
• Test data loss prevention policy handling

New callback method -openURLAttemptedWhenUnauthorizedForURL:

A new callback method -openURLAttemptedWhenUnauthorizedForURL: is provided. This method is called when
the app attempts to call -openURL: with the mailto scheme but no app that can handle the scheme is allowed by
the Open In DLP policy.

SeeOpen In policy API details .

Native email control using the Open In DLP policy

TheOpen In Data Loss Prevention policy now includes controlling whether an app can share documents with the
native iOS mail app. Opening a document with the native iOS mail app is allowed only if one of the following is true:
• Open In is allowed for all apps
• Open In is allowed for only whitelisted apps, and the native iOS mail app is in the whitelist. The whitelist must

contain both of these bundle IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

Additionally, the new callback method -openURLAttemptedWhenUnauthorizedForURL: is called when the app
attempts to call openURL: with the mailto: scheme, and one of the following is true:
• Open In is not allowed, and Email+ for iOS is not installed on the device.
• Open In is allowed only for Secure Apps, and Email+ is not installed on the device.

NOTE: In both of the above cases, if Email+ for iOS is installed on the device, it is launched.

SeeOpen In policy API details .

App extension control using the Open In DLP policy

TheOpen in data loss protection policy now includes restricting access to the iOS extensions that apps provide.
Specifically:

Newcallbackmethod -openURLAttemptedWhenUnauthorizedForURL:

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 264

Open In DLP for host
app (the app using
the extension)

Extension behavior

All apps allowed The host app can use any app’s extension for Open In.

Only AppConnect apps
allowed

The host app can use only extensions provided by AppConnect apps for Open In.

Whitelist The host app can use only extensions of apps in the whitelist for Open In.

This addition has no impact on your app’s implementation of the Open In DLP APIs.

Custom keyboard use controlled by MobileIron server

TheMobileIron server can now control custom keyboard use by your AppConnect app. If the administrator does not
configure this choice, your app can choose to reject custom keyboard use.

See Custom keyboard control.

Screen blurring

AppConnect 4.0 for iOS adds support for blurring screens when the app becomes inactive. If your app provided its
own screen blurring, remove that code. By using the AppConnect library’s screen blurring capability, all
AppConnect apps behave consistently.

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a Boolean.
Set the value to YES.

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, theMobileIron server administrators
can disable screen blurring by setting a key-value pair on the server for your app’s configuration. The server key is
MI_AC_ENABLE_SCREEN_BLURRINGwith the value false.

See Add AppConnect-related entries to your Info.plist.

Requirement for Face ID usage Info.plist entry

IncludePrivacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose of
Face ID use. For example, add the valueAppConnect. If youmanually add this key, its name is
NSFaceIDUsageDescription.

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through themost recently released version as supported by MobileIron.

Customkeyboarduse controlledbyMobileIron server

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 265

Support for sending AppConnect logs from Mobile@Work

AppConnect apps using AppConnect 4.0 for iOS support the feature in Mobile@Work for iOS that sends
AppConnect logs to an email address of your choice, such as a company’s helpdesk. This feature requires
Mobile@Work 9.8 for iOS through themost recently released version as supported by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

The option is displayed only for AppConnect apps using AppConnect 4.0 for iOS However, the displayed option is
disabled if the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, if you included the following key-value pair for the app in its AppConnect app configuration:
• MI_AC_ENABLE_LOGGING_TO_FILE set toYes

Securing sensitive data such as encryption keys

AppConnect 4.0 for iOS adds classes to provide heightened security for especially sensitive data, such as
encryption keys and passwords. These classes use hardware capabilities (Apple’s Secure Enclave) to reduce the
sensitive data’s attack surface, because the data is never stored in plain-text in memory.

See Securing sensitive data such as encryption keys.

New category ACFileHandle (ACSharedSecureData)

Use the new category ACFileHandle (ACSharedSecureData) in addition to the existing category NSData
(ACSharedSecureData) if you want to encrypt the data that your app stores and you want the app to share the data
with another AppConnect app.

See Secure file I/O API details.

New custom cryptography methods

The AppConnect 4.0 for iOS SDK has deprecated the followingmethods:
-(NSError *)derivedAppKey:(uint8_t *)pKey withIndex:(NSString *)index;

-(NSError *)derivedSharedKey:(uint8_t *)pKey withIndex:(NSString *)index;

New methods are available that each return an ACSensitiveData object. If you are upgrading your app to use the
AppConnect 4.0 for iOS SDK, MobileIron recommends you use the new methods to take advantage of the features
of ACSensitiveData class.

See Encryption keys for custom cryptography and Securing sensitive data such as encryption keys.

Support for sendingAppConnect logs fromMobile@Work

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 266

Automatic policy status updates sent to MobileIron server

The AppConnect library now automatically sends a status update to theMobileIron server when it receives the
following changes:

Change Status update that AppConnect library sends to MobileIron server

Open In policy Informs server that the policy change has been applied.

Pasteboard policy Informs server that the policy change has been applied.

Print policy Informs server that the policy change has been passed to the app.

Configuration values Informs server that the configuration change has been passed to the app.

Authentication status Informs server that the authentication change has been passed to the app.

This change has no impact on your app’s implementation. Your app should continue to always call the appropriate
notification acknowledgment method:
-authStateApplied:message:

-configApplied:message:

-openInPolicyApplied:message:

-pasteboardPolicyApplied:message:

-printPolicyApplied:message:

-secureFileIOPolicyApplied:message:

Resolved issues
• AP-4324: The followingmethods now return an empty NSData object, instead of nil, if EOF was reached:

- (NSData *)availableData;
- (NSData *)availableDataWithError:(NSError *__autoreleasing *)error;
- (NSData *)readDataToEndOfFile;
- (NSData *)readDataToEndOfFileWithError:(NSError *__autoreleasing *)error;
- (NSData *)readDataOfLength:(NSUInteger)length;
- (NSData *)readDataOfLength:(NSUInteger)length error:(NSError *__autoreleasing *)error;

• AP-4202: Custom protocol classes set to NSURLSessionConfiguration were previously ignored in
AppConnect apps. This issue has been fixed.

• AP-4133: Added ability to use NSURLConnection with NSURLSession networking with AppTunnel.

Known issues
• AP-4657: The "unauthorizedmessage" screen is blurred. It continues to be blurred until the next time the app

switches to theMobileIron client app. After the next AppConnect checkin, the screen is no longer blurred.

Automatic policystatus updates sent toMobileIron server

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 267

Limitations
• AP-4720: On some devices, screen blurring does not occur when going to the Task Switcher.

AppConnect 3.5 for iOS SDK revision history

New features

iOS 11 compatibility

This version of the AppConnect for iOS SDK is compatible with devices running iOS 11 Beta 7. At the time of this
AppConnect release, the GA version of iOS 11 is not available.

IMPORTANT: Upgrade your app to use AppConnect 3.5 for iOS for your app to run on iOS 11devices.
Apps built with SDK versions prior to 3.1.3crash on iOS 11devices. Apps built with version
3.1.3do not crash, but the AppConnect library does not handle the pasteboarddata loss
prevention policy correctly.

Formore information, see Product versions required on page 34.

Open In changes
• A new optional callback method called -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: has

been added in the AppConnectDelegate protocol.
See The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method on page 96.

• Because of iOS implementation changes, if an app uses UIActivityViewController to execute Open In, when
theOpen In policy specifies a whitelist, Open In to all apps is not allowed. Therefore, use only
UIDocumentInteractionController to execute Open In.
SeeOverview of Open In handling on page 93.

• The AppConnect library supports a new key-value pair from theMobileIron server that tells the library not to
enforce the Open In policy. A MobileIron server administrator determines if this behavior is appropriate for an
enterprise. An appmakes no changes relating to this feature.
See “Overriding the Open In Policy for the app” in the administrator documentationMobileIron CoreMobileIron
Core AppConnect and AppTunnel Guide.

Sample app Xcode projects now compatible with Xcode 8.3

The Xcode projects for the sample apps HelloAppConnect and DualMode are now compatible with Xcode 8.3.
They were previously compatible with Xcode 6.4.

See AppConnect for iOS SDK contents on page 25.

Resolved issues
• AP-4145: URL requests made on a background thread were not tunneled if the AppConnect library in the app

had not received the AppTunnel rules. The issue has been fixed because the AppConnect library now blocks
URL requests until after it has received the AppTunnel rules.

Limitations

MobileIronAppConnect 4.7.0 for iOS SDKAppDevelopers Guide| 268

• AP-3917: When a URL request using NTLM authentication was tunneled with AppTunnel, an error occurred
when the device user was prompted with the user credentials dialog. The dialog displayed the Standalone
Sentry host name instead of the URL request’s host name. The issue has been fixed.

Limitations
• AP-4302: Apps that use UIDocumentInteractionController’s preview API will not be able to share documents

with other apps, because iOS 11 beta 6 and 7 allow sharing only with certain built-in extensions.

Releases prior to AppConnect 3.5 for iOS SDK revision history
For the revision history of releases prior to AppConnect 3.5 for iOS SDK, see the"MobileIron AppConnect 4.2 for
iOS SDK AppDevelopers Guide", available on https://help.mobileiron.com.

Limitations

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

	Contents
	New features and enhancements
	Introducing the MobileIron AppConnect for iOS SDK
	AppConnect for iOS overview
	Where to get the AppConnect for iOS SDK
	Secure app features
	AppConnect for iOS SDK advantages
	64-bit and 32-bit app support
	MobileIron AppConnect components
	Using a secure app
	App responsibilities
	MobileIron client app and AppConnect library responsibilities
	AppConnect for iOS SDK variants
	AppConnect for iOS SDK contents
	Header files in AppConnect.framework
	Header files in AppConnectExtension.framework
	AppConnect for iOS architecture
	The MobileIron client app and AppConnect apps
	App checkin and the MobileIron client app
	The auto-lock timeout and the MobileIron client app

	Product versions required
	Securing and managing the app using the AppConnect library
	Authorization
	AppConnect passcode and Touch ID/Face ID policy
	Configuration specific to the app
	AppTunnel
	AppTunnel supports only NSURLConnection and NSURLSession
	Accessing sockets directly does not use AppTunnel
	App’s responsibilities when using AppTunnel
	AppTunnel supports redirects and authentication requests on HTTP/S upload
	AppTunnel with TCP tunneling

	Certificate authentication to enterprise services
	Supported networking methods
	Unsupported networking methods

	Data loss prevention policies
	Custom keyboard control
	Data protection
	AppConnect-related data
	App data files

	Log messages

	Optional: Avoiding pasteboard notifications
	Configuring an App Group on the Apple Developer portal
	Add App Group to Info.plist

	Getting Started with the AppConnect for iOS SDK
	Getting started tasks
	Before you begin adding the AppConnect SDK to your app
	First-time use of SDK in your app
	Task lists for upgrading the SDK in your app
	SDK 3.1 through 3.5 upgrade task list

	Getting started task list
	Add AppConnect files and settings to your Xcode project
	Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed
	Register as a handler of the AppConnect URL scheme
	Declare the AppConnect URL schemes as allowed
	Add AppConnect-related entries to your Info.plist
	Enable screen blurring
	Allow Face ID

	Use AppConnect’s UIApplication subclass
	Initialize the AppConnect library
	Wait for the AppConnect singleton to be ready
	Optional: Specify app permissions and configuration in a plist file
	Using your own UIApplication subclass

	Using the AppConnect framework in a Swift app
	First time use of SDK in your Swift app
	Tasks for upgrading the SDK in your Swift app

	Troubleshooting
	AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode.
	Problem: Bitcode is enabled in build options, but should be disabled.
	Solution:

	Lexical or preprocessor issue when building your app
	Problem: path missing in #import statement
	Solution

	App cannot start because AppConnectResources.bundle not found
	Problem
	Solution

	App crashes in call to -startWithLaunchOptions:
	Problem
	Solution

	Application error: Unable to communicate with the application
	Problem
	Solution

	App crashes due to uncaught ACPropertyAccessException
	Problem
	Solution

	Developing Third-party Dual-mode Apps
	What is a dual-mode app?
	Dual-mode sample app
	Dual-mode app states
	Data encryption states
	Actions when changing to the Encrypted state
	Actions when changing to the Unencrypted state

	High-level dual-mode app behavior
	When the app launches for the first time
	When an app subsequently launches
	User requests to switch to Non-AppConnect Mode
	User requests to switch to AppConnect Mode
	Data loss prevention policy handling

	Dual-mode API details
	The ACManagedPolicy enumeration
	The managedPolicy property
	Dual mode methods
	The +shouldStartAppConnect: class method
	The -appConnect:managedPolicyChangedTo: callback method
	The stop method
	The retire method

	API call sequence when the app launches
	API call sequence when user requests Non-AppConnect Mode
	API call sequence when user requests AppConnect Mode

	AppConnect for iOS API
	The AppConnect interface
	AppConnect-related notifications
	Notification methods in the AppConnectDelegate protocol
	Notification acknowledgments

	Multithread support
	AppConnect ready API details
	The ready property
	Impacted instance properties
	The -appConnectIsReady: callback method
	Pseudocode for -isAppConnectReady:

	Authorization API details
	The ACAuthState enumeration
	The authState and authMessage properties
	Authorization methods
	The -appConnect:authStateChangedTo:withMessage: callback method
	The -authStateApplied:message: acknowledgment method
	The -displayMessage: method

	App-specific configuration API details
	The config property
	App-specific configuration methods
	The -appConnect:configChangedTo: callback method
	The -configApplied:message: acknowledgment method

	Pasteboard policy API details
	The ACPasteboardPolicy enumeration
	Impact on the pasteboard policy of secure services availability
	The pasteboardPolicy property
	Pasteboard policy methods
	The -appConnect:pasteboardPolicyChangedTo: callback method
	The -pasteboardPolicyApplied:message: acknowledgment method
	The -appConnect:copyAttemptedWhenUnauthorized: callback method

	Drag and drop policy API details
	Drag and drop policy method

	Open In policy API details
	Overview of Open In handling
	The ACOpenInPolicy enumeration
	The openInPolicy and openInWhitelist properties
	Open In policy methods
	The -appConnect:openInPolicyChangedTo:whitelist: callback method
	The -openInPolicyApplied:message: acknowledgment method
	The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method
	The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method

	Info.plist key related to the Open In policy

	Open From policy API details
	Overview of Open From handling
	The ACOpenFromPolicy enumeration
	The openFromPolicy and openFromWhitelist properties
	Open From policy methods
	The -appConnect:openFromPolicyChangedTo:whitelist: callback method
	The -openFromPolicyApplied:message: acknowledgment method
	The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method

	Print policy API details
	The ACPrintPolicy enumeration
	The printPolicy property
	Print policy methods
	The -appConnect:printPolicyChangedTo: callback method
	The -printPolicyApplied:message: acknowledgment method

	Log messages API details
	The ACLogLevel enumeration
	Log level descriptions and examples
	Sensitive data examples
	The logLevel property
	Log level methods
	The -appConnect:logLevelChangedTo: callback method
	logAtLevel class methods
	-logAtLevel:format:args: example
	Log level methods and dual mode apps

	Secure services API details
	The ACSecureServicesAvailability enumeration
	The ACSecureFileIOPolicy enumeration
	The secureServicesAvailability and secureFileIOPolicy properties
	Secure services methods
	The -appConnect:secureServicesAvailabilityChangedTo: callback method
	The -appConnect:secureFileIOPolicyChangedTo: callback method
	The -secureFileIOPolicyApplied:message: acknowledgment method

	Version property
	Getting upload status for tunneled HTTP/S requests
	AppConnect library behavior when using AppTunnel
	Upload status API overview
	The AppConnectNetworkingDelegate protocol
	The -setNetworkingDelegate: method

	Caching tunneled URL responses
	AppConnectUIApplication class
	Using your own UIApplication subclass
	originalDelegate property (deprecated)

	Encryption keys for custom cryptography
	Overview of encryption keys for custom cryptography
	The -derivedAppKeyWithIdentifier:error: method
	The -derivedSharedKeyWithIdentifier:error: method
	Error returns for derived key methods
	Deprecated custom cryptography methods
	The -derivedAppKey:withIndex: method (deprecated)
	The -derivedSharedKey:withIndex: method (deprecated)

	Securing sensitive data such as encryption keys
	Coding your app to secure sensitive data
	Configuring the MobileIron server to secure sensitive data for your app
	Debugging ACSensitiveData usage

	iOS active state change notifications due to AppConnect control switches
	Situations that trigger the state change notifications

	Secure file I/O API details
	POSIX-style secure file APIs
	Additional error returns using ACSecureFileLastError()

	ACFileHandle class for AppConnect secure file I/O
	Overridden and added NSFileHandle methods
	ACFileHandle example

	Objective-C categories for AppConnect secure file I/O
	NSFileManager category
	NSData (ACSecureFile) category
	NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories
	NSKeyedArchiver category
	NSKeyedUnarchiver category
	NSDictionary category
	NSMutableDictionary category
	NSArray category
	NSMutableArray category

	NSError objects that secure Objective-C methods return

	Sharing secure files from an extension
	Setting up the MobileIron server for sharing files from an extension
	Setting up the provider app’s Info.plist
	Coding the provider app to share secure files with its extension
	Coding the extension to share files with the host app
	Coding the host app to access the shared file

	AppTunnel diagnostic API details
	Running an AppTunnel diagnostic
	-diagnoseTunnelingForURL:resultHandler: parameters
	-diagnoseTunnelingForURL:resultHandler: return value
	The result handler for diagnostic runs
	The ACTunnelingDiagnosticResult class
	The ACTunnelingDiagnosticResultCode enumeration
	AppTunnel configuration troubleshooting checklist for MobileIron Core

	UIScene support

	Best Practices Using the AppConnect for iOS SDK
	Display authorization status in the home screen
	Allow the user to enter credentials manually
	Use the AppConnectDelegate protocol for notifications
	Limit the size of configuration data from the MobileIron server
	Use the UIApplication’s delegate as you normally would
	Consider limitations when using the iOS simulator
	Enable the AppConnect library to blur screens when the app becomes inactive
	Do not put secure data in the app bundle
	Indicate to the user that the app is initializing
	Reject custom keyboard control
	Do not use UIWebView to upload sensitive data
	Provide documentation about your app to the MobileIron server administrator

	AppConnect Library Log Messages
	Informational log messages
	API usage errors and warnings
	Miscellaneous errors and warning

	Developing AppConnect Apps with Xamarin
	Overview of using AppConnect with Xamarin apps
	Available C# bindings
	Xamarin AppConnect sample apps
	How to include the Xamarin C# binding in your Xamarin project
	How to initialize your Xamarin app to use AppConnect C# APIs
	Register as a handler of the AppConnect URL scheme
	Declare the AppConnect URL scheme as allowed
	Add AppConnect-related entries to your Info.plist
	Enable screen blurring
	Allow Face ID

	Use AppConnect’s UIApplication subclass
	Initialize the AppConnect library
	Edit your AppDelegate source file
	Create a subclass of AppConnectDelegate
	Modify your UIApplicationDelegate subclass

	Wait for the AppConnect singleton to be ready
	Optional: Specify app permissions and configurations in a plist file
	Create the AppConnect.plist in Xamarin Studio
	Edit the AppConnect.plist
	Convert the AppConnect.plist to binary format

	AppTunnel support in Xamarin apps
	AppTunnel Diagnostic API for Xamarin
	Set up your app to use the AppTunnel Diagnostic API for Xamarin
	Run the API
	API Response
	Sample response

	FIPS Compliance in an AppConnect SDK App
	Testing for Third-party App Developers
	Third-party AppConnect app testing overview
	Set up MobileIron Core
	Login to the Admin Portal
	Enable AppConnect on MobileIron Core
	Configure the AppConnect global policy
	Create an AppConnect container policy

	Set up your end-user device
	Set up Mobile@Work on an iOS device
	Install your app on the device
	Set up the AppConnect passcode on the device

	Test authorization status handling
	Change the status to authorized or unauthorized
	Change the status to retired
	Reauthorize a retired app

	Test data loss prevention policy handling
	Test AppConnect configuration change handling
	Create an AppConnect app configuration
	Update the AppConnect app configuration

	Test using AppTunnel
	Enable AppTunnel on MobileIron Core
	Use an existing certificate
	Generate a certificate
	Create a certificate authority for using AppTunnel with HTTP/S tunneling
	Create a local certificate enrollment setting

	Configure the Sentry with an AppTunnel service
	Configure the AppTunnel service in the AppConnect app configuration

	Test logging messages to the console or files
	Log levels
	Debug code for verbose and debug log levels
	Logging to files
	Log file details
	Configuring logging to files
	Pushing the new log level to the device
	Activating verbose or debug logging on the device
	Sending log files in an email

	Test the app documentation

	Testing for In-house App Developers
	In-house AppConnect app testing overview
	Set up MobileIron Core
	Login to the Admin Portal
	Enable AppConnect on MobileIron Core
	Create a label for testing your app
	Upload your app to MobileIron Core if you use AppConnect.plist
	Verify your AppConnect.plist settings
	Configure the AppConnect global policy
	Create an AppConnect container policy, if necessary

	Set up your end-user device
	Set up Mobile@Work on an iOS device
	Install your app on the device
	Set up the AppConnect passcode on the device

	Test authorization status handling
	Change the status to authorized or unauthorized
	Change the status to retired
	Reauthorize a retired app

	Test data loss prevention policy handling
	Test AppConnect configuration change handling
	Create an AppConnect app configuration
	Update the AppConnect app configuration

	Test using AppTunnel
	Enable AppTunnel on MobileIron Core
	Use an existing certificate
	Generate a certificate
	Create a certificate authority for using an AppTunnel with HTTP/S tunneling
	Create a local certificate enrollment setting

	Configure the Sentry with an AppTunnel service
	Configure the AppTunnel service in the AppConnect app configuration

	Test logging messages to the console or files
	Log levels
	Debug code for verbose and debug log levels
	Logging to files
	Log file details
	Configuring logging to files
	Pushing the new log level to the device
	Activating verbose or debug logging on the device
	Sending log files in an email

	Test the app documentation

	Derived Credential Handling
	Derived credential handling overview
	Derived credential header files
	Before adding derived credentials code
	Making your app an AppConnect app
	Declaring the appConnectdc URL scheme as allowed
	Registering as a handler of a URL scheme you define

	Sending derived credentials to the MobileIron client
	Handling the custom URL scheme in your app delegate
	Checking if the MobileIron client supports derived credentials
	Checking if sending credentials to MobileIron client is currently allowed
	Getting a derived credential
	Preparing a certificates array
	Preparing an ACDerivedCredential object
	Creating an ACDervicedCredentialService object
	Sending the certificates to the MobileIron client
	Handling secure services becoming available

	AppConnect for iOS SDK Revision History
	AppConnect 4.7.0 for iOS SDK revision history
	New features and enhancements summary
	Resolved issues
	Known issues
	Limitations

	AppConnect 4.6.0 for iOS SDK revision history
	New features summary
	Resolved issues

	AppConnect 4.5.3 for iOS SDK revision history
	Resolved issues

	AppConnect 4.5.2 for iOS SDK revision history
	AppConnect 4.5.1 for iOS SDK revision history
	AppConnect 4.5.0 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.4.2 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.4.1 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.4.0 for iOS SDK revision history
	New features summary
	Resolved issues
	Limitations

	AppConnect 4.3.1 for iOS SDK revision history
	Resolved issues

	AppConnect 4.3.0 for iOS SDK revision history
	New features

	AppConnect 4.2.1 for iOS SDK revision history
	New features
	Limitations

	AppConnect 4.2 for iOS SDK revision history
	New features
	Resolved issues
	Known issues

	AppConnect 4.1.1 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.1 for iOS SDK revision history
	New features
	Certificate pinning support
	Lock AppConnect apps when screen is off
	Overriding the Open In Policy for openURL: with the mailto: scheme
	SwiftFileSharing demonstrates sharing secure files from an extension

	AppConnect 4.0 for iOS SDK revision history
	New features
	iOS 8 no longer supported
	Dynamic frameworks
	Swift support
	Secure file sharing from an extension
	Drag and Drop data loss prevention policy support
	New callback method -openURLAttemptedWhenUnauthorizedForURL:
	Native email control using the Open In DLP policy
	App extension control using the Open In DLP policy
	Custom keyboard use controlled by MobileIron server
	Screen blurring
	Requirement for Face ID usage Info.plist entry
	Support for sending AppConnect logs from Mobile@Work
	Securing sensitive data such as encryption keys
	New category ACFileHandle (ACSharedSecureData)
	New custom cryptography methods
	Automatic policy status updates sent to MobileIron server

	Resolved issues
	Known issues
	Limitations

	AppConnect 3.5 for iOS SDK revision history
	New features
	iOS 11 compatibility
	Open In changes
	Sample app Xcode projects now compatible with Xcode 8.3

	Resolved issues
	Limitations

	Releases prior to AppConnect 3.5 for iOS SDK revision history

