
MobileIron AppConnect 9.2.0 for
Android App Developers Guide

March 17, 2021

For complete product documentation see:
AppConnect for Android Product Documentation HomePage

Proprietary and Confidential | Do Not Distribute

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240gcAAA&Name=AppConnect+for+Android

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 2

Copyright © 2012 - 2021MobileIron, Inc. All Rights Reserved.

Any reproduction or redistribution of part or all of thesematerials is strictly prohibited. Information in this publication
is subject to change without notice. MobileIron, Inc. does not warrant the use of this publication. For some phone
images, a third-party database and image library, Copyright © 2007-2009 Aeleeta's Art and Design Studio, is used.
This database and image library cannot be distributed separate from theMobileIron product.

“MobileIron,” theMobileIron logos and other trade names, trademarks or servicemarks of MobileIron, Inc.
appearing in this documentation are the property of MobileIron, Inc. This documentation contains additional trade
names, trademarks and servicemarks of others, which are the property of their respective owners. We do not
intend our use or display of other companies’ trade names, trademarks or servicemarks to imply a relationship
with, or endorsement or sponsorship of us by, these other companies.

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 3

Contents
Contents 3

New features and enhancements 10

AppConnect for Android overview 11

MobileIron components supporting AppConnect apps 12

About wrapping for AppStation 14

Apps that you can wrap 15

Required app development 16

Understanding AppConnect for Android wrapping limitations 16

Using AppTunnel with HTTP/S tunneling 16

Handling app-specific configuration 17

Android devices supporting AppConnect apps 17

Features of AppConnect for Android apps 17

Accessible Apps to preserve the user experience 18

Securing and managing an Android AppConnect app 20

Authorization 21

AppConnect passcode policy 21

AppTunnel with HTTP/S tunneling 22

Supported APIs 22

HTTP/S redirects 23

HelloAppTunnel sample app 23

AppTunnel with TCP tunneling 23

When to use AppTunnel with HTTP/S tunneling versus TCP tunneling 23

SSL between the device and Sentry 24

Certificate authentication with AppTunnel with TCP tunneling 25

App requirements 25

Data loss prevention settings 26

Contents

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 4

Supported file sizes for streamingmedia 26

App whitelist 27

Handling app-specific configuration from theMobileIron server 27

Ignoring the auto-lock time 28

MobileIron server configuration 28

App requirements 28

Wrapping technology 29

Handling AppConnect app-specific configuration 31

Overview of configuration handling 31

App-specific configuration data flow 32

Tasks for configuration handling 33

Check at runtime if your app is wrapped 34

Create a callback method to receive configuration updates 35

Implementing the callback method 35

Request the configuration when your app starts 36

Add callback information to AndroidManifest.xml 37

Specify app configuration and policies in .properties files 37

File location of the .properties files 38

Example of the appconnectconfig.properties file 38

Format of the appconnectconfig.properties file 39

Example of the appconnectpolicy.properties file 39

Format of the appconnectpolicy.properties file 39

Changing from the legacy configuration handling to the new mechanism 40

Sample Java app for handling app-specific configuration 40

Best practices for handling app-specific configuration 41

Provide documentation about your app to theMobileIron server administrator 41

Use only a login ID from theMobileIron server if one is expected 42

Testing app-specific configuration handling 42

Requesting aMobileIron Core test instance 42

Contents

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 5

DownloadingMobile@Work to the device 43

Logging in to the Admin Portal 43

Creating a label for testing your app 43

Enabling AppConnect onMobileIron Core 44

Configuring the AppConnect global policy 44

Uploading the Secure Apps Manager to MobileIron Core 45

Uploading your AppConnect app toMobileIron Core 45

Configuring app-specific settings in MobileIron Core 45

Registering the test device toMobileIron Core 46

Pushing Core configuration changes to the device 46

Sample apps, tester app, and Cordova plugin 47

Summary of sample apps, tester app, and Cordova plugin 47

Location of sample apps, tester app, and Cordova plugin 48

Android API Usage Demo sample app overview 49

Demonstrated APIs 50

Audio Recorder Demo 50

Capture Image Demo 50

Documents Demo 51

Image Decoder Demo 51

MediaMeta Data Retriever Demo 52

Media Player Demo 52

Pick Image Demo 52

Share Content Demo 53

Video Recorder Demo 53

HelloReact Demo sample app overview 53

Demonstrated functionality 54

AppConfig Demo 54

Network API Demo 55

Capture Image Demo 55

Contents

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 6

Pick Image Demo 55

Video View Demo 56

Firebase CloudMessaging Demo 56

HelloFlutter sample app overview 56

Demonstrated APIs 57

AppConfig Demo 57

Before wrapping an Android app 58

Checking wrapping limitations 59

Determining the wrappingmode 59

The AppConnect wrapping portal 62

Using the AppConnect Wrapping Portal 62

Logging in to help.mobileiron.com 62

Uploading and wrapping an app 63

Downloading the wrapped app 65

The AppConnect for Android wrapping tool 66

Enterprise private key considerations with AppConnect for Android 66

AppConnect for AndroidWrapping Tool supported platforms 67

Preparing to use the wrapping tool 67

Using the AppConnect for AndroidWrapping Tool in UI mode 68

Launching the wrapping tool 69

Providing developer settings to the wrapping tool 69

Selecting wrapping options in the wrapping tool 70

Wrapping and signing an app with the wrapping tool 71

Signing an app with the wrapping tool 72

Using the AppConnect for AndroidWrapping Tool in CLI mode 72

Providing developer settings 73

Setting the keystore 74

Wrapping and signing the app 75

Additional wrapping tasks using CLI 76

Contents

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 7

Signing an app 76

Using the Generation 1 wrapper 77

Wrapping with a different allowed wrapper version 77

Viewing wrapper arguments for a wrapper version 78

Using the -help command 79

Wrapping tool CLI 79

Troubleshooting the wrapping tool 80

Distributing wrapped apps with an enterprise key (Core) 81

Uploading the apps to the App Catalog 81

Configuring the enterprise public key 81

Applying labels to the new apps 82

Removing labels from the old apps 82

The device user experience when upgrading 83

Behavior when the device does not have the enterprise public certificate 83

After wrapping an Android app 84

Adding the wrapped app’s key to the Google API Console 84

Wrapped app’s Google API key format 84

Adding the new API key to Google API console 84

Inform the server administrator of your app’s requirements 85

Capabilities and limitations of apps you can wrap 86

AppConnect wrapping considerations 86

SQLCipher considerations 87

SQLCipher library version 87

Using both SQLCipher and SQLLite is not supported 87

Encryption of the SQLCipher database 87

DownloadManager API considerations 87

Google CloudMessaging considerations 87

Unsupported GCM features 88

Situations whenGCMmessages are discarded 88

Contents

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 8

Firebase CloudMessaging and Crashlytics support 88

MediaPlayer andMediaMetaDataRetriever Internet permission requirement 88

Image selection from outside the AppConnect container 89

External storage permissions 89

Support for scoped storage 90

Receiving information from outside the AppConnect container 90

USB OTG support 91

Preference API usage 91

64-bit support 91

Linking native Javamethods 92

Wrapping support of commonly used app capabilities 92

Generation 1 andGeneration 2 support for commonly used app capabilities 92

Generation 1 wrapper support for commonly used app capabilities 94

Generation 2Wrapper support for commonly used app capabilities 94

Knownwrapper limitations 94

Generation 1 andGeneration 2 wrapper limitations 95

Generation 1 wrapper limitations 97

Generation 2 wrapper limitations 97

Legacy mechanism for handling AppConnect app-specific configuration 98

Overview of legacy configuration handling 98

Communicating with theMobileIron client app using intents for legacy configuration handling 100

App-specific configuration legacy data flow 100

Contents of the Intent objects in legacy configuration handling 101

Tasks for legacy configuration handling 102

Check at runtime if your app is wrapped 103

Add a service to AndroidManifest.xml 104

Create a class that extends IntentService 104

Implement onHandleConfig() 104

Reasons for returning an error 105

Contents

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 9

Request the configuration when your app starts 106

Specify app configuration and policies in .properties files 106

File location of the .properties files 106

Example of the appconnectconfig.properties file 107

Format of the appconnectconfig.properties file 107

Example of the appconnectpolicy.properties file 108

Format of the appconnectpolicy.properties file 108

Sample Java app for legacy app-specific configuration handling 109

App for testing legacy configuration handling 109

Using AppConnectTester 110

Protecting the unwrapped version of your app 111

Best practices for handling app-specific configuration 112

Provide documentation about your app to theMobileIron server administrator 113

Use only a login ID from theMobileIron server if one is expected 113

Contents

1

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 10

New features and enhancements

This guide documents the following new features and enhancements:

l ThumbnailUtils support: The following ThumnailUtils deprecatedmethods are supported:
createAudioThumbnail, createImageThumbnail, createVideoThumbnail.
SeeGeneration 1 andGeneration 2 support for commonly used app capabilities .

l Command line interface (CLI) support with the AppConnect wrapping tool: Command line interface
(CLI) support with the AppConnect wrapping tool: CLI support for wrapping Android app using the
AppConnect wrapping tool.
For more information see Using the AppConnect for AndroidWrapping Tool in CLI mode

l Support for Firebase Crashlytics: If the -enableCrashlytics option is used when wrapping an app, the
app crash data is available on the Firebase Crashlytics console. To use the feature, the appmust support
Firebase Crashlytics and wrapped with the 9.2.0 wrapper. The crash reports appear for the unwrapped app
package name on the console. However, the reports include the text label (wrapped app), which identifies
the report as an AppConnect wrapped app crash report.
For more information, see Firebase CloudMessaging and Crashlytics support.

For a list of new features introduced in this release see theMobileIron AppConnect 9.2.0 for Android Release
Notes and UpgradeGuide.

2

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 11

AppConnect for Android overview

MobileIron AppConnect for Android provides a secure andmanaged container for enterprise applications and data
on Android devices. These secure enterprise apps are calledAppConnect apps or secure apps. You create an
AppConnect app for Android using theMobileIron AppConnect wrapping technology. This wrapping technology
transforms an Android app into a secure app with minimal app development.

The Android devices running AppConnect apps are registered to aMobileIron server: either MobileIron Core,
MobileIron Connected Cloud, or MobileIron Cloud. An enterprise uses theMobileIron server to distribute the apps.
The apps are called “in-house” apps, regardless of who developed the apps, because the apps are distributed by
the enterprise. The app developer is either an in-house developer at the enterprise, or a third-party app developer.

To wrap an app, you either:

l Submit it to theMobileIron AppConnect Wrapping Portal. MobileIron signs the wrapped apps with the
MobileIron private key. MobileIron also signs the Secure Apps Manager and all secure apps provided by
MobileIron with theMobileIron private key.
The AppConnect Wrapping Portal is the simplest andmost commonway to wrap apps. It can be used for
apps that are distributed by MobileIron Core, MobileIron Connected Cloud, or MobileIron Cloud.

l Use theMobileIron AppConnect for AndroidWrapping Tool, a desktop app, to wrap and sign your apps.
Use the wrapping tool only if you require that your apps are signed with your own enterprise private key.
Signing apps with your enterprise private key instead of theMobileIron private key is a security decision
that your enterprisemakes. The wrapping tool can be used only for apps that are distributed by MobileIron
Core or MobileIron Connected Cloud. Apps wrapped with the wrapping tool cannot be distributed by
MobileIron Cloud.

IMPORTANT:

l Youcannot distribute AppConnect apps onGoogle Play.

l Youcannot wrapanapp (.apk file) that youget fromGoogle Play.

l Some apps cannot be wrapped, depending on the APIs or features they use. See Capabilities and
limitations of apps you canwrap.

NOTE: Legal notices are located here.

Related topics

For information about AppConnect for Android from the perspective of aMobileIron server administrator:

l MobileIron Core or Connected Cloud: TheMobileIron AppConnect Guide for Core

l MobileIron Cloud: TheMobileIron Cloud Administrator Guide

https://help.mobileiron.com/s/article-detail-page?Id=kA134000000QyZGCA0

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 12

l AppConnect Secure Apps for Android Release Notes and UpgradeGuide which includes:

o summary of new features
o known and resolved issues
o limitations
o support and compatibility

MobileIron components supporting AppConnect apps
AppConnect for Android apps work with the followingMobileIron components:

MobileIron
component

Description

MobileIron Core TheMobileIron on-premise server which provides security andmanagement for an
enterprise’s devices, and for the apps and data on those devices. An administrator
configures the security andmanagement features using a web portal.

MobileIron Connected
Cloud

Cloud offering that has the same functionality as MobileIron Core.

MobileIron Cloud Cloud offering that provides similar functionality as MobileIron Core. However, it
does not support all the AppConnect features that MobileIron Core supports.

Standalone Sentry TheMobileIron server which provides secure network traffic tunneling from your app
to enterprise servers.

Mobile@Work for
Android

TheMobileIron client app that runs on an Android device. It interacts with Core or
Connected Cloud to apply the appropriate policies and AppConnect apps to the
device. It also interacts with the Secure Apps Manager. The device user gets
Mobile@Work from Google Play.

MobileIron Go for
Android

TheMobileIron client app that runs on an Android device. It interacts with MobileIron
Cloud to apply the appropriate policies and AppConnect apps to the device. It also
interacts with the Secure Apps Manager. The device user gets MobileIron Go from
Google Play.

Secure Apps Manager Another MobileIron app that runs on an Android device. Working with Mobile@Work
or MobileIron Go, it handles data encryption and the AppConnect passcode for
logging on to AppConnect apps.

MobileIron Core and Connected Cloud: The device user receives the Secure Apps
Manager from Core or Connected Cloud.

MobileIron Cloud: Secure Apps Manager is bundled with MobileIron Go, which the
device user gets from Google Play.

MobileIron AppStation
for Android

Another MobileIron client app that runs on an Android device. AppStation is used
instead of MobileIron Go to interact with MobileIron Cloud when theMobileIron

TABLE 1.MOBILEIRONCOMPONENTS INVOLVED WITHAPPCONNECT FORANDROID APPS

MobileIroncomponents supportingAppConnectapps

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 13

MobileIron
component

Description

Cloud tenant is configured for Mobile Apps Management (MAM) but not Mobile
DeviceManagement (MDM). AppStation applies the appropriate policies and
AppConnect apps to the device. It also interacts with the Secure Apps Manager for
AppStation. The device user gets MobileIron AppStation from Google Play.

Secure Apps Manager
for AppStation

Working with theMobileIron AppStation app, Secure Apps Manager for AppStation
handles data encryption and the AppConnect passcode for logging on to
AppConnect apps. It provides the same feature set as the Secure Apps Manager.

Only apps wrapped using the AppStation option work with Secure Apps Manager for
AppStation. Such wrapped apps do not work with the regular Secure Apps Manager.

Secure Apps Manager for AppStation is bundled with the AppStation app, which the
device user gets from Google Play.

The AppConnect app
wrapper

Provided by the AppConnect wrapping technology, the app wrapper provides
AppConnect capabilities and security to your app.

TheGeneration 1 wrapper supports Java apps and AppTunnel with HTTP/S
tunneling.

TheGeneration 2 wrapper supports Java apps, including Java apps with C or C++
code, hybrid web apps, React Native apps, Xamarin apps, AppTunnel with HTTP/S
or TCP tunneling, and scoped storage for apps with targetSdkVersion set to 30.

TheMobileIron
AppConnect Wrapping
Portal

Available at help.mobileiron.com in theDeveloper > Wrapped Apps tab, the
AppConnect Wrapping Portal is the simplest andmost commonway to wrap apps.

It can be used for apps that are distributed by MobileIron Core, MobileIron
Connected Cloud, or MobileIron Cloud.

It can be used to wrap apps that work with one of:
• the Secure Apps Manager
• the Secure Apps Manager for AppStation.

TheMobileIron
AppConnect for Android
Wrapping Tool

A desktop app, for wrapping and signing your apps.

Use the wrapping tool only if you require that your apps are signed with your own
enterprise private key. Signing apps with your enterprise private key instead of the
MobileIron private key is a security decision that your enterprisemakes.

The wrapping tool can be used only for apps that are distributed by MobileIron Core
or MobileIron Connected Cloud.

IMPORTANT: Appswrappedwith the wrapping tool cannot be distributed
byMobileIronCloud.

TABLE 1.MOBILEIRONCOMPONENTS INVOLVED WITHAPPCONNECT FORANDROID APPS (CONT.)

MobileIroncomponents supportingAppConnectapps

http://help.mobileiron.com/

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 14

About wrapping for AppStation
If you are using the AppConnect Wrapping Portal, you have the option to wrap for MobileIron AppStation.
AppStation is aMobileIron client app that runs on an Android device. AppStation is used instead of MobileIron Go
to interact with MobileIron Cloud when theMobileIron Cloud tenant is configured for Mobile Apps Management
(MAM) but not Mobile DeviceManagement (MDM). AppStation applies the appropriate policies and AppConnect
apps to the device.

AppStation interacts with the Secure Apps Manager for AppStation instead of the regular Secure Apps Manager.
Secure Apps Manager for AppStation:

l provides the same feature set as the regular Secure Apps Manager.

l is bundled with theMobileIron AppStation app, which the device user gets from Google Play

When you wrap an app with the AppConnect Wrapping Portal, you select an option that determines whether the
app works with Secure Apps Manager for AppStation or the regular Secure Apps Manager.

IMPORTANT:

l Appswrappedusing the AppStation optionwork onlywith Secure AppsManager for AppStation.

l Appswrappedwithout the AppStation optionwork onlywith the regular Secure AppsManager.

Therefore, if you want your app to work with either Secure Apps Manager for AppStation or the regular Secure Apps
Manager, youmust wrap it twice: once with the AppStation option and once without the AppStation option.

When you wrap an appwith the AppStation option, it has the following package name:

l appstation.<your app package name>

When you wrap an appwithout the AppStation option, it has the following package name:

l forgepond.<your app package name>

NOTE: Note that the Secure AppsManager for AppStation andappswrappedwith the AppStation
option have adifferent shield on their home screen icons than the regular Secure Apps Manager
andappswrappedwithout the AppStation option.

For information about AppStation for Android and how to deploy AppStation, seeMobileIron AppStation Product
Documentation Home Page.

Aboutwrapping for AppStation

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s2T000002iNUwQAM&Name=AppStation+for+Android
https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s2T000002iNUwQAM&Name=AppStation+for+Android

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 15

Apps that you can wrap
MobileIron supports wrapping the following types of apps:

l apps written in Java

l apps written in Java that include C or C++ code
C and C++ are native code languages on Android devices. Java apps that include C or C++ code are built
with the Android Native Development Kit (NDK).

l apps built with the Xamarin development platform that useModernHTTPClient andOkHttp. HTTP
tunneling along with Kerberos Constrained Delegation is also supported when using these libraries.

l hybrid web apps
A hybrid web app is an Android app (APK file) that the device user installs on the device, unlike a pure web
app that the user accesses through a web browser. A hybrid web app includes at least one activity (screen)
that displays a web page.
Business logic and content presentation occurs using AndroidWebView andWebKit technologies,
specifically within an object of the Java class android.Webkit.WebView. TheWebView object locally
renders content using web technologies such as HTML, CSS, and Javascript. TheWebView object can
access the web content from a network resource or from embedded web content.
Like other wrapped app data, data related to the android.webkit.WebView class is encrypted. This web-
related data can include cookies, the web cache, and web databases.
The following diagram illustrates a hybrid web app on an Android device.

FIGURE 1.HYBRID WEB APP ONANANDROID DEVICE

Apps that youcanwrap

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 16

l PhoneGap apps
You can wrap an APK file that was created using the PhoneGapmobile development framework. The
wrapped PhoneGap app is a type of wrapped hybrid web app.
See phonegap.com for information about creating PhoneGap apps.

l React Native apps
You can wrap an APK file that was created using the React Nativemobile development framework.

IMPORTANT: Wrapping does not support all JavaAPIs and features or all NDK features. Details are listed
inCapabilities and limitations of apps you canwrap.

Required app development
l Understanding AppConnect for Android wrapping limitations

l Using AppTunnel with HTTP/S tunneling

l Handling app-specific configuration

Understanding AppConnect for Android wrapping limitations

AppConnect for Android wrapping technology does not support all Android coding capabilities. Details are listed in
Capabilities and limitations of apps you can wrap.

Before submitting an app for wrapping, review the supported app capabilities and the limitations. Make necessary
changes to the app, if any, and verify the app’s behavior.

Using AppTunnel with HTTP/S tunneling

UsingMobileIron’s AppTunnel feature, a secure enterprise app can securely tunnel HTTP and HTTPS network
connections from the app to servers behind a company’s firewall. If the app already uses specific, commonly used
APIs to access enterprise servers with HTTP/HTTPS connections, no additional development is necessary to use
standard AppTunnel. Otherwise, additional development is necessary to change to the required APIs.

Inform theMobileIron server administrator that your app requires AppTunnel with HTTP/S tunneling. The
administrator requires this information to correctly configure AppTunnel on the server for your app.

For more information, see AppTunnel with HTTP/S tunneling.

NOTE: All AppConnect apps can use AppTunnel with TCP tunneling to secure data-in-motion between
the appandcorporate resourceswith no additional development. See AppTunnel with TCP
tunneling.

Requiredappdevelopment

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 17

Handling app-specific configuration

With some straightforward additional development, an app can receive app-specific configuration from the
MobileIron server.

Inform theMobileIron server administrator the details about your app-specific configuration. The administrator
requires this information to provide correct configuration values to your app from theMobileIron server.

For more information, see Legacy mechanism for handling AppConnect app-specific configuration.

Android devices supporting AppConnect apps
AppConnect for Android apps are supported on the following Android devices:

l devices with 32-bit ARM processors

l devices with 64-bit ARM processors

l devices running Android 5.0 through themost recently released version as supported by MobileIron

Note The Following:

l Android version support for eachappcan vary.

l Support for specific featuresofAppConnect for Android dependon the version of various
MobileIron components and the AndroidOS version. See theAppConnect andAppTunnel Guide
forMobileIronCore andConnectedClouddeployments, and theMobileIronCloudGuide for
MobileIronClouddeployments.

Features of AppConnect for Android apps
An Android device user can use an AppConnect app only if:

l the device user has been authenticated through theMobileIron server.
The user must use theMobile@Work, MobileIron Go, or MobileIron AppStation for Android app to register
the device with theMobileIron server. Registration authenticates the device user. Only registered devices
can use an AppConnect app.

l the server administrator has authorized the device user to use the AppConnect app.

l the device user has entered the passcode for using AppConnect apps, if required by the server
administrator.
With the AppConnect passcode, the device user can access all the AppConnect apps. When presented to
device users, it is called the secure apps passcode. On the server Admin Portal, the administrator
configures the rules for this AppConnect passcode. Access to AppConnect apps times out after a period of
inactivity, after which the device user must reenter the AppConnect passcode.
The AppConnect passcode is not the same passcode as the device password, if a device password
exists. The device user can choose the same values for both the AppConnect apps passcode and the
device password, or choose a different value for each of them.

Handlingapp-specific configuration

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 18

AppConnect apps:

l encrypt their application data.
Application data on the device is encrypted using AES-256 encryption. The encryption key is not stored on
the device. It is programmatically derived, in part from the device user’s AppConnect passcode. Therefore,
the application data is secure even on a device that becomes compromised.For hybrid web apps, data
related to the android.webkit package’s WebView class is encrypted. This web-related data can include
cookies, the web cache, and web databases.

NOTE: File namesare not encrypted.

l use only containerized data.
AppConnect apps can share data only with other AppConnect apps. Unsecured apps cannot access the
data. Data in the secure container stays in the secure container.
Exceptions are described in Accessible Apps to preserve the user experience.

l enforce data loss prevention.
The server administrator determines the data loss prevention policies for an app. For example, these
policies include whether an app allows screen capture, copy/paste interaction with other apps, and access
to the camera, gallery, or media player. The AppConnect app’s wrapper enforces the policies.

l can tunnel network connections to servers behind an enterprise’s firewall.
This capability means that device users do not have to separately set up VPN access on their devices to
use the app.

l can send a certificate to identify and authenticate the app user to an enterprise server.
Depending on the enterprise server implementation, this authentication occurs without interaction from the
device user beyond entering the AppConnect passcode. That is, the device user does not need to enter a
user name and password to log into enterprise services. Therefore, this feature provides a higher level of
security and an improved user experience.
This feature is not available with MobileIron Cloud.

l can receive app-specific configuration information from theMobileIron server.
This capability requires some additional app development. It means that device users do not have to
manually enter configuration details that the app requires. Furthermore, for security reasons, some apps do
not want to allow the device users to provide certain configuration settings at all. By automating the
configuration process for the device users, each user has a better experience when installing and setting
up apps. Also, the enterprise has fewer support calls, and the app is secured frommisuse due to
configuration.

l provide anti phishing protection.
If anti-phishing is enabled in the UEM usingMobile Threat defense and users have enabled anti-phishing
on their device, when users tap on a URL in their AppConnect app, anti-phishing protection is triggered.
However, entering a URL directly into a browser or tapping a web link in a browser does not trigger anti-
phishing support. For information about Mobile Threat Defense, see theMobileIron Threat Defense
Solution Guide for your UEM.

Accessible Apps to preserve the user experience
AppConnect apps can share data only with other AppConnect apps.

However, some exceptions exist to this rule to:

AccessibleApps topreserve the user experience

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 19

l preserve the device user experience.

l enable the use of system services, such as making voice calls.

The exceptions are:

l maps
Tapping ameeting location in an AppConnect email app launches amaps app.

l phone calls
Tapping a phone number in any AppConnect app will make a phone call.

l SMS
An AppConnect app can allow the device user to send an SMS to a corporate contact.

l browsers
Tapping a link in an AppConnect app launches a browser. However, theMobileIron server administrator
can limit the behavior to opening the link in a secure browser by using a data loss prevention policy.

AccessibleApps topreserve the user experience

3

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 20

Securing and managing an Android
AppConnect app

A MobileIron server administrator configures how mobile device users can use secure enterprise applications. The
administrator sets the following app-related settings that impact your AppConnect app’s behavior:

l Authorization

l AppConnect passcode policy

l AppTunnel with HTTP/S tunneling

This feature sometimes requires additional development because an AppConnect app can use HTTP/HTTPS
tunneling only if the app accesses the enterprise server using certain APIs.

l AppTunnel with TCP tunneling

l Certificate authentication with AppTunnel with TCP tunneling

l Data loss prevention settings

l Handling app-specific configuration from theMobileIron server

This feature requires additional app development.

l Ignoring the auto-lock time

The following steps show the flow of information from theMobileIron server to an AppConnect app:

1. The server administrator decides which app-related settings to apply to a device or set of devices.

2. The server sends the information to theMobileIron client app (Mobile@Work, MobileIron Go, or
MobileIron AppStation).

3. TheMobileIron client app passes the information to the AppConnect app. TheMobileIron client app, the
Secure Apps Manager (or Secure Apps Manager for AppStation), and the AppConnect app wrapper
enforce the app-related settings.

Related topics

For information about AppConnect for Android from the perspective of aMobileIron server administrator:

l MobileIron Core or Connected Cloud: TheMobileIron AppConnect Guide for Core

l MobileIron Cloud: TheMobileIron Cloud Administrator Guide

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 21

Authorization
The server administrator determines which AppConnect apps can:

l be installed on each device.

l can run on each device.
If an AppConnect app is allowed to run, it is an authorized app. When a device user runs an unauthorized
app, the Secure Apps Manager displays amessage to the user, and the app exits.

An administrator also determines how many days a device can be out of contact with the server (not available on
MobileIron Cloud). When the number of days is exceeded, the Secure Apps Manager removes the data for all the
AppConnect apps. Finally, an administrator determines when a device is no longer registered with the server, such
as when an employee leaves the company. At that time, all AppConnect apps on the device become unauthorized,
and the Secure Apps Manager removes the data for all AppConnect apps.

The AppConnect wrapper, along with the Secure Apps Manager and theMobileIron client app, handles app
authorization. No additional app development is necessary.

AppConnect passcode policy
One AppConnect passcode controls all AppConnect (secure) apps on the device.

The server administrator determines whether to require an AppConnect passcode. If it is required the administrator
also determines:

l the complexity of the AppConnect passcode (such as length, whether it must be numeric or alphanumeric,
and how many complex characters are required)

l the auto-lock time for the AppConnect passcode, after which the device user must re-enter the passcode

l passcode history rules

l passcode age rules

l whether to block or retire the AppConnect app when themaximum number of failed attempts exceeds the
value set in the AppConnect policy (The options to choose to block or retire are not available onMobileIron
Cloud)

l whether the device user can reset the passcode

l passcode strength rules (not available onMobileIron Cloud)

l whether the device user can also use a fingerprint as a convenience to access secure apps

The AppConnect wrapper, along with the Secure Apps Manager and theMobileIron client app, manages the
AppConnect passcode. No additional app development is necessary.

Although not common, some apps require that certain screens are not interrupted by the auto-lock timeout. See
Ignoring the auto-lock time.

Authorization

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 22

AppTunnel with HTTP/S tunneling
UsingMobileIron’s AppTunnel feature, a secure enterprise app can securely tunnel HTTP and HTTPS network
connections from the app to servers behind a company’s firewall. A Standalone Sentry is necessary to support
AppTunnel with HTTP/S tunneling. The server administrator handles all HTTP/S tunneling configuration on the
server Admin Portal. Once configured, the AppConnect app wrapper, theMobileIron client app, the Secure Apps
Manager, and a Standalone Sentry handle tunneling for the app.

Supported APIs

An AppConnect app can use HTTP/HTTPS tunneling only if the app accesses the enterprise server using one of
the following APIs:

l java.net.HttpURLConnection

l java.net.ssl.HttpsURLConnection

l Android HttpClient

l DefaultHTTPClient, using the standard Apache HttpClient library with the org.apache.http.package name

HTTP/S tunneling is not supported with non-standard libraries such as the Apache HttpClient library repackaged
under the ch.boye.httpclientandroidlib package.

l OkHttpClient version 2.5 or less when using Generation 1 wrapping
o Generation 1 wrapping replaces all OkHttp classes with wrappedOKHttp version 2.5 classes.

Therefore, the app can have issues if it uses any OkHttp classes or methods in versions newer than
2.5.

o Generation 2 wrapping does not support HTTP/HTTPS tunneling with any version of OKHttp.
However, you can use AppTunnel with TCP tunneling when using Generation 2 wrapping.

l ModernHTTPClient in apps built with the Xamarin development platform

Use these APIs as you normally would. Whether the server administrator has configured tunneling for the app does
not impact how you use these APIs.

NOTE: AppTunnel with HTTP/S tunneling i s not supported for Phonegapor React Native apps, because
these apps do not use the supported networking APIs.

Inform the server administrator that your app requires AppTunnel with HTTP/S tunneling, including information
about the enterprise server that it accesses. The administrator requires this information to correctly configure
AppTunnel on the server for your app.

Related topics
AppTunnel with TCP tunneling

AppTunnelwithHTTP/S tunneling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 23

HTTP/S redirects

If a server redirects an HTTP/S request (tunneled or not) to another URL, if the URLmatches an AppTunnel rule,
the request is tunneled only if the wrapped app uses the class DefaultHTTPClient.

If the app uses other APIs that support HTTP/S tunneling, redirected requests are not tunneled.

HelloAppTunnel sample app

A sample app called HelloAppTunnel demonstrates using each of the APIs in Supported APIs.

Related topics
Sample apps, tester app, and Cordova plugin

AppTunnel with TCP tunneling
AppTunnel can tunnel TCP traffic between an app and a server behind the company’s firewall, securing the data-in-
motion. A Standalone Sentry is necessary to support AppTunnel with TCP tunneling. Also, support for AppTunnel
with TCP tunneling requires wrapping the app with the Generation 2 wrapper.

NOTE: UDP tunneling is not supported.

Inform the server administrator that your app requires AppTunnel with TCP tunneling,including information about
the enterprise server that it accesses. The administrator requires this information to correctly configure AppTunnel
with TCP tunneling for your app on theMobileIron server. Once configured, the AppConnect wrapper, the Secure
Apps Manager, and theMobileIron client app, manage TCP tunneling. No additional app development is
necessary.

When to use AppTunnel with HTTP/S tunneling versus TCP tunneling

AppTunnel with TCP tunneling, rather than AppTunnel with HTTP/S tunneling, is required to secure data-in-motion
for:

l Java apps that use C or C++ code to access an enterprise server

l Java apps that use APIs outside of the specific set of HTTP/S APIs that AppTunnel with TCP tunneling
supports.

You can also use AppTunnel with TCP tunneling with Java apps that do use the HTTP/S APIs that AppTunnel with
HTTP/S tunneling supports. However, AppTunnel with TCP tunneling is not necessary for such apps, since
AppTunnel with HTTP/S tunneling is supported.

l Xamarin apps that use APIs other thanModernHTTPClient.

l Hybrid web apps, including PhoneGap apps

HTTP/S redirects

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 24

These apps use AndroidWebView andWebKit technologies to access and display web content. Because
WebView does not use one of the HTTP/S APIs that AppTunnel with HTTP/S tunneling supports,
AppTunnel with TCP tunneling is required.

l React Native apps
Because React Native apps do not use one of the HTTP/S APIs that AppTunnel with HTTP/S tunneling
supports, AppTunnel with TCP tunneling is required.

NOTE: AppTunnel with TCP tunneling does not support Kerberos authentication to the enterprise server.
It supports only pass throughauthentication. With pass throughauthentication, the Standalone
Sentry passes the authentication credentials, suchas the user ID andpassword (basic
authentication) or NTLM, to the enterprise server. Therefore, apps that must use AppTunnel with
TCP tunneling, suchas hybrid apps, cannot use Kerberos authentication to the enterprise server.
However, these apps can use Certificate authenticationwith AppTunnel with TCP tunneling.

The following table shows whether to use AppTunnel with HTTP/S tunneling or TCP tunneling with an Android
secure app depending on the code that is making the network connection. It also shows which generation of the
wrapper you can use.

Code type AppTunnel with HTTP/S tunneling AppTunnel with TCP tunneling

Java code using
supported HTTP/S
APIs

Supported with:
• Generation 1 wrapper
• Generation 2 wrapper

Supported with Generation 2 wrapper

Java code using
unsupported HTTP/S
APIs

Not supported Supported with Generation 2 wrapper

Xamarin apps using
supported HTTP/S
APIs

Supported with Generation 2 wrapper Supported with Generation 2 wrapper

Xamarin apps using
unsupported HTTP/S
APIs

Not supported Supported with Generation 2 wrapper

C or C++ code Not supported Supported with Generation 2 wrapper

Hybrid web app,
including Phonegap

Not supported Supported with Generation 2 wrapper

React Native app Not supported Supported with Generation 2 wrapper

TABLE 2.APPTUNNEL WITHHTTP/SOR TCP TUNNELING USE DEPENDINGONCODE TYPE

SSL between the device and Sentry

When an app uses AppTunnel with TCP tunneling, the traffic between the device and the Standalone Sentry is
secured using an Secure Sockets Layer (SSL) session, as shown in the following diagram.

SSL betweenthedeviceandSentry

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 25

FIGURE 2.APPTUNNEL WITH TCP TUNNELING

Certificate authentication with AppTunnel with TCP tunneling
Secure Apps for Android supports certificate authentication with AppTunnel with TCP tunneling. An app that uses
AppTunnel with TCP tunneling can send a certificate to identify and authenticate the app user to an enterprise
server. Depending on the server implementation, this authentication occurs without interaction from the device
user beyond entering the AppConnect passcode, if one is required. That is, the device user does not need to enter a
user name and password to log into enterprise services. Therefore, this feature provides a higher level of security
and an improved user experience.

This feature is supported only with AppTunnel with TCP tunneling, not with AppTunnel with HTTP/S
tunneling.

This feature is not available with MobileIron Cloud.

Inform theMobileIron server administrator that your app requires certificate authentication with AppTunnel with
TCP tunneling. The administrator requires this information to correctly configure the feature for your app on the
server.

To use this feature, the enterprise server must use client certificate authentication with Secure Sockets Layer
(SSL).

App requirements

No additional app development is necessary.

However, the feature is supported only if the app:

CertificateauthenticationwithAppTunnelwith TCP tunneling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 26

l is wrapped with the Generation 2 wrapper.

l initiates a connection that does not use Secure Socket Layer (SSL) to the enterprise server. For example,
the app can initiate the connection with a HTTP request, but not with an HTTPS request.

IMPORTANT: The connection that this feature makes to the enterprise server is secure; it uses SSL.

Data loss prevention settings
A MobileIron server administrator specifies on the server Admin Portal the data loss prevention settings for
AppConnect apps. Data loss prevention settings specify whether the following features are allowed:

l screen capture

l copy/paste

l camera access

l gallery access

l media player access

l unsecured browser access

l access Web@Work from links in apps that are not AppConnect-enabled

The administrator applies the appropriate settings to a set of devices. Different sets of devices can have different
data loss prevention settings.

The AppConnect app wrapper enforces the data loss prevention settings in the app. That is, depending on the
server configuration, the app wrapper disables or enables the features. No app development is necessary.

Supported file sizes for streamingmedia

The data loss prevention setting for media player access enables or disables the app’s media streaming capability.
If the setting is enabled, the app can streamMP3 audio files, WAV audio files, andMP4 video files to media
players.

However, when streamingmedia files from the secure app to amedia player, the supported file size depends on:

l the device specifications

l the Android version on the device

l the apps running concurrently on the device

IMPORTANT: MobileIron recommends that youperform tests to profile appperformance basedon the
device, Android version, concurrently running apps, andmedia file size.

Data loss prevention settings

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 27

Appwhitelist
Administrators can configure a whitelist of non-AppConnect apps to open from links in AppConnect apps. To
enable the feature, configure a key-value pair in the Secure Apps Manager app configuration.

Configuring the whitelist allows users to choose a non-AppConnect app, such as WebEx, GotoMeeting, to open
from an AppConnect app such as Email+. Device users can choose from compatible AppConnect apps and non-
AppConnect apps configured in the whitelist that are installed on the device.

No app development is necessary.

For information on configuring the whitelist, see "App whitelist" in theMobileIron AppConnect Guide for Core

Handling app-specific configuration from theMobileIron server
Handling app-specific configuration from theMobileIron server requires some application development before
wrapping the app. If you do not use this feature, develop your app to set up its configuration as you typically would.
For example, set up the app to prompt the device user for configuration settings.

You determine the app-specific configuration that your app requires from theMobileIron server. Examples are:

l the address of a server that the app interacts with

l whether particular features of the app are enabled for the user

l user-related information from LDAP, such as the user’s ID and password

l certificates for authenticating the user to the server that the app interacts with

Each configurable item is a key-value pair. Each key and value is a string. A server administrator specifies the key-
value pairs on the server for each app. The administrator applies the appropriate set of key-value pairs to a set of
devices. Sometimes more than one set of key-value pairs exists on the server for an app if different users require
different configurations. For example, the administrator can assign a different server address to users in Europe
than to users in the United States.

NOTE: When the value is a certificate, the value contains the base64-encodedcontents of the
certificate, which is a SCEP or PKCS-12certificate. If the certificate is password encoded, the
server automatically sends another key-value pair. The key’s name is the string <name of key for
certificate>_MI_CERT_PW. The value is the certificate’s password.

Formore information on implementing this feature in your app, see Handling AppConnect app-specific
configuration.

Appwhitelist

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 28

Ignoring the auto-lock time
A MobileIron server administrator can specify that a particular secure app is allowed to ignore the auto-lock time.
Ignoring the auto-lock time is important for apps in which staying on a screen is critical. The auto-lock time
specifies the length of a period of inactivity. After this period of inactivity, the device user is prompted to reenter his
secure apps passcode to continue accessing secure apps. This interruption to the app is sometimes not
acceptable.

For example, in a navigation app, the device user taps the screen only infrequently, but the screenmust continue
displaying. Therefore, the app is designed to ignore the Android screen timeout setting, which turns off the screen
after a period of time.

Such an app also requires that when the auto-lock time expires, the app’s screen continues displaying. The normal
behavior of having the Secure Apps Manager prompt for the secure apps passcode is not compatible with the app’s
functionality.

MobileIron server configuration

TheMobileIron server administrator configures whether an app is allowed to ignore the auto-lock time in the app’s
app-specific configuration on the server’s Admin Portal. The administrator creates a special key-value pair that
turns on the feature. The key is AC_IGNORE_AUTO_LOCK_ALLOWED with the value to true.

NOTE: The AppConnect wrapper around your apphandles this key-value pair. Your appdoes not
receive the key-value pair.

App requirements

If the administrator allows your app to ignore the auto-lock time, a screen continues to display uninterrupted only if
one of the following are true:

l The app has set the KEEP_SCREEN_ON flag to true for the android.view object.

l The android:keep_screen_on element is set to true in the app’s layout XML file.

l The app has set the FLAG_KEEP_SCREEN_ON flag to true in the
android.view.WindowManager.LayoutParams class.

IMPORTANT: Your app’s documentationmust indicate that it requires theMobileIron server
administrator to allow your app to ignore the auto-lock time. Explain to the administrator
the compelling reasons for ignoring the auto-lock time.

Ignoring theauto-lock time

4

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 29

Wrapping technology

AppConnect apps are built usingMobileIron’s AppConnect wrapping technology. This technology secures the app
from leaking data outside the secure container.

You can create a secure app with minimal application development in many cases. Some development is
sometimes necessary to use AppTunnel with HTTP/S tunneling, depending on the APIs the app uses to access
enterprise servers. With some APIs, no development is necessary. Also, with some straightforward additional
development, an app can receive app-specific configuration from theMobileIron server.

IMPORTANT: Wrapping does not support all Android coding capabilities. Before submitting anapp for
wrapping, see Capabilities and limitations of apps you canwrap

AppConnect wrapping does the following:

1. Examines an app’s APK file for operating system calls that impact security.

2. Replaces these calls with secure AppConnect calls.

3. Generates a replacement APK file.

The resulting AppConnect app:

l can run only if theMobileIron server administrator has authorized the app to run on the device.

l ensures that a user logs in with his AppConnect passcode before using the AppConnect app, if the server
administrator requires an AppConnect passcode.

l overlays the app’s icon with a small badge.
Device users can have both AppConnect apps and regular, unsecured apps on their devices. This small
badge indicates to the user that the app is a secure app.
The badge for wrapped apps for use with the Secure Apps Manager is different than the badge for wrapped
apps for use with the Secure Apps Manager for AppStation.

l shares data with only other AppConnect apps.
Exceptions are described in Accessible Apps to preserve the user experience.

l enforces data loss prevention settings, depending on theMobileIron server policy.

l supports receiving app configuration from theMobileIron server.

l supports AppTunnel with HTTP/S tunneling.

l supports AppTunnel with TCP tunneling when using the Generation 2mode of the wrapper

l supports certificate authentication to the enterprise server when using the Generation 2mode of the
wrapper (not available with MobileIron Cloud)

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 30

l encrypts and decrypts data at runtime.

NOTE: File namesare not encrypted.

l remembers the encryption key when running in the background, even when the device user is not logged in
to AppConnect apps.
Email apps, for example, run in the background to synchronize data with the email server. To successfully
access their data, these apps require the encryption key. AppConnect wrapping ensures the key is
available in the app’s memory.

NOTE: Device usersmust still loginwith their AppConnect passcodes to access the app, if the
MobileIron server administrator requires anAppConnect passcode.

l supports scoped storage when using the Generation 2mode of the wrapper.

Wrapping technology

5

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 31

Handling AppConnect app-specific
configuration

IMPORTANT:

l This mechanism for handling AppConnect app-specific configuration was added with AppConnect 8.6.0.0
for Android.

l The previous (legacy) mechanism has been deprecated, but is still supported.

l If your app uses the legacy mechanism, modify your app to use this mechanism as soon as possible.

l If you are adding app-specific configuration handling to your app for the first time, use this mechanism.

For information about AppConnect app-specific configuration, see:

l Overview of configuration handling

l App-specific configuration data flow

l Tasks for configuration handling

l Sample Java app for handling app-specific configuration

l Best practices for handling app-specific configuration

l Testing app-specific configuration handling

Overview of configuration handling
TheMobileIron server administrator can set up app-specific configuration on the server for AppConnect for Android
apps. This configuration is in the form of key-value pairs. Your app can receive these key-value pairs. Specifically,
when you implement configuration handling in your app, your app:

l requests the current configuration when it first runs.
Your app then receives an asynchronous response containing the key-value pairs.

l receives updates to the configuration.

Java developers

MobileIron provides a sample AppConnect app called HelloAppConnect-newAPI that implements configuration
handling. You can use this sample app’s code as a starting point for your own.

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 32

Phonegap developers

You can implement app-specific configuration in a Phonegap app by using aMobileIron-provided Cordova plugin.
This plugin provides the necessary APIs to receive the app-specific configuration from theMobileIron server.
MobileIron provides the following:

l AppConnectCordovaConfigPlugin-w.x.y.z.zip, the Cordova plugin. (w.x.y.z corresponds to the
AppConnect version for Android)
See README.md in the ZIP file for information on using the plugin.

l A sample Phonegap app that uses the plugin, available as a starting point for your own app.

React Native developers

You can implement app-specific configuration in a React Native app by usingMobileIron-provided files that make
up a React Native package called ConfigServicePackage. The files provide the necessary APIs to receive the app-
specific configuration from theMobileIron server. MobileIron provides a sample React Native app called
HelloReact that includes:

l all files relating to getting app-specific configuration

l a README.txt with instructions for using the files

l sample code for using the files

Related topics

l Sample Java app for handling app-specific configuration.

l Sample apps, tester app, and Cordova plugin

l HelloReact Demo sample app overview

App-specific configuration data flow
TheMobileIron server passes the app-specific configuration to theMobileIron client app (Mobile@Work when
usingMobileIron Core or Connected Cloud, andMobileIron Gowhen usingMobileIron Cloud). TheMobileIron client
app in turn passes the configuration to the AppConnect wrapper around your app, which passes it to your app.

The following sequence diagram shows the flow of data between theMobileIron server, theMobileIron client app,
the Secure Apps Manager, the AppConnect wrapper around your app, and your app. It shows the sequence when:

l Your app launches

l TheMobileIron server administrator has updated the app-specific configuration on the server.

Before the sequence begins, when the app was installed, the AppConnect wrapper received the app-specific
configuration from theMobileIron server, passed to the wrapper from theMobileIron client and the Secure Apps
Manager.

App-specific configurationdata flow

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 33

FIGURE 3.APP-SPECIFICCONFIGURATIONDATA FLOW

Tasks for configuration handling
The code you add to your app to receive app-specific configuration is simple because the AppConnect wrapper
around your app and theMobileIron client domost of the work. Your focus is in applying the configuration to your
app according to your requirements.

To handle app-specific configuration in your app, do the following high-level tasks:

Tasks for configurationhandling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 34

l Check at runtime if your app is wrapped.
This check is typically necessary if you are a third-party app developer using the same source code to
create a Google Play app and an in-house AppConnect app. Only wrapped AppConnect apps can receive
app-specific configuration from aMobileIron server.
If you are developing an app that will be distributed only as an in-house app, not from Google Play, you will
not use this check.

l Create a callback method to receive configuration updates
You provide a callback method that receives app-specific configuration updates.
IMPORTANT: The callback thread runs on themain thread.

l Request the configuration when your app starts.
When your app starts, request the app-specific configuration, which your app will receive asynchronously
in the callback method you provide.

l Add callback information to AndroidManifest.xml
You provide a callback method that receives app-specific configuration updates. Add information about
your callback method to your app’s AndroidManifest.xml file. You add this information as a <meta-data>
element in your <application> element.

l Specify app configuration and policies in .properties files.
You can include .properties files in your app that list your app’s key-value pairs and data loss prevention
(DLP) policies. When theMobileIron server administrator uploads your app to the server, these files cause
the server to automatically configure the key-value pairs and DLP policies.

If your app uses the legacy method for app-specific configuration handling, a summary of what to do to use the new
method is in Changing from the legacy configuration handling to the new mechanism.

Check at runtime if your app is wrapped

If you are a third-party developer, you sometimes develop an app in which the same source code is used in these
ways:

l as a wrapped app distributed from theMobileIron server’s App Catalog
This secure AppConnect app is for enterprise device users.

l as an unwrapped app distributed from Google Play
This unsecured app is for general distribution.

An app that serves both thesemarkets typically behaves differently depending on whether it is a wrapped, secure
AppConnect app.

For example:

Checkat runtime if your app is wrapped

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 35

l If a wrapped app expects key-value pairs from theMobileIron server, but does not receive the expected
pairs or valid values, it should take appropriate actions.
As a best practice, if your app expects a login ID from the server, but does not receive one, do not allow the
device user to enter the ID manually. See Best practices for handling app-specific configuration.

l If an app is not wrapped, it cannot get its configuration from theMobileIron server. It gets configurable
information another way, such as prompting the device user to enter it.
For example, the unwrapped app prompts the user to enter a login ID.

To determine at runtime whether the app is running as a wrapped app, check this Android system property:

"com.mobileiron.wrapped"

For example, use the following expression:
Boolean.parseBoolean(System.getProperty("com.mobileiron.wrapped", "false"))

The expression returns true if the app is wrapped. Otherwise, it returns false.

Create a callbackmethod to receive configuration updates

Add a callback method to your app that receives the app-specific configuration when:

l the app requests the app-specific configuration after the app launches.

l the administrator has made updates to the app-specific configuration on theMobileIron server.

IMPORTANT: The callbackmethod runs on the app'smain thread.

Implementing the callback method

Create a callback method with the name of your choice in a class of your choice.

Example

public class AppConfigCallback {

public boolean onConfigReceived(Context context, Bundle config) {
// Extract the key-value pairs from the Bundle object. For example:
Map<String, String> map = new HashMap<String, String>();
for (String key:config.keySet()) {

map.put(key, config.getString(key));
}

// Process the key-value pairs according to your app's requirements.
// return true if app successfully processes the key-value pairs; otherwise false.

}

}

Createacallbackmethod to receive configurationupdates

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 36

Parameters of callback method

l Context
Receives the application context.

l Bundle
Bundle object that receives the app-specific configuration key-value pairs
If no key-value pairs are configured on theMobileIron server, calling the Bundle object's keyset() method
returns an empty set.

Return value of callback method

boolean

Return true if the app successfully processed the configuration's key-value pairs.

Return false if your app failed to successfully process the key-value pairs. Some reasons for returning false are:

l A value is not valid for its key.
For example, if the key is “emailAddress”, but the value does not include the@ character, return false.

l A value is empty.
Typically, if a key is included in theMobileIron server configuration for your app, your app expects a value.
If theMobileIron server administrator did not enter a value, return false.

l Your app encounters a system error while processing a key-value pair.
Your app determines whether a system error impacts key-value processing to warrant returning false.

When the callback method returns false, how your app continues to operate depends on your app’s design and
requirements.

Request the configuration when your app starts

When your app starts, request the app-specific configuration. To request it, create an Intent object with the action
"com.mobileiron.appconnect.action.REQUEST_APP_CONFIG"., and pass it to sendBroadcast().

For example, in HelloAppConnect:

public class AppConfigCallback {

private static final String ACTION_REQUEST_APP_CONFIG =
"com.mobileiron.appconnect.action.REQUEST_APP_CONFIG";

public static void requestConfig(Context context) {
Intent intent = new Intent(ACTION_REQUEST_APP_CONFIG);
context.sendBroadcast(intent);

}
}

This code results in an asynchronous call to your callback method that handles app-specific configuration.

Request the configurationwhenyour appstarts

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 37

Although the app can request the configuration at any time, typically the app requests it only once, when the app
launches. After that, whenever theMobileIron server administrator updates the configuration on the server, your
callback method is automatically called.

Add callback information to AndroidManifest.xml

Add a <meta-data> element to your app’s AndroidManifest.xml file as a child of your <application> element. The
<meta-data> element contains name-value pairs that specify your callback class andmethod for handling app-
specific configuration updates from theMobileIron server.

The <meta-data> element looks like this:

<application>
<meta-data

android:name="com.mobileiron.appconnect.config.callback_class"
android:value="<fully-qualified-class-name>" />

<meta-data
android:name="com.mobileiron.appconnect.config.callback_method"
android:value="<callback method>" />

</application>

For example, in HelloAppConnect, the lines in AndroidManifest.xml are:

<application>
<meta-data

android:name="com.mobileiron.appconnect.config.callback_class"
android:value="com.mobileiron.helloappconnect.AppConfigCallback" />

<meta-data
android:name="com.mobileiron.appconnect.config.callback_method"
android:value="onConfigReceived" />

</application>

Specify app configuration and policies in .properties files

You can include the following .properties files with your app:

l appconnectconfig.properties
This file specifies your app’s configuration keys and their default values, if any. Providing this .properties
file causes theMobileIron server to automatically configure the keys and their default values on the server.

l appconnectpolicy.properties
This file specifies the default data loss prevention policy for screen capture for the app. Specifically, it
specifies whether screen capture is allowed in the app. The policy is enforced by the AppConnect
wrapping technology.

If your app contains these .properties files, theMobileIron server automatically configures the key-value pairs and
the screen capture policy that you specified. This automatic configuration occurs when theMobileIron server
administrator uploads your app to the server’s App Catalog.

Addcallback information toAndroidManifest.xml

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 38

The administrator can then change the default values on the server as necessary for that enterprise.

File location of the .properties files

Put the .properties files in this directory in your app:

<application root directory>/res/raw

Example of the appconnectconfig.properties file

An example of an appconnectconfig.properties file is available in HelloAppConnect.

It contains the following:
This sample appconnectconfig.properties file uses rules found at

http://en.wikipedia.org/wiki/.properties.

server=www.myCompanyApplicationServer.com

port=8080

In the following example, the resulting property value contains only single spaces.

It contains no other whitespace.

Therefore, the value is: "I'm also demonstrating a multi-line property!"

name\ with\ spaces:I'm also demonstrating \

a multi-line property!

Use an empty value for keys that have no default value.

nodefault=

! You can also start comments with exclamation marks.

You can use these MobileIron Core variables for values:

$USERID$, $EMAIL$, $PASSWORD$,

$USER_CUSTOM1$, $USER_CUSTOM2$, $USER_CUSTOM3$, $USER_CUSTOM4$

You can use these MobileIron Cloud variables for values:

${userUID}, ${userEmailAddress}

${USER_CUSTOM1}, ${USER_CUSTOM2}, ${USER_CUSTOM3}, ${USER_CUSTOM4}

userid=$USERID$

email=$EMAIL$

user_custom1=$USER_CUSTOM1$

combined=$USERID$::$EMAIL$

File locationof the .properties files

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 39

Format of the appconnectconfig.properties file

Use the rules for well-formed Java property files given in the Java Properties class. For example, use the
characters = or : or a space to separate the key from the value. Use \ before each of these characters if the
character is part of the key.

The values that you specify are the default values for the key. If the value has no default, leave the value empty.

A value can be any string. The value can also use one of the following server variables:

MobileIron
Core variable

MobileIron Cloud
variable

Description

$USERID$ ${userUID} The device user’s enterprise user ID, typically an LDAP ID.

$PASSWORD$ Not available The device user’s enterprise user password, typically an
LDAP password.

$EMAIL$ ${userEmailAddress} The device user’s enterprise email address.

$USER_CUSTOM1$

$USER_CUSTOM2$

$USER_CUSTOM3$

$USER_CUSTOM4$

${USER_CUSTOM1}

${USER_CUSTOM2}

${USER_CUSTOM3}

${USER_CUSTOM4}

Custom variables that theMobileIron server administrator sets
up. Only use these variables if you are developing an app for a
specific MobileIron customer. Contact the server administrator
to determine the values of these variables.

TABLE 3. SERVER VARIABLES IN DEFAULT VALUESOF KEYS

You can also specify values that are combinations of text and server variables. For example, usingMobileIron Core
variables:
• $USERID$::$EMAIL$
• $USERID$@somedomain.com

Use server variables for default values in your appconnectconfig.properties only if you know what kind of server
(MobileIron Core or MobileIron Cloud) your app will be used with. If you don’t know, leave the value empty. The
server administrator will fill in the value.

Example of the appconnectpolicy.properties file

An example of an appconnectpolicy.properties file is available in HelloAppConnect.

It contains the following:
A sample appconnectpolicy.properties file

screencapture=disable

Format of the appconnectpolicy.properties file

To disable screen capture in the app, include the following line in appconnectpolicy.properties:
screencapture=disable

Formatof theappconnectconfig.properties file

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 40

To allow screen capture:
screencapture=allow

Changing from the legacy configuration handling to the newmechanism

If you used the legacy mechanism for app-specific configuration handling, change your app to use the new
mechanism.

To change your app to use the new mechanism, do the following:

l In the legacy method, you created a class that extends IntentService(), and implemented onHandleConfig
() to handle the received Intent object with the action "com.mobileiron.HANDLE_CONFIG" . Replace this
class with a class of your choice with a callback method with a name of your choice. Move the code from
your legacy onHandleConfig() to your new callback method. See Create a callback method to receive
configuration updates.

l In the legacy method, when your app starts, it requests the app-specific configuration by calling
startService() with an Intent object with the action "com.mobileiron.REQUEST_CONFIG". Replace this
code with a call to sendBroadcast() with an Intent object with the action
"com.mobileiron.appconnect.action.REQUEST_APP_CONFIG". See Request the configuration when
your app starts.

l In the legacy method, you added information to the app's AndroidManifest.xml file to add a service for
handling configuration intents. Remove the <service> element. Add the information about your callback
method. See Add callback information to AndroidManifest.xml.

Sample Java app for handling app-specific configuration
MobileIron provides a sample Java app, HelloAppConnect-newAPI, which handles app-specific configuration. You
can use the code from this app as a starting point for your app’s configuration handling.

HelloAppConnect-newAPI displays this screen:

Changing fromthe legacyconfigurationhandling to the newmechanism

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 41

FIGURE 4.HELLOAPPCONNECT-NEWAPI SCREEN

The HelloAppConnect-newAPI app:

l Calls sendBroadcast() when you tapRefresh, passing it an Intent object with the action
"com.mobileiron.appconnect.action.REQUEST_APP_CONFIG".

l Provides a callback method onConfigReceived().

The callback method displays the received key-value pairs.

l Displays whether the app is wrapped, based on the value of the system property
"com.mobileiron.wrapped"

Related topics
Sample apps, tester app, and Cordova plugin

Best practices for handling app-specific configuration
The following are best practices when handling app-specific configuration in your app:

l Provide documentation about your app to theMobileIron server administrator

l Use only a login ID from theMobileIron server if one is expected

Provide documentation about your app to theMobileIron server administrator

Document each key and its valid values. Document the default value, if applicable, and document whether the
value can be empty. Provide this documentation regardless of whether your app includes an
appconnectconfig.properties file.

Bestpractices for handlingapp-specific configuration

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 42

Use only a login ID from theMobileIron server if one is expected

If a wrapped app expects a key-value pair for the device user’s login ID, it should not prompt the user to enter the
login ID manually. Using only a login ID from theMobileIron server ensures that a user can use the app only if the
enterprise has authenticated the user. If the app does not receive an expected valid user ID, display an error
message to the device user.

Testing app-specific configuration handling
To test app-specific configuration handling, useMobileIron Core. If you are an in-house app developer and your
enterprise uses MobileIron Core or Connected Cloud, you can use that Core. Otherwise, request aMobileIron
Connected Cloud instance for your testing. Connected Cloud is the cloud offering of the on-premise server
MobileIron Core. You then use a web portal called the Admin Portal to make configuration changes necessary for
testing your app. All AppConnect apps require Mobile@Work on the device to interact with Core.

IMPORTANT: Youmust wrap your appbefore testing it withMobileIron Core.

NOTE: Apps that you test withMobileIronConnectedCloudandMobile@Work will also work with
MobileIronCloudand supported versions ofMobileIronGo. However, some AppConnect
features are not supportedbyMobileIronCloudandMobileIronGo.

The steps for testing app-specific configuration handling in your app are:

1. Requesting aMobileIron Core test instance

2. DownloadingMobile@Work to the device

3. Logging in to the Admin Portal

4. Creating a label for testing your app

5. Enabling AppConnect onMobileIron Core

6. Configuring the AppConnect global policy

7. Uploading the Secure Apps Manager to MobileIron Core

8. Uploading your AppConnect app toMobileIron Core

9. Configuring app-specific settings in MobileIron Core

10. Registering the test device toMobileIron Core

11. Pushing Core configuration changes to the device

Requesting aMobileIron Core test instance

To request aMobileIron Core test instance if one is not available to you, go to Request and Setup aMobileIron Test
Instance: MobileIron Core / Cloud / Sentry.

Useonlya login ID fromtheMobileIron server if one is expected

https://help.mobileiron.com/s/article-detail-page?Id=kA134000000QxkGCAS
https://help.mobileiron.com/s/article-detail-page?Id=kA134000000QxkGCAS

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 43

DownloadingMobile@Work to the device

DownloadMobile@Work to the device from Google Play.

Logging in to the Admin Portal

If you requested aMobileIron Connected Cloud instance, MobileIron provides you with the following information
about your test MobileIron Core:

l the URL for accessing the Core’s Admin Portal
The Admin Portal is a web portal for configuring Core. The URL has the format:
https://m.mobileiron.net/<app partner name>

l a user ID and password for accessing the Admin Portal
You also use this user ID to register a device with Core.

l a port number for Core, used when you register a device with Core.
The port number is typically four or five digits.

If you are using your enterprise's MobileIron Core or Connected Cloud, get the URL, user ID and password, and
port number (if using your enterprise's Connected Cloud) from your Core administrators. They might give you a
separate user ID and password to use to register a device.

Procedure

1. Open a browser to the URL for accessing the Core’s Admin Portal.
Use the URL of your test Core, appended with /mifs.
Connected Cloud example:
https://m.mobileiron.net/myCompany/mifs
On-premise Core example:
https://mycore.mycompany.com/mifs

2. Enter your Username and Password.

3. Click Sign In.
You are now in the Admin Portal.
When using a test instance from MobileIron, change your password when prompted.

Creating a label for testing your app

MobileIron Core uses labels to associate policies and apps with devices. For testing your app, create a new label
so that your testing impacts only your test device.

DownloadingMobile@Work to thedevice

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 44

Procedure

1. In the Admin Portal, go toDevices & Users > Labels.

2. Click Add Label.

3. Enter a name for the label.
For example: AppConnect Test

4. Enter a description.
For example: Use only for devices testing new AppConnect apps.

5. SelectManual for the Type.

6. Click Save.

Enabling AppConnect onMobileIron Core

To test your AppConnect app, ensure that AppConnect is enabled onMobileIron Core.

Procedure

1. In the Admin Portal, go toSettings.

2. Select Additional Products > Licensed Products.

3. Select AppConnect For Third-party And In-house Apps if it is not already selected.

4. Click Save.

Configuring the AppConnect global policy

Using AppConnect for Android requires that you configure an AppConnect global policy.

Procedure

1. In the Admin Portal, select Policies & Configs > Policies.

2. Select Add New > AppConnect.

3. Set theAppConnect field toEnabled.

4. Complete the form.
Most fields default to suitable values.

5. In theSecurity Policies section, select Authorize for the field Apps without an AppConnect
container policy.

6. Click Save.

7. Select the policy.

8. SelectMore Actions > Apply To Label.

EnablingAppConnectonMobileIronCore

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 45

9. Select the label to which you want to apply this policy.

10. Click Apply.

Uploading the Secure AppsManager to MobileIron Core

The Secure Apps Manager is required for running AppConnect apps. You upload the Secure Apps Manager to
MobileIron Core as an in-house app. After uploading the Secure Apps Manager, you distribute it to your test device
by applying the app to the label for your test device.

Procedure

1. Download the Secure Apps Manager app to your computer from help.mobileiron.com inSoftware
> Downloads.

2. In theMobileIron Core Admin Portal, go toApps > App Catalog > Add+ > In-House.

3. Click Browse and browse to the Secure Apps Manager.

4. Click Next.

5. Optionally make selections, clickingNext, and then Finish.

6. Select the Secure Apps Manager entry on theApps > Apps Catalog screen.

7. Click Actions > Apply to Labels.

8. Select the appropriate label and click Apply.

Uploading your AppConnect app toMobileIron Core

You upload your Android AppConnect app toMobileIron Core as an in-house app. After uploading the app, you
distribute the app to your test device by applying the app to the label for your test device.

IMPORTANT: Wrap your appbefore uploading it to MobileIronCore.

Procedure

1. In theMobileIron Core Admin Portal, go toApps > App Catalog > Add+ > In-House.

2. Click Browse and browse to the AppConnect app.

3. Click Next.

4. Optionally make selections, clickingNext, and then Finish.

5. Select the app entry on theApps > Apps Catalog screen.

6. Click Actions > Apply to Labels.

7. Select the appropriate label and click Apply.

Configuring app-specific settings in MobileIron Core

Using an AppConnect app configuration, you can configure settings that are specific to your AppConnect app. The
configuration uses key-value pairs.

Uploading the SecureAppsManager toMobileIronCore

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 46

MobileIron Core automatically creates an AppConnect app configuration for the Android AppConnect app when you
upload the wrapped app to the App Catalog. Core keeps in sync the labels that you apply to the app and the labels
that you apply to the automatically-created AppConnect app configuration.

Procedure

1. In the Admin Portal, select Policy & Configs > Configurations.

2. Select the automatically-created AppConnect app configuration for the app.

3. Click Edit.

4. To add a key-value pair:

a. Click Add+.

b. Enter the key name.

c. Enter the key value.

5. Click Save.

Registering the test device toMobileIron Core

To run your AppConnect app, youmust first launchMobile@Work and follow its instructions to register with
MobileIron Core. This procedure will install the Secure Apps Manager and your app on the device.

After you complete the registration procedure, you can run your AppConnect app and test its handling of the app-
specific configuration you configured onMobileIron Core.

Pushing Core configuration changes to the device

If you change configuration onMobileIron Core, such as your app-specific key-value pairs, you canmake Core
send the changes to the device immediately.

Procedure

1. OpenMobile@Work.

2. Navigate to theDevice Status screen if not already there.

3. Tap the refresh icon in the upper right-hand corner.

4. This action causes theMobile@Work to check in with Core, which causes Core to deliver any
configuration changes to the device.

Registering the testdevice toMobileIron Core

6

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 47

Sample apps, tester app, and Cordova plugin

MobileIron provides several sample apps that demonstrate the correct way to implement various capabilities in
apps to be wrapped. MobileIron also provides an app for testing app-specific configuration handling without a
MobileIron server or client. For Phonegap apps, MobileIron provides a Cordova plugin for receiving app-specific
configuration.

l Summary of sample apps, tester app, and Cordova plugin

l Location of sample apps, tester app, and Cordova plugin

l Android API Usage Demo sample app overview

l HelloReact Demo sample app overview

l HelloFlutter sample app overview

Summary of sample apps, tester app, and Cordova plugin
MobileIron provides the following sample apps, tester app, and Cordova plugin:

Sample app name Description

HelloAppConnect-newAPI A Java app that handles app-specific configuration. You can use the code from
this app as a starting point for your app’s configuration handling.

See Sample Java app for handling app-specific configuration.

HelloAppConnect-oldAPI A Java app that handles app-specific configuration using the legacy method for
app-specific configuration handling. However, this mechanism is deprecated..

See Sample Java app for legacy app-specific configuration handling.

HelloAppTunnel Demonstrates how an app uses the API’s that AppTunnel with HTTP/S
tunneling supports.

See AppTunnel with HTTP/S tunneling.

ApiUsageDemo Demonstrates the supported way for a wrapped app to use various Android
APIs. MobileIron has verified that when you wrap apps that use these APIs as
demonstrated, the behavior of the wrapped app is functionally the same as the
behavior of the unwrapped app.

Also demonstrates the behavior of attempts to share content depending on the
value of theMI_AC_SHARED_CONTENT key on the Secure Apps Manager.

See Android API Usage Demo sample app overview.

TABLE 4. SAMPLE APP, TESTER APP,ANDCORDOVAPLUGINDESCRIPTIONS

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 48

Sample app name Description

HelloReact Demonstrates the supported way for a wrapped app built with the React Native
development framework to use various React Nativemodules and components.
The app includes how to use theMobileIron-provided files to get app-
specification configurations from theMobileIron server.

MobileIron has verified that when you wrap React Native apps that use these
modules and components as demonstrated, the behavior of the wrapped app is
functionally the same as the behavior of the unwrapped app.

See HelloReact Demo sample app overview.

HelloCordovaAppConnect
and the Cordova plugin

HelloCordovaAppConnect is a Phonegap app that uses theMobileIron-provided
Cordova plugin. The app uses the plugin’s APIs to get app-specific
configuration from theMobileIron server. You can use this app as a starting
point for your own app.

See the README.md in the plugin’s ZIP file for information on using the plugin.

AppConnectTester If you use the legacy mechanism for handling app-specific configuration, use
the AppConnectTester app for testing your app’s handling of configuration
changes without using theMobileIron server or theMobileIron client app.

See App for testing legacy configuration handling.

HelloFlutter The HelloFlutter sample app demonstrates the supported way for a wrapped
app to use various Flutter plugins and components. MobileIron has verified that
when you wrap apps that use these APIs as demonstrated, the behavior of the
wrapped app is functionally the same as the behavior of the unwrapped app.

See HelloFlutter sample app overview.

TABLE 4. SAMPLE APP, TESTER APP,ANDCORDOVAPLUGINDESCRIPTIONS (CONT.)

IMPORTANT: Do not submit the sample apps toMobileIron for wrapping. If you use these apps as a
starting part for your ownapp, be sure to change the package name to something that
does not start with com.mobileiron before submitting.

Location of sample apps, tester app, and Cordova plugin
The sample apps, tester app, and Cordova plugin are located at

l https://support.mobileiron.com/support/CDL.html

l https://help.mobileiron.com inSoftware > Downloads

Look for the headingAppConnect Sample Apps for Android. Two ZIP files are provided:

l AndroidAppConnectSampleAndTester-w.x.y.z.n-src.zip, where w.x.y.z.n corresponds to the AppConnect
version and build number
This ZIP file contains the source code, resources, manifest, and Eclipse project files for:

Locationof sampleapps, tester app,andCordovaplugin

https://support.mobileiron.com/support/CDL.html
https://help.mobileiron.com/

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 49

o HelloAppConnect-newAPI

o HelloAppConnect-oldAPI

o HelloAppTunnel

o AppConnectTester

o HelloCordovaAppConnect

o ApiUsageDemo

o HelloReact

l AndroidAppConnectSampleAndTesterAPKs-w.x.y.z.zip, where w.x.y.z corresponds to the AppConnect
version for Android
This ZIP file contains:

o HelloAppConnect-newAPI (APKs for both the app and the wrapped app)

o HelloAppConnect-oldAPI (APKs for both the app and the wrapped app)

o HelloAppTunnel (APKs for both the app and the wrapped app)

o ApiUsageDemo (APKs for both the app and the wrapped app)

o HelloReact (APKs for both the React Native app and the wrapped React Native app)

o HelloCordovaAppConnect (APKs for both the Phonegap app and the wrapped Phonegap app)

o AppConnectCordovaConfigPlugin, a ZIP file containing the Cordova plugin for receiving app-specific
configuration

o AppConnectTester APK

The provided wrapped apps are for use with Secure Apps Manager. They will not work with Secure Apps Manager
for AppStation.

Android API Usage Demo sample app overview
A sample app called ApiUsageDemo demonstrates the supported way for a wrapped app to use various Android
APIs. MobileIron has verified that when you wrap apps that use these APIs as demonstrated, the behavior of the
wrapped app is functionally the same as the behavior of the unwrapped app.

Related topics

l Location of sample apps, tester app, and Cordova plugin

l MediaPlayer andMediaMetaDataRetriever Internet permission requirement

l Image selection from outside the AppConnect container

AndroidAPI UsageDemo sampleappoverview

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 50

Demonstrated APIs

The sample app ApiUsageDemo includes the following demonstrations:

l Audio Recorder Demo

l Capture Image Demo

l Documents Demo

l Image Decoder Demo

l MediaMeta Data Retriever Demo

l Media Player Demo

l Pick Image Demo

l Share Content Demo

l Video Recorder Demo

IMPORTANT: Data loss protection policies on theMobileIron server determine whether wrappedapps
have access to the device’s cameraandgallery. Be sure to allowaccess to the
appropriate capabilitywhen testing the ApiUsageDemo appor your ownwrappedapp’s
capabilities.

Audio Recorder Demo

The code uses MediaRecorder APIs andMediaPlayer APIs to record and playback audiomedia content.

Recording illustrates using theMediaRecorder setOutputFile() method with:

l a file (absolute path)

l a file descriptor from aRandomAccessFile

Wrapping theMediaPlayer APIs requires the android Internet permission, described inMediaPlayer and
MediaMetaDataRetriever Internet permission requirement.

Java files

l AudioRecorderDemoActivity.java

l BaseRecorderDemoActivity.java

Capture Image Demo

This code uses FileProvider APIs to extract a file URI and pass it to the Camera app. The Camera app writes the
captured image to that file. The demo app then uses the ImageView setImageURI API to display the photo.

Allow the Camera DLP on theMobileIron server so that the app can access the camera to take a photo.

DemonstratedAPIs

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 51

Java files

l ImageCaptureDemoActivity.java

Documents Demo

This code demonstrates creating documents and opening folders and documents either inside or outside the
AppConnect container. The code uses the intents ACTION_OPEN_DOCUMENT, ACTION_OPEN_DOCUMENT_TREE, and

ACTION_CREATE_DOCUMENT. The code illustrates handling text, image, and videos.

Note The Following:

l Accessing files onaUSB OTG drive requires a key-value pair on the AppConnect appconfiguration
for Secure AppsManager. See USB OTG support.

l Allow the Gallery DLP on theMobileIron server to select images from the device’s gallery.

l To select an image from outside the AppConnect container, suchas the device’s gallery, the app
must be granted the permission Manifest.permission.READ_EXTERNAL_STORAGE. This permission is
necessary because of how the wrapper implements selecting an image from outside the
AppConnect container. For details, see Image selection from outside the AppConnect container.

l OnlyGeneration 2wrappedapps support ACTION_CREATE_DOCUMENT on internal storage or
external storage suchas an SD drive.

Java files

l Document/AbstractDocumentDemoActivity.java

l Document/DocumentsDemoActivity.java

l Document/DocumentTreeDemoActivity.java

l Document/ImageDocumentDemoActivity.java

l Document/TextDocumentDemoActivity.java

l Document/VideoDocumentDemoActivity.java

Image Decoder Demo

APIUsageDemo displays the Image Decoder demo option only when running on Android 9.0. The code uses
ImageDecoder APIs to read an image and display its bitmap. The images are included in the ApiUsageDemo app.

The demo illustrates using the ImageDecoder methods createSource(File file) and createSource
(ContentResolver cr, Uri uri) to get the image from either a file or a URL. The demo then uses the
ImageDecoder method decodeBitmap(ImageDecoder.source src) to get the bitmap.

Source files

l ImageDecoderDemoActivity.java

l ExtendedImageCapture.kt

Documents Demo

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 52

Media Meta Data Retriever Demo

The code uses MediaMetadataRetriever APIs to extract the duration time of video content. Allow the Camera DLP
on theMobileIron server so that the app can access the camera to record the video.

Extracting the duration time illustrates using theMediaMetadataRetriever setDataSource() method with these data
sources:

l a file (absolute path)

l a URI

l a file descriptor from a ParcelFileDescriptor

Wrapping theMediaMetadataRetriever APIs requires the android Internet permission, described inMediaPlayer
andMediaMetaDataRetriever Internet permission requirement..

Java files

l MediaMetaDataRetrieverDemoActivity.java

Media Player Demo

The code uses MediaPlayer APIs to playback videomedia content. Allow the Camera DLP on theMobileIron
server so that the app can access the camera to record the video.

Playback illustrates using theMediaPlayer setDataSource() method to play back from these data sources:

l a file (absolute path)

l a URI

l a file descriptor from a ParcelFileDescriptor

l a file descriptor from aRandomAccessFile

Wrapping theMediaPlayer APIs requires the android Internet permission, described inMediaPlayer and
MediaMetaDataRetriever Internet permission requirement.

Java files

l MediaPlayerDemoActivity.java

Pick Image Demo

This code uses MediaStore APIs and theGlide library to select an image on the device from either inside or outside
the AppConnect container. Allow theGallery DLP on theMobileIron server to pick an image from the device’s
gallery.

MediaMetaDataRetriever Demo

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 53

To select an image from outside the AppConnect container, such as the device’s gallery, the appmust be granted
the permission Manifest.permission.READ_EXTERNAL_STORAGE. This permission is necessary because of how
the wrapper implements selecting an image from outside the AppConnect container. For details, see Image
selection from outside the AppConnect container.

Java files

l PickImageDemoActivity.java

Share Content Demo

This code demonstrates sharing content such as text, images, and video, with other apps. The app can share
content with non-AppConnect apps only if the key MI_AC_SHARE_CONTENT on the Secure Apps Manager’s
AppConnect app configuration onMobileIron Core has the value true.

Java files

l ShareContentDemoActivity.java

Related topics

“Sharing content from AppConnect for Android apps to non-AppConnect apps” in theMobileIron AppConnect Guide
for Core.

Video Recorder Demo

The code uses MediaRecorder APIs andMediaPlayer APIs to record and playback videomedia content.

Recording illustrates using theMediaRecorder setOutputFile() method with:

l a file (absolute path)

l a file descriptor from aRandomAccessFile

Wrapping theMediaPlayer APIs requires the android Internet permission, described inMediaPlayer and
MediaMetaDataRetriever Internet permission requirement.

Java files

l VideoRecorderDemoActivity.java

l BaseRecorderDemoActivity.java

HelloReact Demo sample app overview
A sample app called HelloReact demonstrates the supported way for a wrapped app built with the React Native
development framework to use various React Nativemodules and components. MobileIron has verified that when

ShareContentDemo

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 54

you wrap React Native apps that use thesemodules and components as demonstrated, the behavior of the
wrapped app is functionally the same as the behavior of the unwrapped app.

Related topics

l Location of sample apps, tester app, and Cordova plugin

l MediaPlayer andMediaMetaDataRetriever Internet permission requirement

l Image selection from outside the AppConnect container

Demonstrated functionality

The sample app HelloReact includes the following demonstrations:

l AppConfig Demo

l Network API Demo

l Capture Image Demo

l Pick Image Demo

l Video View Demo

l Firebase CloudMessaging Demo

AppConfig Demo

The AppConfig demo shows how to request, receive, and process app-specific configurations from theMobileIron
server. Within HelloReact, MobileIron provides files that provide the APIs to get the app-specific configurations
from theMobileIron server.

NOTE: AnAppConfig demo that demonstrates the legacyapp-specific configuration handling is
available only in releases prior to AppConnect 8.6.0.0 for Android.

See the README.txt for HelloReact for details on:

l Adding necessary files to your app.

l Adding ConfigServicePackage to the React Native packages that your app uses.

l Adding necessary permissions for using the package to your AndroidManifest.xml file.

l Using the ConfigService API to get and process the app-specific configurations.

Source files

l HelloReact/README.txt

l HelloReact/src/AppConfigScreen.js

l HelloReact/android/app/src/main/java/com/helloreact/MainApplication.java

Demonstrated functionality

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 55

Related topics

l Handling app-specific configuration from theMobileIron server

l Overview of configuration handling

l App for testing legacy configuration handling

l Best practices for handling app-specific configuration

Network API Demo

The Network API demo shows how to use network APIs available in the React Native framework.

You provide a URL in a text field and then choose whether the demo:

l loads the URL into aWebView.

l uses the Fetch API to do aGET request.
(https://facebook.github.io/react-native/docs/network.html#using-fetch)

Source files

l HelloReact/src/NetworkScreen.js

Capture Image Demo

The Capture Image demo shows how to use the React Native cameramodule at:

https://github.com/lwansbrough/react-native-camera

The demo shows how to use the camera’s view, capture a photo, and receive the result with image properties. The
cameramodule is responsible for storing the resulting image to the specified place.

Allow the Camera DLP on theMobileIron server so that the app can access the camera to take a photo. The image
is available only to other wrapped apps.

Source files

l HelloReact/src/CaptureImageScreen.js

Pick Image Demo

The Pick Image demo shows how to use the image picker component at:

https://github.com/react-community/react-native-image-picker

The demo shows how to request a picker and process the response to display the chosen image.

NetworkAPI Demo

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 56

Allow theGallery DLP on theMobileIron server to pick images from the device's gallery. Allow the Camera DLP to
take pictures.

Source files

l HelloReact/src/PickImageScreen.js

Video View Demo

The Video View demo shows how to use the video view component at:

https://github.com/react-native-community/react-native-video

The demo shows how to pick a video file from gallery storage, or record a video, and then play the video in the
Video View.

Allow theGallery DLP on theMobileIron server to pick video from the device's gallery. Allow the Camera DLP to
record videos.

Source files

l HelloReact/src/VideoViewScreen.js

Firebase Cloud Messaging Demo

The Firebase CloudMessaging (FCM) demo shows how to use the React Nativemodule for FCM and local
notifications at:

https://github.com/evollu/react-native-fcm

The demo shows how to verify required permissions, subscribe to topics, receive the FCM token, and catch the
notifications.

Source files

l HelloReact/src/FCMscreen.js

HelloFlutter sample app overview
Flutter is a Google UI toolkit for building natively compiled applications for mobile, web, and desktop from a single
codebase.

The HelloFlutter sample app demonstrates the supported way for a wrapped app to use various Flutter plugins and
components. MobileIron has verified that when you wrap apps that use these APIs as demonstrated, the behavior
of the wrapped app is functionally the same as the behavior of the unwrapped app.

VideoViewDemo

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 57

Related topics

l Location of sample apps, tester app, and Cordova plugin

Demonstrated APIs

The sample app HelloFlutter includes the following demonstrations:

l AppConfig Demo

AppConfig Demo

The demo shows how to request, receive, and process app-specific configurations from theMobileIron server.

See the README.md for HelloFlutter for details on:

l Adding necessary files to your app.

l Adding ACConfigPlugin to theMainActivity.java file.

l Adding necessary permissions for using the package to your AndroidManifest.xml file.

Source files

l HelloFlutter/README.md

l HelloFlutter/android/app/src/main/java/com/helloflutter/MainActivity.java

l HelloFlutter/android/app/src/main/java/com/helloflutter/ACConfigCallback.java

l HelloFlutter/android/app/src/main/java/com/helloflutter/ACConfigPlugin.java

DemonstratedAPIs

7

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 58

Before wrapping an Android app

Towrap an app, you either:

l Submit it to theMobileIron AppConnect Wrapping Portal. MobileIron signs the wrapped apps with the
MobileIron private key. MobileIron also signs the Secure Apps Manager, the Secure Apps Manager for
AppStation, and all MobileIron secure apps with theMobileIron private key.
The AppConnect Wrapping Portal is the simplest andmost commonway to wrap apps. It can be used for
apps that are distributed by MobileIron Core, MobileIron Connected Cloud, or MobileIron Cloud.

l Use theMobileIron AppConnect for AndroidWrapping Tool, a desktop app, to wrap and sign your apps.
Use the wrapping tool only if you require that your apps are signed with your own enterprise private key.
Signing apps with your enterprise private key instead of theMobileIron private key is a security decision
that your enterprisemakes.
The wrapping tool can be used only for apps that are distributed by MobileIron Core or MobileIron
Connected Cloud. Apps wrapped with the wrapping tool cannot be distributed by MobileIron Cloud.

Before you wrap an Android app:

1. Determine whether your app uses only supported Android coding features.
See Checking wrapping limitations .

2. Determine the wrappingmode to use to wrap the app.
See Determining the wrappingmode.

3. If you are using the AppConnect Wrapping Portal, determine whether your app will be used on devices
running AppStation.
See About wrapping for AppStation.

IMPORTANT:

l Some apps cannot be wrapped, depending on the APIs or features they use. See Capabilities and
limitations of apps you canwrap.

l Youcannot wrapanapp (.apk file) that youget fromGoogle Play.

l Do not wrap the sample apps that MobileIron provides. If you use these apps as a starting part for
your ownapp, be sure to change the package name to something that does not start with
com.mobileiron before wrapping.

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 59

Checking wrapping limitations
Some apps cannot be wrapped, depending on the APIs or coding capabilities they use. Some capabilities require
the Generation 1 wrapper and some require the Generation 2 wrapper. Some of these limitations of app wrapping
are listed in Capabilities and limitations of apps you can wrap.

After reviewing the limitations with regard to your app, make adjustments to your app to avoid wrapping limitations.

Determining the wrappingmode
MobileIron provides twomodes of wrappers: the Generation 1 wrapper and theGeneration 2 wrapper. The type of
app and the features that it uses determine the required wrapper Generationmode and wrapper release version.
The app types are defined in Apps that you can wrap. When you submit an app for wrapping, youmust specify:

l whether to use the Generation 1 or Generation 2 wrapper

l the release version of the wrapper

NOTE: To wrapanappwith a version of the Secure Appswrapper that is no longer available in the
AppConnect Wrapping Portal or wrapping tool, contact MobileIron Technical Support.

Consider the following inmaking your selection:

l For the most comprehensive feature support, select the latest Generation 2 wrapper. MobileIron
recommends that you use the Generation 2 wrapper.

l Select Generation 2 wrapper if the app supports scoped storage and your target SDK is 30.

l Apps wrapped with the wrapper version X.Y.Z require Secure Apps Manager X.Y.Z. The same is true for
Secure Apps Manager for AppStation.

l The Secure Apps Manager and the Secure Apps Manager for AppStation support apps wrapped with
Generation 1 and 2 wrapper versions as listed in theMobileIron AppConnect 9.0.0.0 for Android Release
Notes and UpgradeGuide.
Each version of the Secure Apps Manager and the Secure Apps Manager for AppStation supports apps
wrapped with previous wrapper versions. Therefore, you can upgrade your Secure Apps Manager and still
deploy apps wrapped with previous wrapper versions.

l Select the Generation 1 wrapper if the app was previously wrapped with the Generation 1 wrapper and
deployed. Upgrading a Generation 1 wrapped app to a Generation 2 wrapped version of the app is
not supported.

l Select the Generation 1 wrapper if the app requires support for the Android DocumentsProvider API.

NOTE: Appswrappedwith the Generation 2wrapper can run, but DocumentsProvider API
functionality is not supported.

The following table summarizes the Generation 1 and 2 wrapper support for:

Checkingwrapping limitations

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 60

l the various app types

l AppTunnel with HTTP/S or TCP tunneling

l Certificate authentication with AppTunnel with TCP tunneling

NOTE: Formore information about capabilities and limitations of appswrappedwith the Generation 1
and 2wrappers, see Capabilities and limitations of apps you can wrap.

Generation 1 wrapper Generation 2 wrapper

Apps that you previously wrapped with the Generation 1
wrapper and deployed.

Supported Not supported

Java apps Supported Supported

Xamarin apps Not supported Supported

Java apps with C or C++ code Not supported Supported

Hybrid web apps, including PhoneGap apps Not supported Supported

React Native apps Not supported Supported

AppTunnel with HTTP/S tunneling in Java apps using
supported HTTP/S APIs* for network connections

Supported Supported

TABLE 5.GENERATION1 AND 2WRAPPER SUPPORT FOR APP TYPES ANDAPPTUNNEL

Determining thewrappingmode

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 61

Generation 1 wrapper Generation 2 wrapper

AppTunnel with HTTP/S tunneling in Xamarin apps using
supported HTTP/S APIs* for network connections

Not supported Supported

AppTunnel with TCP tunneling

l in hybrid web apps, including Phonegap apps

l in React Native apps

l in Xamarin apps using unsupported HTTP/S APIs

l in Java apps using the following for network
connections:

o unsupported HTTP/S APIs
o C or C++ code

Not supported Supported

Certificate authentication with AppTunnel with TCP
tunneling

l in hybrid web apps, including Phonegap apps

l in React Native apps

l in Xamarin apps

l in Java apps using the following for network
connections:

o unsupported HTTP/S APIs
o C or C++ code

Not supported Supported

TABLE 5.GENERATION1 AND 2WRAPPER SUPPORT FOR APP TYPES ANDAPPTUNNEL (CONT.)

*The supported HTTP/S Java APIs are listed in AppTunnel with HTTP/S tunneling.

Determining thewrappingmode

8

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 62

The AppConnect wrapping portal

Use the AppConnect Wrapping Portal to wrap your Android apps unless you require that your apps are signed with
your own enterprise private key. For that case, see The AppConnect for Android wrapping tool. Most customers
use the AppConnect Wrapping Portal.

IMPORTANT: Before using the AppConnect Wrapping Portal, see Before wrapping anAndroid app.

Using the AppConnect Wrapping Portal, you can upload apps that are up to 200MB and receive the wrapped app
within minutes. The AppConnect Wrapping Portal does not keep either the unwrapped or wrapped version of your
app.

The AppConnect Wrapping Portal is available at help.mobileiron.com in theDeveloper > Wrapped Apps tab.

Subscribe to https://trust.mobileiron.com for AppConnect Wrapping Portal system status and updates.

Using the AppConnect Wrapping Portal
Before you begin

See Before wrapping an Android app.

Use the AppConnect Wrapping Portal to wrap your Android apps. Using the AppConnect Wrapping Portal involves
these high-level tasks:

1. Logging in to help.mobileiron.com

2. Uploading and wrapping an app

3. Downloading the wrapped app

Next steps

After successfully wrapping your apps, do the steps in After wrapping an Android app.

Logging in to help.mobileiron.com
Enter your login ID and password at https://help.mobileiron.com.

The home page displays.

http://help.mobileiron.com/
https://trust.mobileiron.com/
https://help.mobileiron.com/

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 63

Next steps

Go to After wrapping an Android app.

Uploading and wrapping an app
Upload and wrap your app in the wrapping portal.

Procedure

1. Click Developer > Wrapped Apps in the tab bar.
TheWrapped Apps Home page displays.

2. Click Create New Wrapped App.

3. Read and accept the license agreement, if presented.
The license agreement is presented the first time that you click Create New Wrapped App.
After accepting the license agreement, theSelect Your App page displays.
FIGURE 5. SELECT YOUR APP

4. Click Choose File.
A dialog box for choosing the file opens.

5. Select the APK file in your computer’s folders.

6. Click Next on theSelect Your App page.
The portal uploads and evaluates the APK file, and then displays theWrap Your App page.
FIGURE 6.WRAP YOUR APP

Uploadingandwrappinganapp

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 64

7. Select theWrapper Version.
Keep inmind that the wrapped app will require a Secure Apps Manager or Secure Apps Manager for
AppStation with at least the same version as the wrapper version.

NOTE: To wrapanappwith anearlier version of the Secure Appswrapper than the choices
given, contact MobileIron Technical Support.

8. If you selected wrapper version 8.6.0.0 or later, the optionWrap for AppStation displays. Select
AppStation to wrap the app for use with the Secure Apps Manager for AppStation.

9. If you are using the Generation 1 wrapper, select Gen 1.

10. Select Calendar to allow the app to export data to the device’s calendar database.
This option allows data export when the app uses the Calendar Provider Android API.

11. Select Contacts to allow the app to export data to the device’s contact database.
This option allows data export when the app uses the Contact Provider Android API.

12. Change themaximum heap size inMax heap size in MBytes to run this tool only if you encounter any
issues when wrapping your app.
The default heap size is 5500. The range is 4000 - 12000. Increasing the heap sizemay slow down the
wrapping process, in very rare cases taking up to two hours.

13. In theExtra options field, enter the flag -addInternetPermission if both of the following are true:

l Your app uses the android.media.MediaPlayer or android.media.MediaMetaDataRetriever APIs.

l Your app does not include android.permission.INTERNET in its AndroidManifest.xml file
IMPORTANT: Do not select any otherAdvanced Settings ormake othermodifications to

Custom Options unlessMobileIron Technical Support has instructed you to do so.
The following flags are available:

Flag Description

-ignoreSqlCipher See Encryption of the SQLCipher database.

-allowIntentAction SeeReceiving information from outside the AppConnect
container.

-enableCrashlytics Enables Crashlytics library.

-disableArm64 See 64-bit support.

-keepJavaNativesLazyLinking See Linking native Javamethods

14. ClickWrap.

Next steps
Go to Downloading the wrapped app.

Related topics

l Determining the wrappingmode.

l About wrapping for AppStation

Uploadingandwrappinganapp

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 65

l MediaPlayer andMediaMetaDataRetriever Internet permission requirement

Downloading the wrapped app
When you clickWrap, after a few moments, depending on the size of the app, theDownload page displays.

FIGURE 7.DOWNLOAD WRAPPED APP

NOTE: if wrapping fails, the portal displays the reason. You canclickOpen Support Ticket if you need
help.

1. Click Download Wrapped App.
The portal downloads the wrapped app to your computer.

2. Click Finish.
The portal removes both the wrapped and unwrapped version of the app.

Next steps

Go to After wrapping an Android app.

Downloading thewrappedapp

9

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 66

The AppConnect for Android wrapping tool

TheMobileIron AppConnect for AndroidWrapping tool, also known as the wrapping tool, is amacOS andWindows
app that MobileIron provides. Use the wrapping tool instead of the AppConnect Wrapping Portal only if both of the
following are true:

l You require that your wrapped apps are signed with your own enterprise private key.

l You are distributing the wrapped apps with MobileIron Core or MobileIron Connected Cloud. You cannot
distribute wrapped apps signed with your own enterprise private key with MobileIron Cloud.

If you are not using an enterprise private key, use The AppConnect wrapping portal. The AppConnect Wrapping
Portal signs wrapped apps with theMobileIron private key.

Signing apps with your enterprise private key instead of theMobileIron private key is a security decision that your
enterprisemakes.

Use the AppConnect for AndroidWrapping Tool to:

l Wrap and sign an app.
The wrapping tool outputs a wrapped and signed APK file, which is the APK to be uploaded toMobileIron
Core or MobileIron Connected Cloud. It also outputs a wrapped but unsigned APK file, which is useful if
only specific people in your organization have access to the enterprise private key.

l Only sign the app.
The option to only sign the app is typically used in these cases:

o For signing your wrapped apps when only specific people in your organization have access to the
enterprise private key.

o For re-signing apps provided by MobileIron with the enterprise private key.

Enterprise private key considerations with AppConnect for
Android
By using the AppConnect for AndroidWrapping Tool, you can distribute wrapped apps signed with your enterprise
private key instead of theMobileIron private key.

Consider the following impact of using an enterprise private key:

You must use your enterprise private key to re-sign all the secure apps that you currently use.

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 67

These apps include the apps that MobileIron provides and any other secure apps that you use. Youmust also re-
sign the Secure Apps Manager with your enterprise private key. For each future Secure Apps release, you will
again have to re-sign the Secure Apps Manager and all updated apps provided by MobileIron.

You must secure your enterprise private key.

Youmust secure the enterprise private key to protect the secure apps that you deploy and the devices they are
deployed on. If an unauthorized third party obtains the enterprise key without your permission, the third party can
sign and distribute apps with your key, allowing them tomaliciously replace your apps. Thesemalicious apps could
run in the AppConnect container, with access to your enterprise’s sensitive data.

Therefore:

l Follow industry best practices for securing your enterprise key.

l Follow industry best practices against losing your key or forgetting the password for the keystore file or the
key itself.

You must securely retain backup copies of your enterprise private key and password.

If you lose your enterprise private key or password and do not have a backup, you cannot deploy updates to your
apps. Keep at least one secure backup of your key and password. MobileIron will not have a copy of your
enterprise private key, and will not be able to assist you with restoring it.

Installing the new re-signed Secure Apps Manager on devices deletes all existing secure apps data on
the device.

Your device users will lose all data relating to their secure apps. Going forward, as long as you use the same
enterprise key, this loss will not reoccur. If your key is compromised and you have to create a new enterprise key,
your device users will again lose all secure apps data.

AppConnect for AndroidWrapping Tool supported platforms
You can run the wrapping tool on:

l macOS X

l Windows 7

l Windows 10

l Ubuntu 18.04.5

Preparing to use the wrapping tool
Do the following tasks before using the wrapping tool:

AppConnect for AndroidWrapping Tool supportedplatforms

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 68

1. See Before wrapping an Android app.

2. See Enterprise private key considerations with AppConnect for Android.

3. Install the Java Development Kit (JDK) on yourWindows or macOS computer.
See http://www.oracle.com/technetwork/java/javase/downloads.

4. Install Android Studio on yourWindows or macOS computer as an easy way to get the Android Software
Development Kit (SDK) build-tools that the wrapping tool requires.
See https://developer.android.com/studio/index.html to download Android Studio. After downloading and
installing Android Studio, launch it to install the standard Android SDK component and tools.
The build-tools must be version 24.0.1 through themost recently released version as supported by
MobileIron.

5. Obtain a private key for signing secure apps.
You will upload the keystore file to the wrapping tool, and you will upload thematching public certificate to
MobileIron Core or MobileIron Connected Cloud.
Use the Java keytool command to generate the public and private key pair. See
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html.

6. Get the Secure Apps Manager and any other MobileIron-provided apps that you distribute. You will need to
re-sign these apps with your enterprise private key. The apps are available at https://help.mobileiron.com
in the Software tab. For example, if you useWeb@Work, Docs@Work, or Email+, youmust re-sign them.

NOTE: Do not re-wrapMobileIron apps, including the sample apps. You only re-sign the Secure
AppsManager andMobileIron apps.

7. Download the wrapping tool, a JAR file, to your computer from https://help.mobileiron.com in the Software
tab.

Using the AppConnect for AndroidWrapping Tool in UI mode
Using the wrapping tool in UI mode involves these high-level tasks:

Before you begin

l Preparing to use the wrapping tool

Overview

1. Launching the wrapping tool

2. Providing developer settings to the wrapping tool

3. Selecting wrapping options in the wrapping tool

4. Wrapping and signing an app with the wrapping tool

Using theAppConnect for AndroidWrapping Tool inUI mode

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 69

Next steps

l After wrapping an Android app

l Distributing wrapped apps with an enterprise key (Core)

Related topics

l Signing an app with the wrapping tool

l Using the AppConnect for AndroidWrapping Tool in UI mode

Launching the wrapping tool

To use the wrapping tool, launch it, and accept the license agreement.

Procedure

1. Enter the following at the command prompt to launch the app:
java -jar path\ wrap-tool.jar
Where:

l path\-jar wrap-tool is the location and name of the wrapping tool jar file.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.18-9.2.0.0.4.jar

2. Accept the license agreement.

NOTE: Youare not prompted to accept the license agreement if you hadaccepted it in a
previous version of the tool.

Providing developer settings to the wrapping tool

Before wrapping or signing an app, provide the necessary developer settings to the wrapping tool.

Procedure

1. In the wrapping tool, go toDeveloper Settings.

2. Browse to the Android SDK directory or enter its path.

Example
OnWindows: C:\Users\username\AppData\Local\Android\SDK
OnmacOS: /Users/username/Library/Android/SDK

NOTE: If the ANDROID_HOMEenvironment variable is set, filling in this field is unnecessary.

3. InDeveloper Settings, if you are usingWindows, enter Java VM options if necessary.
This option is necessary if theWindows computer has less than 8GB of RAM.

Launching thewrapping tool

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 70

Example
-Xmx5000M

4. Drag and drop or browse to the keystore file that contains your enterprise private key.

5. Enter the keystore password, the key alias, and the key password.

6. Click Save.
The wrapping tool displays that your keystore has been successfully uploaded.

7. Click Done.

Selecting wrapping options in the wrapping tool

Before wrapping an app, select the appropriate wrapping options in the wrapping tool. These steps are not
necessary when you are signing the app, but not wrapping it.

Procedure

1. Select the wrapper version.
Keep inmind that the wrapped app will require a Secure Apps Manager with at least the same version as
the wrapper version.

NOTE: To wrapanappwith anearlier version of the Secure Appswrapper than the choices
given, contact MobileIron Technical Support.

2. Select either Generation 1 or 2.

3. Select Calendar Access to allow the app to export data to the device’s calendar database.
This option allows data export when the app uses the Calendar Provider Android API.

4. Select Contacts Access to allow the app to export data to the device’s contact database.
This option allows data export when the app uses the Contact Provider Android API.s

5. Select Show next toAdvanced Settings field, scroll down toCustom Options, and enter the flag
-addInternetPermission if both of the following are true:

l Your app uses the android.media.MediaPlayer or android.media.MediaMetaDataRetriever APIs.

l Your app does not include android.permission.INTERNET in its AndroidManifest.xml file
If you turn onCustom Options, the default custom options are:

l -allowAccessGoogle, which allows the app to useGoogle Play services

l -allowNativeCode, which allows the app to use native libraries

IMPORTANT: Do not select any otherAdvanced Settings ormake othermodifications toCustom
Options unlessMobileIron Technical Support has instructed you to do so. The following flags
are available:

Selectingwrappingoptions in thewrapping tool

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 71

Flag Description

-ignoreSqlCipher See Encryption of the SQLCipher database.

-allowIntentAction SeeReceiving information from outside the AppConnect container.

-enableCrashlytics or

-allowCrashlytics

See Firebase CloudMessaging and Crashlytics support.

Earlier versions of AppConnect supported the -allowCrashlytics option
and not the -enableCrashlytics option.

-disableArm64 See 64-bit support.

-keepJavaNativesLazyLinking See Linking native Javamethods

TABLE 6.AVAILABLE FLAGS

Related topics

Determining the wrappingmode

Wrapping and signing an app with the wrapping tool

After selecting developer settings and wrapping options in the wrapping tool, you can wrap and sign an app.

Procedure

1. Drag and drop or browse to the unwrapped app’s APK file.
The wrapping and signing process begins.

2. If wrapping and signing succeed, the wrapping tool displays that wrapping and signing was successful.
It provides a link to the same directory as the unwrapped APK file, and places the following files in the
directory:

l the wrapped and signed APK file, named <file name>.wrapped.signed.apk
You will upload this file to theMobileIron server as an in-house app for distribution to devices.

l the wrapped and unsigned file, named <file name>.wrapped.apk
asdf

l a log file about wrapping, named <file name>.apk.result.json

3. If wrapping or signing fail, the wrapping tool displays that it failed. It provides a link to the same directory as
the unwrapped APK file, and places the following files in the directory:

l a log file about wrapping, named <file name>.apk.result.json

l a signing error file, named <file name>.apksigner.errors

Related topics

Using the AppConnect for AndroidWrapping Tool in UI mode.

Wrappingandsigninganappwith thewrapping tool

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 72

Signing an app with the wrapping tool

After selecting developer settings in the wrapping tool, you can sign a wrapped app with your enterprise private
key. The app can be unsigned or already signed. You can also re-sign the Secure Apps Manager. Use this
procedure to:

l Sign your ownwrapped apps.

l Re-signMobileIron-provided apps with your enterprise private key. Re-sign the apps each time you get a
new release of the app fromMobileIron.

l Re-sign your own apps andMobileIron-provided apps with a new enterprise private key when, for example,
the previous enterprise private key had been compromised.

Procedure

1. Select Sign Only in the wrapping tool where you drag and drop your app. It can be unsigned or already
signed.

2. Drag and drop or browse to the app’s APK file.
The signing process begins.

3. If signing succeeds, the wrapping tool displays that signing was successful.
It places the wrapped and signed file in the same directory as the submitted APK file, and provides a link to
that directory. The file is named:
The file is named:
<file name>.signed.apk

4. If signing fails, the wrapping tool displays that signing failed. It provides a link to the same directory as the
unwrapped APK file, and places in the directory a signing error file named <file name>.apksigner.errors.

Related topics

l Enterprise private key considerations with AppConnect for Android

l Providing developer settings to the wrapping tool

Using the AppConnect for AndroidWrapping Tool in CLI mode
Using the wrapping tool in CLI mode involves these high-level tasks:

Before you begin

l Preparing to use the wrapping tool

Overview

Using the wrapping tool involves these high-level tasks:

Signinganappwith thewrapping tool

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 73

1. Providing developer settings

2. Setting the keystore

3. Wrapping and signing the app

Next steps

After successfully wrapping and signing your apps, do the following:

l After wrapping an Android app

l Distributing wrapped apps with an enterprise key (Core)

Related topics

l Additional wrapping tasks using CLI

l Troubleshooting the wrapping tool

l Determining the wrappingmode

The paths are documented using theWindows format. Use the format that is appropriate to your OS.

Example

l OnWindows: C:\Users\username\AppData\Local\Android\SDK

l OnmacOS: /Users/username/Library/Android/SDK

Providing developer settings

When you first use the wrapping tool, provide the necessary developer settings to the wrapping tool.

Enter the following at the command prompt:

java -jar path\wrap-tool.jar -android-SDK-pathSDKpath

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

l SDKpath is the location of the Android SDK.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.18-9.2.0.0.4.jar -android-SDK-path
C:\Users\testuser\AppData\Local\Android\Sdk

Accept the license agreement presented.

NOTE: Youare not prompted to accept the license agreement if you hadaccepted it in a previous
version of the tool.

Providingdeveloper settings

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 74

Example
Do you agree with all terms and conditions? [Y/n] y

Android SDK path update: success!

To run wrapping tool in UI mode

Usage: java -jar wrap-tool.jar

To run wrapping tool in CLI mode please specify proper action

Usage: java -jar wrap-tool.jar (-wrap || -sign-only || -help) -in appName.apk [wrapping
arguments]

Setting the keystore

Set the keystore to sign the wrapped app with your enterprise private key. The keystore file is saved for all
subsequent app signing.

Before you set the keystore, create a keystore.txt file that contains the location and name of the keystore file, the
store password, the key alias, and the key password. It is recommended to create the keystore text file so that the
passwords are not visible in the CLI.

The keystore text file contains the following content:

path\fileName.keystore ks-pass ks-key-alias key-pass

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

l path\fileName is the location and name of the keystore file.

l ks-pass is the store password.

l ks-key-alias is the key alias.

l key-pass is the key password.

Enter the following at the command prompt to set the keystore:

java -jar path\ wrap-tool.jar -keystore @path\keystore-file.txt

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

l path\keystore-file is the location and name for the keystore text file.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.18-9.2.0.0.4.jar -keystore
@C:\Users\testuser\Downloads\keystore-file.txt

checking keystore settings...

applying keystore settings...

Keystore update: success!

To run wrapping tool in UI mode

Setting the keystore

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 75

Usage: java -jar wrap-tool.jar

To run wrapping tool in CLI mode please specify proper action

Usage: java -jar wrap-tool.jar (-wrap || -sign-only || -help) -in appName.apk [wrapping
arguments]

Wrapping and signing the app

The wrapping tool in command line interface (CLI) mode uses the following defaults:

l Wrapper version: The current AppConnect version. If the AppConnect version is 9.2.0, the associated
AppConnect wrapping tool defaults to the 9.2.0 wrapper version.

l Wrapping mode: Generation 2.

l Wrapping options:
o -allowAccessGoogle, which allows the app to useGoogle Play services
o -allowNativeCode, which allows the app to use native libraries

o -allowUnwrappedAPIs, which allows

Enter the following command at the command prompt to wrap and sign an app:

java -jar path\ wrap-tool.jar -wrap -in path\appName.apk [wrapping options]

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

l path\appName is the location and name of the APK file.

l wrapping options are any optional arguments you want to use for wrapping the file.

The following table describes the available arguments to use for wrapping an app.

Flag Description

-ignoreSqlCipher See Encryption of the SQLCipher database.

-allowIntentAction SeeReceiving information from outside the AppConnect container.

-enableCrashlytics Enables Crashlytics library. See Firebase CloudMessaging and
Crashlytics support.

-disableArm64 See 64-bit support.

-keepJavaNativesLazyLinking See Linking native Javamethods

TABLE 7.AVAILABLE ARGUMENTS

Example :
C:\Users\testuser>java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.18-9.2.0.0.4.jar -
wrap -in C:\Users\testuser\Downloads\unTransformedApps_9.2.0.0.14\Box.apk

selected the version 9.2

Wrappingandsigning theapp

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 76

running transformer version 9.2 for the file C:\Users\testuser\Downloads\unTransformedApps_
9.2.0.0.14\Box.apk

wrapping exit value: 0

...<JSON output>

zipalign exit value: 0

signing exit value: 0

Signed

Additional wrapping tasks using CLI
The following additional tasks allow you to re-sign an app, change the wrapper mode, change the wrapper version,
and view the available wrapper arguments for a wrapper version:

l Signing an app

l Using the Generation 1 wrapper

l Wrapping with a different allowed wrapper version

l Viewing wrapper arguments for a wrapper version

l Using the -help command

Signing an app

Use this procedure to:

l Sign your ownwrapped apps.

l Re-signMobileIron apps with your enterprise private key. Re-sign the apps each time you get a new
release of the app fromMobileIron.

l Re-sign your own apps andMobileIron apps with a new enterprise private key when, for example, the
previous enterprise private key had been compromised.

Before signing an app, set the keystore. See Additional wrapping tasks using CLI.

To sign an app in the CLI mode, enter the following command at the prompt:

java -jar path\wrap-tool.jar -sign-only -in path\appName.apk

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

l path\appName is the location and name of the APK file.

Additionalwrapping tasks usingCLI

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 77

Using theGeneration 1 wrapper

By default, the CLI mode uses the Generation 2 wrapper. To use the Generation 1 wrapper, specify -gen1 when
wrapping the app.

Enter the following at the command prompt:

java -jar path\wrap-tool.jar -wrap -gen1 -in path\appName.apk [wrapping arguments]

Where:

l path\wrap-tool is the location and name of the wrapping tool jar file.

l path\appName is the location and name of the APK file.

l wrapping arguments are any optional arguments you want to use for wrapping the file.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.18-9.2.0.0.4.jar -wrap -gen1 -in
C:\Users\testuser\Downloads\unTransformedApps_9.2.0.0.14\Box.apk

Wrapping with a different allowed wrapper version

By default, in CLI mode, an app is wrapped using the latest wrapper version that the tool supports. The wrapping
tool also supports previous versions of the wrapper. Therefore, you can specify a previous wrapper version to wrap
an app.

Enter the following command at the command prompt to view the supported previous wrapper versions:

java -jar path\ wrap-tool.jar -help -transformer-version

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.18-9.2.0.0.4.jar -help -transformer-
version

To run wrapping tool in UI mode

Usage: java -jar wrap-tool.jar

To run wrapping tool in CLI mode please specify proper action

Usage: java -jar wrap-tool.jar (-wrap || -sign-only || -help) -in appName.apk [wrapping
arguments]

Allowed versions of transformer:

1) 9.2

2) 9.1

3) 9.0

To receive list of all allowed wrapping arguments need to specify transformer version:

java -jar wrap-tool.jar -help -transformer-version 9.2

Using theGeneration1wrapper

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 78

Enter the following command to wrap an app with a previous wrapper version:

java -jar path\wrap-tool.jar -wrap -transformer-version allowed-version -in path\appName.apk

Where:

l path\wrap-tool is the location and name of the wrapping tool jar file.

l path\appName is the location and name of the APK file.

l allowed-version is an allowed wrapper version.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.18-9.2.0.0.4.jar -wrap -transformer-
version 9.1 -in C:\Users\testuser\Downloads\unTransformedApps_9.2.0.0.14\Box.apk\

selected the version 9.1

running transformer version 9.1 for the file C:\Users\testuser\Downloads\unTransformedApps_
9.2.0.0.14\Box.apk

wrapping: |

Viewing wrapper arguments for a wrapper version

Enter the following command at the command prompt to view the allowed wrapper versions:

java -jar path\ wrap-tool.jar -help -transformer-version transformer-version

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.14-9.2.0.0.4.jar -help -transformer-
version 9.2

To run wrapping tool in UI mode

Usage: java -jar wrap-tool.jar

To run wrapping tool in CLI mode please specify proper action

Usage: java -jar wrap-tool.jar (-wrap || -sign-only || -help) -in appName.apk [wrapping
arguments]

Allowed versions of transformer:

1) 9.2

2) 9.1

3) 9.0

transformer help exit value: 1

Usage: java -Xmx4096M -jar Transformer.jar input.apk [arguments]

Version: 9.2.0.0.4-0

Arguments:

Name: -allowExternalMailToAccess

Type: Boolean

Description: Secure apps normally cannot respond to the requests of

Viewingwrapper arguments for awrapper version

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 79

non-secure apps. This flag lets the wrapped app respond to

'send email' requests from unwrapped apps.

Name: -allowNativeCode

Type: Boolean

Description: Lets an app be wrapped even if it contains native code.

...

Using the -help command

The -help command displays a list of available commands and descriptions.

Enter the following command at the command prompt to view a complete list of available commands and
descriptions:

java -jar path\ wrap-tool.jar -help

Where:

l path\ wrap-tool is the location and name of the wrapping tool jar file.

Example
java -jar C:\Users\testuser\Downloads\wrap-tool-1.14.14-9.2.0.0.4.jar -help

To run wrapping tool in UI mode

Usage: java -jar wrap-tool.jar

To run wrapping tool in CLI mode please specify proper action

Usage: java -jar wrap-tool.jar (-wrap || -sign-only || -help) -in appName.apk [wrapping
arguments]

Arguments:

Name: -help

Is required for wrapping: false

Description: Display help and exit

Name: -transformer-version

Is required for wrapping: false

Description: Can be used with or without specified transformer version. In wrapping mode
will choose specific version for wrapping application.

Example: java -jar wrap-tool.jar -wrap -transformer-version 9.2

In help mode will display all available version of transformer. With specified exact version
of wrapper all the arguments for exact transformer will be displayed

Example: java -jar wrap-tool.jar -help -transformer-version 9.2

...

Wrapping tool CLI
Use the following command to wrap an app in CLI mode.

java -jar wrap-tool.jar (-wrap || -sign-only || -help) -in appName.apk [wrapping arguments]

Using the -helpcommand

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 80

Action Command Description

Wrap an app java -jarwrap-tool.jar -wrap -in
appName.apk [wrapping arguments]

Using the AppConnect for AndroidWrapping
Tool in CLI mode

Sign an app java -jarwrap-tool.jar -sign-only
appName.apk

Additional wrapping tasks using CLI

Help java -jarwrap-tool.jar -help Displays a list of available commands and
description.

l Use the following command to view the
supported transformer versions:

java -jar path\ wrap-tool.jar -help -
transformer-version

l Use the following command to view the
supported wrapping arguments for a
specific transformer version

java -jar path\ wrap-tool.jar -help -
transformer-version transformer-
version

Additional wrapping tasks using CLI

TABLE 8.WRAPPINGCOMMANDS

Troubleshooting the wrapping tool
When you run the wrapping tool to both wrap and sign an app, or to only sign an app the tool places the following
files in the same directory as the APK file you are wrapping and signing:

l <file name>.wrapped.signed.apk
The wrapped and signed APK file. It is available only when you use the tool for both wrapping and signing,
and both actions succeed. You will upload this file to theMobileIron server as an in-house app for
distribution to devices.

l <file name>.wrapped.apk
The wrapped but unsigned APK file. It is available only when you use the tool for both wrapping and
signing, and wrapping succeeds. This file is useful when someone else in your organization signs the
apps.

l <file name>.signed.apk
The signed APK file. Available only when you use the tool for signing only, having provided it a wrapped
app, and signing succeeds. You will upload this file to theMobileIron server as an in-house app for
distribution to devices.

Troubleshooting thewrapping tool

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 81

l <file name>.wrapped.result.json
The log file about the wrapping process.
If wrapping fails, open this file and scroll to the end to see the error.

l <file name>.apksigning.errors
The log file about the signing process.
If signing fails, open this file to see the error.

Distributing wrapped apps with an enterprise key (Core)
After you have signed all wrapped apps and the Secure Apps Manager with your enterprise private key, you can
distribute them to your enterprise’s device users.

The steps in this section are applicable if your UEM is Core or Connected Cloud.

IMPORTANT: If youare upgrading device users to use secure apps signedwith your enterprise private
key, installing the re-signed Secure AppsManager ondevices deletes all existing secure
apps data on the device.

Do the steps in these tasks:

1. Uploading the apps to the App Catalog.

2. Configuring the enterprise public key.

3. Applying labels to the new apps.

4. Removing labels from the old apps.

Related topics

l The device user experience when upgrading

l Behavior when the device does not have the enterprise public certificate

Uploading the apps to the App Catalog

Use the Admin Portal to upload the newly signed secure apps to the Core app distribution library just as you would
any in-house app. Go toApps > App Catalog > Add+ > In-House. For details on in-house apps for Android, see
“Working with Apps for Android Devices” in theMobileIron Core Apps@Work Guide.

Configuring the enterprise public key

To run secure apps signed with the enterprise private key, configureMobileIron Core or Connected Cloud to
provide thematching public certificate to the devices.

Distributingwrappedappswithanenterprise key(Core)

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 82

Procedure

1. In the Admin Portal, select Policies & Configs > Configurations.

2. Select Add New > Certificates.

3. Enter aName andDescription for the new Certificate Setting.

4. Upload the public certificate that matches your enterprise private key.
No entries are necessary for the password settings since this is the public certificate.

5. Click Save.

6. Select the app configuration for the new Secure Apps Manager.

7. Click Edit.

8. InApp-specific Configurations, click Add+ .

9. For theKey, enterAC_PUBLIC_KEY.

10. For theValue, select the certificate setting that you just create from the drop-down list.

11. Click Save.

Applying labels to the new apps

Apply the appropriate labels to the newly signed apps, including the Secure Apps Manager. These labels determine
to which devices the apps will be downloaded.

IMPORTANT: Installing the re-signed Secure AppsManager ondevices deletes all existing secure apps
data on the device.

Procedure

1. In theApps tab of the Admin Portal, select Android forSelect Platform.

2. Select all the newly signed apps, including the Secure Apps Manager.

3. Select Actions > Apply To Label.

4. Select the appropriate labels.

5. Click Apply.

Removing labels from the old apps

If devices already had secure apps signed with theMobileIron private key (or some other enterprise private key),
remove the appropriate labels from the old secure apps, including the Secure Apps Manager.

Do the following for the old secure apps, including the Secure Apps Manager:

1. In theApps tab of the Admin Portal, select Android forSelect Platform.

2. Select all the old secure apps, including the old Secure Apps Manager.

Applying labels to the newapps

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 83

3. Select Actions > Remove From Label.

4. Select the appropriate labels.

5. Click Remove.

The device user experience when upgrading

After you have completed the steps to upgrade to secure apps signed with a enterprise private key, the device user
experiences the following:

1. Mobile@Work prompts the device user to update secure apps.

2. When the user begins the update process, Mobile@Work warns the user of the consequences of the
pending update. Specifically, users are warned that they will lose their secure apps data (including email
settings) and will need to create a new secure apps passcode.

3. If the user continues with the update process, the old secure apps are uninstalled, and the new secure
apps are installed. On devices that support silent installation, silent uninstall and install are used.

NOTE: An uninstall followedbyan install is necessary insteadof anappupgrade. The reason is because
the Android operating system does not allowappupgradeswhen the signing keys do not
match.

Behavior when the device does not have the enterprise public certificate

Using an enterprise private key to sign secure apps and the Secure Apps Manager requires that you configure the
Secure Apps Manager’s app configuration with the enterprise public certificate. Consider the following situations
relating to this requirement:

l You do not configure Secure Apps Manager’s app configuration with the enterprise public certificate.
In this case, the Secure Apps Manager defaults to using theMobileIron private key. Therefore, if secure
apps signed with the enterprise private key are on the device, the secure apps cannot run due to a
signaturemismatch.

l You later remove the enterprise public certificate.
Consider the situation when secure apps signed with the enterprise private key are running on the device.
Later, you remove the public certificate from the device. For example, you remove the certificates setting
fromMobileIron Core, or remove the related key-value pair from the Secure Apps Manager’s app
configuration. The secure apps signed with an enterprise private key can no longer run due to a signature
mismatch. However, no secure data is lost. When the key-value pair is added back to the Secure Apps
Manager’s app configuration, the secure apps can once again run.

l You configure Secure Apps Manager’s app configuration with the enterprise public certificate, but the
installed apps are signed with theMobileIron private key.
In this case, the secure apps cannot run due to a signaturemismatch.

Thedevice user experiencewhenupgrading

10

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 84

After wrapping an Android app

After you have wrapped an Android app:

1. If the app uses Google APIs that use aGoogle API key, add the wrapped app’s key to the Google API
Console.
See Adding the wrapped app’s key to the Google API Console.

2. Document your app’s requirements.
See Inform the server administrator of your app’s requirements.

Adding the wrapped app’s key to the Google API Console
SomeGoogle APIs, such as the GoogleMaps API, can use aGoogle API key. The key comprises a SHA1
certificate fingerprint and package name. If the app you wrapped uses aGoogle API key, you have an additional
step to perform before deploying the wrapped app. Wrapping the app changes the wrapped app’s API key. You
must add the new API key to the Google API Console.

Wrapped app’s Google API key format

The new API key has the following format:
<MobileIron-provided SHA1 certificate fingerprint>;<your wrapped app package name>

Your wrapped app's package name is one of the following:

l forgepond.<your app package name> if you wrapped the app for use with the Secure Apps Manager

l appstation.<your app package name> if you wrapped the app for use with the Secure Apps Manager for
AppStation

TheMobileIron-provided SHA1 certificate fingerprint is:
D1:F0:BB:0F:7B:E9:91:6F:0C:08:C1:96:0B:E2:E0:BF:A5:76:1D:60

Therefore, a wrapped app’s new API key, is, for example:
D1:F0:BB:0F:7B:E9:91:6F:0C:08:C1:96:0B:E2:E0:BF:A5:76:1D:60;forgepond.com.myco.myapp

Adding the newAPI key to Google API console

If the app you wrapped uses aGoogle API key, wrapping the app changes the wrapped app’s API key. Add the new
API key to the Google API Console.

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 85

Procedure

1. Go to https://code.google.com/apis/console.

2. Login with your Google account.

3. Click API Manager > Credentials in the left menu.

4. CreateCredentials > API key > Android key.

5. Name your key.

6. Add the package namewith this format: forgepond.<your package name> or appstation.<your
package name>

7. And theMobileIron-provided SHA1 certificate fingerprint.

Inform the server administrator of your app’s requirements
Provide theMobileIron server administrator the following information so that the administrator can correctly
configure and deploy your app:

l Documentation about app-specific configuration.
See Handling AppConnect app-specific configuration.

l Whether to allow the app to ignore the auto-lock time.
See Ignoring the auto-lock time.

l Whether the app requires AppTunnel with HTTP/S tunneling.
See AppTunnel with HTTP/S tunneling.

l Whether the app requires AppTunnel with TCP tunneling.
See AppTunnel with TCP tunneling.

l Whether the app requires certificate authentication with AppTunnel with TCP tunneling.
See Certificate authentication with AppTunnel with TCP tunneling.

l Whether the app requires the secure FileManager.
See DownloadManager API considerations.

Informthe server administrator of your app’s requirements

11

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 86

Capabilities and limitations of apps you can
wrap

You can wrapmost apps with the AppConnect wrapper with no app development. However some app capabilities
require special attention, some capabilities are supported with the Generation 1 or Generation 2 wrapper but not
both, and some app capabilities cannot be wrapped.

Therefore, before wrapping an app, review the following:

l AppConnect wrapping considerations

l Wrapping support of commonly used app capabilities

l Knownwrapper limitations

Also, see these sample apps for demonstrations of implementing common capabilities in Java apps and React
Native apps to be wrapped.

l Android API Usage Demo sample app overview

l HelloReact Demo sample app overview

AppConnect wrapping considerations
l SQLCipher considerations

l DownloadManager API considerations

l Google CloudMessaging considerations

l Firebase CloudMessaging and Crashlytics support

l MediaPlayer andMediaMetaDataRetriever Internet permission requirement

l Image selection from outside the AppConnect container

l External storage permissions

l Receiving information from outside the AppConnect container

l USB OTG support

l Preference API usage

l 64-bit support

l Linking native Javamethods

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 87

SQLCipher considerations

l SQLCipher library version

l Using both SQLCipher and SQLLite is not supported

l Encryption of the SQLCipher database

SQLCipher library version

The Secure Apps Manager, the Secure Apps Manager for AppStation, and the AppConnect wrapper in wrapped
apps all use SQLCipher 4.0.1, which is a 64-bit library.

Using both SQLCipher and SQLLite is not supported

Using SQLCipher and Android SQLite databases at the same time is not supported. Developers shouldmove all
databases to either SQLCipher or Android SQLite.

Encryption of the SQLCipher database

If your app uses SQLCipher calls to encrypt data, the wrapping process makes changes so that the Secure Apps
Manager or Secure Apps Manager for AppStationmanages the encryption key for the SQL data. Therefore, the
wrapping process encrypts the SQLCipher database a second time, because it is already encrypted by SQLCipher.
This second layer of encryption can have performance impact on your app.

To avoid the performance impact, you can use the wrapping flag -ignoreSqlcipher with Generation 2 wrapped
apps. Use this flag only for new installations, not upgrades, of your app where the app is wrapped with wrapper
version 8.2.1 through themost recently released version as supported by MobileIron. Do not use the flag if your
wrapped app was previously installed on devices. If you do, your database will not be accessible.

When you use the -ignoreSqlcipher flag, continue to use it every time you wrap the app.

NOTE: You can use the -ignoreSqlcipher flag for wrapping anapp that uses the Room Persistence
Library.

DownloadManager API considerations

If your app uses the Android DownloadManager API, the secure FileManager that MobileIron provides must also be
installed on the device. The FileManager ensures downloaded files remain in the secure container. Only secure
apps can access the downloaded files.

Inform theMobileIron server administrator that your app requires the FileManager.

Google CloudMessaging considerations

Secure Apps for Android supports Google CloudMessaging for Android (GCM) in wrapped apps. GCM allows you
to send data from an app server to these apps.

SQLCipher considerations

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 88

Secure Apps supports using GCM for sending HTTP messages from an app server to wrapped apps (HTTP
downstreammessages). The feature requires that the app uses the GoogleCloudMessaging class. The deprecated
class GCMRegistrar is not supported.

Unsupported GCM features

Secure Apps does not support theseGCM features:

l XMPP

l upstreammessaging

Situations when GCMmessages are discarded

In the following situations, the app does not receive GCMmessages, and themessages are discarded:

l The device user is logged out of secure apps after a device restart or Secure Apps Manager (or Secure
Apps Manager for AppStation) termination.

l In this situation, the user has a notification that says “Logged out. No app activity. Tap to log in.”

l The app is unauthorized (blocked) on the device.

Firebase CloudMessaging and Crashlytics support

A wrapped app can use Firebase CloudMessaging (FCM) the same as any Android app. To support FCM in a
wrapped app, on the Firebase web console, you create a Firebase project that specifies your unwrapped app. The
unwrapped app and the wrapped app can each then receive the FCMmessages. If both the wrapped app and the
unwrapped app are on the same device, they both receive the FCMmessages. Unauthorized wrapped apps do not
receive the FCMmessages.

NOTE: Generation 1wrapping does not support the Firebase CloudMessaging library startingwith
com.google.firebase.firebase-messaging.17.0.0.

If the -enableCrashlytics or -allowCrashlytics option is used when wrapping the app, the crash data is
available on the Firebase Crashlytics console. The appmust support Firebase Crashlytics. The crash reports
appear for the unwrapped app package name on the console. However, the reports include the label (wrapped
app), which identifies the report as an AppConnect wrapped app crash report.

MediaPlayer andMediaMetaDataRetriever Internet permission requirement

You can wrap apps that use the android.media.MediaPlayer and android.media.MediaMetaDataRetriever APIs.
However, wrapper support of these APIs require that wrapped apps set the Android Internet permission.

You can set the Android Internet permission in your app in one of the following ways:

l Add the permission android.permission.INTERNET to your app’s AndroidManifest.xml file before you
submit it to the AppConnect Wrapping Portal.

UnsupportedGCMfeatures

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 89

l In the AppConnect Wrapping Portal, add the following flag in theAdvanced Option section in theExtra
options field:
-addInternetPermission

MobileIron provides a sample app, ApiUsageDemo, that demonstrates the necessary code.

Related topics

l Preparing to use the wrapping tool (when using the AppConnect for AndroidWrapping Tool)

l Android API Usage Demo sample app overview

Image selection from outside the AppConnect container

To select an image from outside the AppConnect container, such as the device’s gallery, the appmust be granted
the permission Manifest.permission.READ_EXTERNAL_STORAGE. This permission is necessary because of how
the wrapper implements selecting an image from outside the AppConnect container.

Do the following in your app if it selects images from outside the AppConnect container:

1. Add the permission android.permission.READ_EXTERNAL_STORAGE to your app’s
AndroidManifest.xml file before you submit it to the AppConnect Wrapping Portal.

2. Provide code to grant the permission at runtime.

MobileIron provides a sample app, ApiUsageDemo, that demonstrates the necessary code.

Related topics

l Sample apps, tester app, and Cordova plugin

l Android API Usage Demo sample app overview

External storage permissions

When awrapped app saves data to its own app-specific directory on external storage, such as an SD card, the
wrapper saves the data to a particular location depending on the wrapper version. The storage location, which is
returned by getExternalFilesDir(), determines whether the wrapped app requires the external storage
permission (WRITE_EXTERNAL_STORAGE). The following table provides the storage location and permission
requirements.

Image selection fromoutside theAppConnectcontainer

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 90

Wrapper version External storage location Does the wrapped app require the
WRITE_EXTERNAL_STORAGE
permission?

Prior to 8.2 /<sdcard_path>/AppConnect/ Yes.

The permission is necessary because
the storage location is not specific to
the wrapped app’s package name.

8.2 through the
most recently
released version as
supported by
MobileIron

/<sdcard_path>/Android/data/<wrapped_pkg>/ No.

The permission is not necessary
because the storage location is
specific to the wrapped app’s package
name.

TABLE 9. EXTERNAL STORAGE PERMISSIONS

However, consider the case when you are re-wrapping an app that was previously wrapped with a wrapper version
prior to 8.2. In this case, the wrapped app still requires the WRITE_EXTERNAL_STORAGE permission. The
wrapped app still needs the permission so that the wrapper canmove the data from the pre-8.2 storage location to
the new location. The wrapper moves the data after the wrapped app finishes its initialization, somake sure the
permission is granted during initialization. After the wrapper has moved the data, later versions of the wrapped
app do not require the WRITE_EXTERNAL_STORAGE permission to save data to the app-specific external storage
directory.

NOTE: Apps request permissions at runtime when running onAndroid 6.0 through themost recently
released version as supportedbyMobileIron. When running Android versions prior 6.0, apps
request permissions at installation time. Therefore, the runtime permission requirements for
moving the datado not apply onAndroid versions prior to 6.0.

Support for scoped storage

AppConnect supports scoped storage. If the targetSdkVersion of the app is set to 30, ensure that the app is
wrapped with the Generation 2Wrapper. No additional setup is required.

IMPORTANT: If you set targetSdkVersion to 29, you canwrap the appwith the Generation 1wrapper.
However, ensure that android:requestLegacyExternalStorage="true" in
AndroidManifest.xml. Otherwise, Android activates the ScopedStorage bydefault.

Receiving information from outside the AppConnect container

Sometimes wrapped apps need to receive information from outside the AppConnect container that is different than
what is supported by theMobileIron server policies and configurations. For example, an appmight need to receive
a system broadcast event.

Support for scopedstorage

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 91

If your wrapped app has this requirement, you can add a wrapping flag that specifies which Android intent action
you want to allow the app to receive. The wrapping flag is -allowIntentAction. The flag is followed by a list of
actions to allow. Separate actions with spaces.

For example:
-allowIntentAction android.intent.action.TIMEZONE_CHANGED

USBOTG support

Wrapped apps can create, read, and write unencrypted image and text files to a USB OTG (on-the-go) drive that
uses a FAT32 file system.

For a wrapped app to be able to take these actions, a key-value pair is required on the Secure Apps Manager’s
AppConnect app configuration onMobileIron Core. The new key is MI_AC_ENABLE_USB_UNENCRYPTED_
ACCESS. Access to files on a USB OTG drive is allowed only if the value of the key is true. The value defaults to
false.

NOTE: This feature is supportedonlywithMobileIronCore andConnectedCloud. It is not supported
withMobileIronCloud.

Preference API usage

If your app uses the PreferenceActivity or PreferenceFragment APIs:

l If you wrap with the Generation 1 wrapper, change your app to use the PreferenceFragmentCompat APIs
for the app to behave correctly on Android 9.0 through themost recently released version as supported by
MobileIron.

l If you wrap with the Generation 2 wrapper, MobileIron recommends that you change your app to use the
PreferenceFragmentCompat APIs, becauseGoogle has deprecated the PreferenceActivity and
PreferenceFragment APIs.

Google deprecated the PreferenceActivity API in Android 3.0 and the PreferenceFragment API in Android 9.0 (API
level 28).

64-bit support

l Generation 1 wrapper provides 64-bit support by default.

l Generation 2 wrapper wraps apps with native libraries in both 32-bit and 64-bit versions.
However, if the app does not use native libraries, the app is wrapped only with 64-bit support.

You can disable 64-bit mode by entering the -disableArm64 option. For more information about using the option see
Uploading and wrapping an app and Preparing to use the wrapping tool.

USBOTGsupport

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 92

Linking native Javamethods

In wrapped apps, native javamethods are linked as soon as the client native library loads. In unwrapped apps, the
methods are linked on their first call.

Configure the flag -keepJavaNativesLazyLinking to preserve the old linkingmechanism for backward
compatibility. However, do not use this option for wrapping Xamarin apps.

You can disable 64-bit mode by entering the -disableArm64 option. For more information about using the option see
Uploading and wrapping an app and Preparing to use the wrapping tool.

Wrapping support of commonly used app capabilities
The following sections summarize the app capabilities that both the Generation 1 and 2 wrappers support, and the
app capabilities supported by only one wrapper or the other.

Related topics

l For information about the types of apps supported with each wrapper mode, see Determining the wrapping
mode

l For information about supported processors and native libraries, see Android devices supporting
AppConnect apps.

l For information about APIs supported and not supported with AppTunnel with HTTP/S tunneling, see
AppTunnel with HTTP/S tunneling.

Generation 1 andGeneration 2 support for commonly used app capabilities

The following commonly used app capabilities are supported by both the Generation 1 wrapper and theGeneration
2 wrapper:

l PHONE_STATE, SCREEN_ON, and SCREEN_OFF broadcasts can be received in wrapped apps.

l URL intents from apps outside the container can be allowed into the container.

l Apps containingmultiple dex files are supported.

l Badge count APIs (android.intent.action.BADGE_COUNT_UPDATE) are supported.

l Apps can have as many methods as the system allows.

l Using the GoogleMaps API is supported.

l Using the GoogleMaps APIs Premium Plan is supported.

l Wrapping obfuscated code is supported.

l Using DocumentsProvider APIs are supported.
For apps wrapped with the Generation 2 wrapper, the app can run but the DocumentsProvider API
functionality is not supported.

Linkingnative Javamethods

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 93

l Identifiers in DEX bytecodes can contain characters that are legal in Kotlin or Java.

l Using a service which extends android.app.job.JobService is supported.

l Using the javax.xml.parsers.SAXParser.parse() method is supported.

l Using the com.squareup.okhttp.OkUrlFactory class is supported.

l Using android.settings.LOCATION_SOURCE_SETTINGS is supported.

l UsingGoogle Play Services 9.0 APIs is supported.

l Apps which target Android API levels through 30.

l The android.support.v4.content.FileProvider API is supported.

l The android.provider.MediaStore API is supported for media on the device.

l The android.media.MediaRecorder API is supported with the device’s nativemedia recorder.
MobileIron recommends callingMediaRecorder.stop() in a thread other than the user interface thread, and
showing a progress indicator when stopping the recording. This recommendation is because when the
media recorder stops recording, the wrapper encrypts the recording. Therefore, saving the recorded video
can be slow, causing a noticeable delay after the device user stops recording. This delay is most
noticeable with video recordings when using the Generation 1 wrapper.

l The android.media.MediaPlayer API is supported with the device’s nativemedia player. Streamingmedia
from a remote source with this API is not supported when using AppTunnel with HTTP/S tunnel or
AppTunnel with TCP tunneling.

l The android.media.MediaMetadataRetriever API is supported with the device’s nativemedia player.

l The android.speech.RecognizerIntent class is supported for starting an activity with the action ACTION_
RECOGNIZE_SPEECH.

l The intents android.intent.action.OPEN_DOCUMENT, CREATE_DOCUMENT, andOPEN_
DOCUMENT_TREE are supported for OTGUSB storage as described in USB OTG support.

l The <layout> manifest element is supported.

l The action com.android.camera.action.CROP is supported to share cropped images with non-AppConnect
apps. This feature requires setting the key MI_AC_SHARE_CONTENT to True in the Secure App
Manager’s AppConnect app configuration in MobileIron Core. This feature is supported only when the
Google Photo app is used to crop the image.

l Using the Crashlytics library is supported by using the wrapping flag -enableCrashlytics. If you are
using the AppConnect Wrapping Portal, see The AppConnect wrapping portal. If you are using the
AppConnect wrapping tool, see "Selecting wrapping options in the wrapping tool" in Preparing to use the
wrapping tool.

l Using the intent ACTION_MEDIA_SCANNER_SCAN_FILE in a broadcast action to save images into the
Android gallery or other media database is supported when theGallery data loss prevention policy on the
MobileIron server is set to allowed.

l Kotlin coroutines.

l BlobStoreManager.Session.allowPublicAccess() which, in wrapped apps, behaves like the
allowSameSignatureAccess() call. This prevents wrapped apps from providing access to unwrapped apps.

l Realm Database library.

Generation1 andGeneration2 support for commonlyusedappcapabilities

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 94

l The following ThumbnailUtils deprecatedmethods are supported: createAudioThumbnail,
createImageThumbnail, createVideoThumbnail.

Related topics

l Android API Usage Demo sample app overview

Generation 1 wrapper support for commonly used app capabilities

l TheGeneration 1 wrapper supports data encryption only for Java file I/O.

l The intents android.intent.action.OPEN_DOCUMENT andOPEN_DOCUMENT_TREE are supported for
device storage and for SD card storage.

CREATE_DOCUMENT is not supported.

Generation 2Wrapper support for commonly used app capabilities

The following commonly used app capabilities are supported by only the Generation 2 wrapper:

l Data Encryption of all file I/O

l AppTunnel with TCP Tunneling as described in AppTunnel with TCP tunneling.

l Java Native Interface (JNI) call support:

o Calling from Java to native code

o Calling from native code to Java

l Passing file descriptors with Parcels across processes

l Calls to Runtime.exec are supported with a special flag. Contact MobileIron Technical Support.
This will function only if the binary being executed is not performing any direct file I/O.

l AccountManager APIs getAccounts(), getAccountsByType(), and getAccountsByTypeAndFeatures() are
supported.

l The intents android.intent.action.OPEN_DOCUMENT, CREATE_DOCUMENT, andOPEN_
DOCUMENT_TREE are supported for device storage and for SD card storage.

l Calls (by reflection) to the privatemethod java.lang.Runtime.nativeLoad()

l Wrapping apps that use 64-bit native libraries (C or C++ libraries)

l Scoped storage
See Support for scoped storage.

Knownwrapper limitations
The following sections summarize the limitations of app capabilities of both the Generation 1 and 2 wrappers, and
the limitations of only one wrapper or the other.

Generation1wrapper support for commonlyusedappcapabilities

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 95

Related topics

l For information about the types of apps supported with each wrapper mode, see Determining the wrapping
mode

l For information about supported processors and native libraries, see Android devices supporting
AppConnect apps.

l For information about APIs supported and not supported with AppTunnel with HTTP/S tunneling, see
AppTunnel with HTTP/S tunneling.

Generation 1 andGeneration 2 wrapper limitations

Apps wrapped with either the Generation 1 or Generation 2 wrapper have limitations regarding app capabilities.

The following limited app capabilities have been identified:

l Accessing Google Play from the AppConnect app is not supported.

l Google CloudMessaging XMPP Mode is not supported, and the deprecated GCM APIs
(com.google.android.gcm) are not supported.
See also Google CloudMessaging considerations.

l Embedded SQLite databases are not supported.
If you embed an SQLite database in your app as an asset or raw resource, the app cannot be wrapped.
Similarly, you cannot download an SQLite database from over the network and use it in your app.
However, programmatically creating SQLite databases is supported.

l Creating home screen shortcuts is not supported.

l Hidden APIs are not supported. Using hidden APIs can cause undefined behavior in your app, including
possible data leakage.

l Android widgets are not supported.

l android.security.KeyChain APIs are not supported.

l Launcher icons must be in RGB format.

l Launcher icons must be square.

l Android Device Administration APIs are not supported.

l Some non-standard libraries are not supported with AppTunnel with HTTP/S tunneling.
See AppTunnel with HTTP/S tunneling on page 22.

l java.util.jar.JarFile is not supported.

l java.net.JarURLConnection is not supported.

l Using SQLCipher and Android SQLite databases at the same time is not supported.
Developers shouldmove all databases to SQLCipher or Android SQLite.

Generation1 andGeneration2wrapper limitations

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 96

l Creating documents using the DocumentsProvider action android.intent.action.CREATE_DOCUMENT is
not supported.

l Installing other apps is not supported.

l Usingmultiple JAR files using the Android Support Library is not supported.

l The DexClassLoader class is not supported.

l The deprecated contacts authority (android.provider.Contacts) is not supported.
Only the newer android.provider.ContactsContract is supported.

l Using packages starting with an upper case character is not supported.

l Access to content://media/ is not supported.
As a result, camera access in PhoneGap apps is not supported using the PhoneGap APIs.

l If an app reads and writes application directories on external storage, the
[READ/WRITE]_EXTERNAL_STORAGE permissionmust be specified in the Android manifest.

l URIs are rewritten inWebView objects, which potentially impacts Content-Security-Policies:

o File:// URIs are rewritten to allow access to encrypted files. For example, the URI
file://someFileName is rewritten as content://com.forgepond.0.<pkg_name>/<data>.

o Content:// URIs are rewritten to restrict access to apps within the container. For example, the URI
content://foo/bar is rewritten as content://forgepond.foo/bar.

l PrintManager APIs are not supported.

l Google Analytics APIs are not supported.

l Kiosk mode (screen pinning) is not supported.

l Wrapped Cordova apps cannot read from the photo gallery using
com.synconset.MultiImageChooserActivity or com.synconset.ImagePicker because they do not create
an ACTION_GET_CONTENT intent. Ensure Cordova plugins use ACTION_GET_CONTENT intent for
image selection.

l Using JobIntentService andmanifest permission "android.permission.BIND_JOB_SERVICE" is not
supported unless you add the following code to Proguard:

-keep class android.support.v4.app.JobIntentService {
*;

}

l Wrapped Cordova apps cannot read from the photo gallery using
com.synconset.MultiImageChooserActivity or com.synconset.ImagePicker because they do not create
an ACTION_GET_CONTENT intent. Ensure Cordova plugins use the ACTION_GET_CONTENT intent
for image selection.

l When awrapped app attempts to retrieve a file from external storage using an Intent with the action
ACTION_PICK, only content in the Gallery app with types image/ or video/ are presented to the user to

Generation1 andGeneration2wrapper limitations

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 97

choose from.

l Wrapping apps that load unwrapped Java code is not supported. Although wrapping the app succeeds, the
app will fail when it runs.

Generation 1 wrapper limitations

Apps wrapped with the Generation 1 wrapper have limitations regarding app capabilities.

The following limited app capability has been identified:

l AppTunnel with TCP tunneling is not supported.

Generation 2 wrapper limitations

Apps wrapped with the Generation 2 wrapper have limitations regarding app capabilities.

l Upgrading aGeneration 1 wrapped app to aGeneration 2 wrapped version of the app is not supported.

l Creatingmultiple processes is not supported.

l Calling exec() via native libraries are not supported.
Java's Runtime.exec() is supported, with some limitations as described in Generation 2Wrapper support
for commonly used app capabilities on page 94.

l AppTunnel with TCP tunneling is not supported for apps that useOOB (Out-of-bandmessaging) and TCP
urgent packets.

l Wi-Fi proxies are not supported with AppTunnel with TCP tunneling.

l Callingmmap() to map private pages (theMAP_PRIVATE flag) is not supported.

l Callingmremap() with theMREMAP_FIXED flag is not supported on file descriptors.

l The DocumentsProvider API functionality is not supported. However, the app can be wrapped.

l AlthoughGeneration 2 wrapping supports wrapping apps that load native libraries, it does not support
loading native libraries by any means other than system calls such as System.load, System.loadLibrary,
or dlopen().

Generation1wrapper limitations

12

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 98

Legacy mechanism for handling AppConnect
app-specific configuration

IMPORTANT:

l Thismechanism for handling AppConnect app-specific configuration is deprecated, although still
supported.

l Thismechanism is replacedby themechanism described in Handling AppConnect app-specific
configuration.

l If you have already used this legacymechanism, modify your app to use the newmechanism as
soonas possible.

l If you are adding app-specific configuration handling to your app for the first time, use the new
mechanism.

For information about the legacy mechanism for handling AppConnect app-specific configuration, see:

l Overview of legacy configuration handling

l Communicating with theMobileIron client app using intents for legacy configuration handling

l App-specific configuration legacy data flow

l Contents of the Intent objects in legacy configuration handling

l Tasks for legacy configuration handling

l Sample Java app for legacy app-specific configuration handling

l App for testing legacy configuration handling

l Best practices for handling app-specific configuration

Overview of legacy configuration handling
TheMobileIron server administrator can set up app-specific configuration on the server for AppConnect for Android
apps. This configuration is in the form of key-value pairs. Your app can receive these key-value pairs. Specifically,
when you implement configuration handling in your app, your app:

l requests the current configuration when it first runs.
Your app then receives an asynchronous response containing the key-value pairs.

l receives updates to the configuration.

MobileIron provides the following apps to help you add configuration handling to your Java app:

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 99

l a sample AppConnect app, HelloAppConnect-oldAPI, that implements configuration handling.
You can use this sample app’s code as a starting point for your own.

l an app for testing your app’s configuration handling, without using theMobileIron server, or the
Mobile@Work or MobileIron Go app, and without submitting your app toMobileIron for wrapping.
The testing app that supports the legacy configuration handling is available only in releases prior to
AppConnect 8.6.0.0 for Android.

This chapter describes how to receive app-specific configuration in Java apps using the legacy mechanism

Phonegap developers

You can implement app-specific configuration in a Phonegap app by using aMobileIron-provided Cordova plugin.
This plugin provides the necessary APIs to receive the app-specific configuration from theMobileIron server.

The Cordova plugin and sample Phonegap app that uses the legacy mechanism for configuration handling is
available only in releases prior to AppConnect 8.6.0.0 for Android. They can be found in

l AppConnectCordovaConfigPlugin-w.x.y.z.zip, which contains the the Cordova plugin. (w.x.y.z
corresponds to the AppConnect version for Android)
See the README.md in the ZIP file for information on using the plugin.

l HelloCordovaAppConnect-w.x.y.z.zip, which contains a sample Phonegap app that uses the plugin,
available as a starting point for your own app.

React Native developers

You can implement app-specific configuration in a React Native app by usingMobileIron-provided files that make
up a React Native package called ConfigServicePackage.

The package and sample demo app that use the legacy mechanism for configuration handling are available only in
releases prior to AppConnect 8.6.0.0 for Android.

The files provide the necessary APIs to receive the app-specific configuration from theMobileIron server.
MobileIron provides a sample React Native app called HelloReact that includes:

l all files relating to getting app-specific configuration

l a README.txt with instructions for using the files

l sample code for using the files

Related topics

l Sample Java app for legacy app-specific configuration handling.

l App for testing legacy configuration handling

Overviewof legacyconfigurationhandling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 100

Communicating with theMobileIron client app using intents for
legacy configuration handling
TheMobileIron server passes the app-specific configuration to theMobileIron client app (Mobile@Work when
usingMobileIron Core or Connected Cloud, andMobileIron Gowhen usingMobileIron Cloud). TheMobileIron client
app in turn passes the configuration to your app. The communication between theMobileIron client app and your
app uses intents (android.content.Intent objects). TheMobileIron client app and your app each have services to
handle the Intent objects. The Intent objects are implicit intents, so Intent filters and action values in the Intent
object tell the system which services handle the intent.

NOTE: OnAndroid 5.x or newer devices, youmust use explicit intents. To use anexplicit intent, use
PackageManager.resolveService(intent, 0); and thencall startService().

The Intent objects passed between theMobileIron client app and your app are:

Intent object Description

Intent object with the action:
"com.mobileiron.REQUEST_CONFIG"

When your appmakes a request for the current configuration, it
starts a service in theMobileIron client app. Specifically, the
app calls startService(), passing an Intent object with this
action.

Intent object with the action:
"com.mobileiron.HANDLE_CONFIG"

When theMobileIron client app has a configuration update for
your app, it starts a service in your app. Specifically, the
MobileIron client app calls startService(), passing an Intent
object with this action.

Intent object in extended data named:
"configAppliedIntent"

in the Intent object with the action:

"com.mobileiron.HANDLE_CONFIG".

When your app successfully handles the key-value pairs sent in
a configuration update, it notifies theMobileIron client app of the
success. Specifically, your app calls startService(), passing
this Intent object.

Intent object in extended data named:
"configErrorIntent"

in the Intent object with the action:

"com.mobileiron.HANDLE_CONFIG".

When your app fails to successfully handle the key-value pairs
sent in a configuration update, it notifies theMobileIron client
app of the failure. Specifically, your app calls startService(),
passing this Intent object.

TABLE 10. INTENTOBJECTS PASSED BETWEENMOBILEIRONCLIENT AND APP

App-specific configuration legacy data flow
The following sequence diagram shows the flow of data between theMobileIron server, theMobileIron client app,
and your app when theMobileIron server administrator has updated the app-specific configuration on the server:

Communicatingwith theMobileIronclientappusing intents for legacyconfigurationhandling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 101

FIGURE 8.APP-SPECIFICCONFIGURATIONDATA FLOW

NOTE: When your app first runs and requests the configuration, the sequence beginswith your app
sending a "com.mobileiron.REQUEST_CONFIG" intent to theMobileIron client app. After that, the
sequence continues as shown in the diagram.

Contents of the Intent objects in legacy configuration handling
The following table shows the contents that you work with in each Intent object:

Contents of the Intentobjects in legacyconfigurationhandling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 102

Intent object Other data in an Intent object with this action

Intent object with the action:
"com.mobileiron.REQUEST_CONFIG"

• your app’s package name, in extended data named
"packageName".
The extended data has a string value that is the name of
your app’s package.

Intent object with the action:
"com.mobileiron.HANDLE_CONFIG"

• a Bundle object, in extended data named "config".
The Bundle object contains the key-value pairs of the
configuration.

• an Intent object to send to theMobileIron client app after
successfully processing the key-value pairs.
This Intent object is in extended data named
"configAppliedIntent"

• an Intent object to send to theMobileIron client app after
failing to process the key-value pairs.
This Intent object is in extended data named
"configErrorIntent".

Intent object in extended data named:
"configAppliedIntent"

in the Intent object with the action
"com.mobileiron.HANDLE_CONFIG".

Your app does not add any further data to this Intent object.

Intent object in extended data named:
"configErrorIntent"

in the Intent object with the action
"com.mobileiron.HANDLE_CONFIG".

• an error string, in extended data named "errorString".
The string describes the error that occurred when your app
failed to process the key-value pairs.

TABLE 11.CONTENTSOF EACH INTENTOBJECT

Tasks for legacy configuration handling
To handle app-specific configuration using the legacy mechanism in your app, do the following high-level tasks:

l Check at runtime if your app is wrapped.
This check is typically necessary if you are a third-party app developer using the same source code to
create a Google Play app and an in-house AppConnect app. Only wrapped AppConnect apps can receive
app-specific configuration from aMobileIron server.
If you are developing an app that will be distributed only as an in-house app, not from Google Play, you will
not use this check.

l Add a service to AndroidManifest.xml.
Add a service for handling configuration intents to your app’s AndroidManifest.xml file. In the service, you
specify an intent-filter for the intent with the action "com.mobileiron.HANDLE_CONFIG".

l Create a class that extends IntentService.

Tasks for legacyconfigurationhandling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 103

The name of the class matches the android:name attribute of the service you add to the
AndroidManifest.xml file. You implement the onHandleIntent() method, in which you asynchronously
receive the configuration’s key-value pairs when they change or you request them.

l Request the configuration when your app starts.
When your app starts, request the configuration, which your app will receive asynchronously in its
onHandleIntent() method.

l Specify app configuration and policies in .properties files.
You can include .properties files in your app that list your app’s key-value pairs and data loss prevention
(DLP) policies. When theMobileIron server administrator uploads your app to the server, these files cause
the server to automatically configure the key-value pairs and DLP policies.

Check at runtime if your app is wrapped

If you are a third-party developer, you sometimes develop an app in which the same source code is used in these
ways:

l as a wrapped app distributed from theMobileIron server’s App Catalog
This secure AppConnect app is for enterprise device users.

l as an unwrapped app distributed from Google Play
This unsecured app is for general distribution.

An app that serves both thesemarkets typically behaves differently depending on whether it is a wrapped, secure
AppConnect app.

For example:

l If a wrapped app expects key-value pairs from theMobileIron server, but does not receive the expected
pairs or valid values, it should take appropriate actions.
As a best practice, if your app expects a login ID from the server, but does not receive one, do not allow the
device user to enter the ID manually. See Use only a login ID from theMobileIron server if one is expected.

l If an app is not wrapped, it cannot get its configuration from theMobileIron server. It gets configurable
information another way, such as prompting the device user to enter it.

For example, the unwrapped app prompts the user to enter a login ID.

To determine at runtime whether the app is running as a wrapped app, check this Android system property:

"com.mobileiron.wrapped"

For example, use the following expression:
Boolean.parseBoolean(System.getProperty("com.mobileiron.wrapped", "false"))

The expression returns true if the app is wrapped. Otherwise, it returns false.

Checkat runtime if your app is wrapped

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 104

Add a service to AndroidManifest.xml

Add a <service> element to your app’s AndroidManifest.xml file. This service is for handling the configuration
intent sent from theMobileIron client app.

For example, in HelloAppConnect, the lines in AndroidManifest.xml are:

<service
android:permission="com.mobileiron.CONFIG_PERMISSION”
android:enabled="true"
android:name=".AppConnectConfigService">
<intent-filter>

<action android:name="com.mobileiron.HANDLE_CONFIG"/>
</intent-filter>

</service>

Do the following in the <service> element:

1. Set the attribute android:permission="com.mobileiron.CONFIG_PERMISSION” to ensure that only the
MobileIron client app can start this service.
This permission is necessary only if you are a third-party app developer planning to distribute an
unwrapped version of your app. For more information, see App for testing legacy configuration handling.

2. Ensure that the attribute android:exported is "true", which it is by default.

3. Ensure that the attribute android:enabled is "true", which it is by default.

4. Ensure that the attribute android:enabled of the <application> element that contains the <service>
element is "true", which it is by default.

5. Set the android:name attribute of the <service> element to the name of the class in your app that extends
IntentService. This class in your app implements onHandleIntent() to handle configuration updates.

6. Add an <intent-filter> element that contains an <action> element.

7. Set the android:name attribute of the <action> element to "com.mobileiron.HANDLE_CONFIG".

Create a class that extends IntentService

Create a class that extends IntentService. This class handles the intent with the action
"com.mobileiron.HANDLE_CONFIG".

Do the following:
1. Name the class the same name you specified in the android:name attribute of the <service> element in the

AndroidManifest.xml file.
2. Implement onHandleConfig() to handle the received Intent object with the action "com.mobileiron.HANDLE_

CONFIG".

Implement onHandleConfig()

Implementing onHandleConfig() involves the following steps. Code samples are from HelloAppConnect.

Addaservice toAndroidManifest.xml

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 105

1. Get the Bundle object contained in the received Intent object.
For example:
Bundle config = intent.getBundleExtra("config");

NOTE: If no configuration exists on server for your app, the Bundle object is null. If a configuration exists
on server, but contains no key-value pairs, the Bundle object is not null, but its keyset() method
returns an empty set.

2. Extract the key-value pairs in the Bundle object.
For example:

Map<String, String> map = new HashMap<String, String>();
for (String key: config.keySet()) {

map.put(key, config.getString(key));
}

3. Process the key-value pairs according to your app’s requirements.
4. If the app successfully processes the key-value pairs, start a service. Pass the service the “success” Intent

object. The “success” Intent object is in the received Intent object, and has the extended data name
"configAppliedIntent".
For example:

startService ((Intent)intent.getParcelableExtra("configAppliedIntent"));

5. If the app fails to process the key-value pairs, start a service. Pass the service the “error” Intent object. The
“error” Intent object is in the received Intent object, and has the extended data name "configErrorIntent".
Include a string in the “error” Intent object, where the string value describes the error condition.
For example:

Intent i = (Intent)intent.getParcelableExtra("configErrorIntent");
i.putExtra("errorString", "This is a sample error message.");
startService(i);

Reasons for returning an error

If your app fails to process the key-value pairs, it starts a service, passing the “error” Intent object. Some reasons
for failure are:

l A value is not valid for its key.
For example, if the key is “emailAddress”, but the value does not include the@ character, return an error.

l A value is empty.
Typically, if a key is included in theMobileIron server configuration for your app, your app expects a value.
If theMobileIron server administrator did not enter a value, return an error.

l Your app encounters a system error while processing a key-value pair.
Your app determines whether a system error impacts key-value processing to warrant an error return.

When the app returns an error, how it continues to operate depends on your app’s design and requirements.

Reasons for returninganerror

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 106

Request the configuration when your app starts

When your app starts, request the app-specific configuration. Do the following:

1. Create an Intent object.

2. Set the Intent object’s action to "com.mobileiron.REQUEST_CONFIG".

3. Add your app’s package name as extended data to the Intent object.

4. Call startService() with the Intent object.

5. Handle the asynchronous response in onHandleConfig().

For example, based on code in HelloAppConnect:

Intent intent = new Intent("com.mobileiron.REQUEST_CONFIG");
intent.putExtra("packageName", ctx.getPackageName());
ctx.startService(intent);

NOTE: Request the configuration only once, when your app starts. After that, whenever theMobileIron
server administrator updates the configuration on the server, your appautomatically receives
the Intent object with the action "com.mobileiron.HANDLE_CONFIG".

Specify app configuration and policies in .properties files

You can include the following .properties files with your app:

l appconnectconfig.properties
This file specifies your app’s configuration keys and their default values, if any. Providing this .properties
file causes theMobileIron server to automatically configure the keys and their default values on the server.

l appconnectpolicy.properties
This file specifies the default data loss prevention policy for screen capture for the app. Specifically, it
specifies whether screen capture is allowed in the app. The policy is enforced by the AppConnect
wrapping technology.

If your app contains these .properties files, theMobileIron server automatically configures the key-value pairs and
the screen capture policy that you specified. This automatic configuration occurs when theMobileIron server
administrator uploads your app to the server’s App Catalog.

The administrator can then change the default values on the server as necessary for that enterprise.

File location of the .properties files

Put the .properties files in this directory in your app:

<application root directory>/res/raw

Request the configurationwhenyour appstarts

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 107

Example of the appconnectconfig.properties file

An example of an appconnectconfig.properties file is available in HelloAppConnect.

It contains the following:
This sample appconnectconfig.properties file uses rules found at

http://en.wikipedia.org/wiki/.properties.

server=www.myCompanyApplicationServer.com

port=8080

In the following example, the resulting property value contains only single spaces.

It contains no other whitespace.

Therefore, the value is: "I'm also demonstrating a multi-line property!"

name\ with\ spaces:I'm also demonstrating \

a multi-line property!

Use an empty value for keys that have no default value.

nodefault=

! You can also start comments with exclamation marks.

You can use these MobileIron Core variables for values:

$USERID$, $EMAIL$, $PASSWORD$,

$USER_CUSTOM1$, $USER_CUSTOM2$, $USER_CUSTOM3$, $USER_CUSTOM4$

You can use these MobileIron Cloud variables for values:

${userUID}, ${userEmailAddress}

${USER_CUSTOM1}, ${USER_CUSTOM2}, ${USER_CUSTOM3}, ${USER_CUSTOM4}

userid=$USERID$

email=$EMAIL$

user_custom1=$USER_CUSTOM1$

combined=$USERID$::$EMAIL$

Format of the appconnectconfig.properties file

Use the rules for well-formed Java property files given in the Java Properties class. For example, use the
characters = or : or a space to separate the key from the value. Use \ before each of these characters if the
character is part of the key.

The values that you specify are the default values for the key. If the value has no default, leave the value empty.

Example of theappconnectconfig.properties file

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 108

A value can be any string. The value can also use one of the following server variables:

MobileIron
Core variable

MobileIron Cloud
variable

Description

$USERID$ ${userUID} The device user’s enterprise user ID, typically an LDAP ID.

$PASSWORD$ Not available The device user’s enterprise user password, typically an
LDAP password.

$EMAIL$ ${userEmailAddress} The device user’s enterprise email address.

$USER_CUSTOM1$

$USER_CUSTOM2$

$USER_CUSTOM3$

$USER_CUSTOM4$

${USER_CUSTOM1}

${USER_CUSTOM2}

${USER_CUSTOM3}

${USER_CUSTOM4}

Custom variables that theMobileIron server administrator sets
up. Only use these variables if you are developing an app for a
specific MobileIron customer. Contact the server administrator
to determine the values of these variables.

TABLE 12. SERVER VARIABLES IN DEFAULT VALUESOF KEYS

You can also specify values that are combinations of text and server variables. For example, usingMobileIron Core
variables:

l $USERID$::$EMAIL$

l $USERID$@somedomain.com

Use server variables for default values in your appconnectconfig.properties only if you know what kind of server
(MobileIron Core or MobileIron Cloud) your app will be used with. If you don’t know, leave the value empty. The
server administrator will fill in the value.

Example of the appconnectpolicy.properties file

An example of an appconnectpolicy.properties file is available in HelloAppConnect.

It contains the following:
A sample appconnectpolicy.properties file

screencapture=disable

Format of the appconnectpolicy.properties file

To disable screen capture in the app, include the following line in appconnectpolicy.properties:
screencapture=disable

To allow screen capture:
screencapture=allow

Example of theappconnectpolicy.properties file

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 109

Sample Java app for legacy app-specific configuration handling
MobileIron provides a sample Java app, HelloAppConnect-oldAPI, which handles app-specific configuration using
the legacy mechanism for app-specific configuration handling. You can use the code from this app as a starting
point for your app’s configuration handling.

HelloAppConnect-oldAPI displays this screen:

FIGURE 9.HELLOAPPCONNECT-OLDAPI SCREEN

The HelloAppConnect-oldAPI app:

l sends a "com.mobileiron.REQUEST_CONFIG" Intent object when you tap Refresh.

l handles the "com.mobileiron.HANDLE_CONFIG" Intent object in onHandleIntent().

It displays the received key-value pairs, and sends either a "configAppliedIntent" or
"configErrorIntent" Intent object. The choice depends on whether you select Report Config Error.
When it sends an error, it includes the error string "This is a sample error message."

l displays whether the app is wrapped, based on the value of the system property
"com.mobileiron.wrapped"

App for testing legacy configuration handling
To test your app’s configuration handling without using aMobileIron server or MobileIron client app, you can use the
AppConnectTester app. Use the AppConnectTester to test your app before you submit it to MobileIron for
wrapping. You can enter key-value pairs into the AppConnectTester. It then passes the key-value pairs to your app
just as theMobileIron client app would.

Sample Javaapp for legacyapp-specific configurationhandling

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 110

IMPORTANT: The testing app that supports the legacyconfiguration handling is available only in
releases prior to AppConnect 8.6.0.0 for Android. No similar app is available for testing the
mechanism described in Handling AppConnect app-specific configuration.

Using AppConnectTester

The AppConnectTester app displays the following:

FIGURE 10.APPCONNECT TESTER

To use AppConnectTester to test your app:

1. Launch AppConnectTester.

2. Enter the package name of your app. For example:
com.mobileiron.helloappconnect

3. TapAdd.

UsingAppConnectTester

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 111

FIGURE 11.APPCONNECT TESTER KEY-VALUE PAIR

4. Enter a key and value.

5. Repeat steps 3 and 4 as needed.

6. TapSave+Send.
AppConnectTester saves your entries, and sends the key-value pairs to your app in the "HANDLE_CONFIG"
Intent object.

7. If your app returns the "configAppliedIntent" Intent object, AppConnectTester displays “Success
Received!”

8. If your app returns the "configErrorIntent" Intent object, AppConnectTester displays the error string
that your app specified in the Intent object.

If you tap the buttonSave+Send null, AppConnectTester saves your entries but sends a null Bundle object in the
"HANDLE_CONFIG" Intent object. In a production environment, the Bundle object is null when theMobileIron server
administrator has not yet configured the AppConnect app configuration for your app on the server.

Protecting the unwrapped version of your app

If you are a third-party developer, and you are developing both a wrapped version and unwrapped version of your
app with the same source code, consider the following scenario.

Your unwrapped version, distributed onGoogle Play, does not receive configuration from aMobileIron server.
However, you use the unwrapped version to test configuration handling with AppConnectTester. Therefore, you
must protect your unwrapped app from configuration sent from a potentially malicious app. This additional
protection is not necessary for your wrapped app, because the wrapper provides this protection for you.

Protecting the unwrappedversionof your app

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 112

You provide the protection by using a permission that is granted to apps only if they have the same signature as
your app. The AppConnectTester, by using the same signature as your app, can use the permission. When you
receive the configuration intent in your onHandleConfig() method, when your app is not wrapped, your app
checks whether it owns the permission:

l If your app owns the permission, process the intent because your app knows it is receiving the
configuration intent from the AppConnectTester app.

l If your app does not own the permission, do not process the intent. Another app, installed before yours,
must have declared the permission first, but without requiring apps to have the same signature to be
granted the permission. Therefore, although the system granted your app the permission so that your app
receives the intent, your app does not process the intent, since it was sent by a potentially malicious app.

Use the following steps to protect your unwrapped app from potentially malicious configuration intents:

1. In your app’s AndroidManifest.xml, declare the following permission in the <manifest> element:

<permission
android:name="com.mobileiron.CONFIG_PERMISSION"
android:protectionLevel="signature" >

The "signature" protection level means the system will grant the permission to apps only if they are
signed with the same certificate as your app.

2. In AndroidManifest.xml, request the permission in the <manifest> element:
<uses-permission android:name="com.mobileiron.CONFIG_PERMISSION" />

3. In AndroidManifest.xml, in your service that handles the configuration intents, require that the intent comes
only from an app with the permission:
android:permission="com.mobileiron.CONFIG_PERMISSION"

4. In your onHandleConfig() implementation, process the configuration intent only if your app owns the
permission:

if (!Boolean.parseBoolean(System.getProperty("com.mobileiron.wrapped", "false")) &&;
!getPackageName().equals(getPackageManager().getPermissionInfo(

"com.mobileiron.CONFIG_PERMISSION", 0).packageName)) {
// Do not handle the Intent
return;

}

5. Re-sign the AppConfigTester app so that it has the same key as your app.
When Eclipse builds an app in debugmode, by default it uses the same key for all apps. Therefore, rebuild
the AppConfigTester app in Eclipse in debugmode so that it uses the same key as your app in debug
mode.

Best practices for handling app-specific configuration
The following are best practices when handling app-specific configuration in your app:

Bestpractices for handlingapp-specific configuration

MobileIronAppConnect 9.2.0 for AndroidAppDevelopers Guide| 113

l Provide documentation about your app to theMobileIron server administrator

l Use only a login ID from theMobileIron server if one is expected

Provide documentation about your app to theMobileIron server administrator

Document each key and its valid values. Document the default value, if applicable, and document whether the
value can be empty. Provide this documentation regardless of whether your app includes an
appconnectconfig.properties file.

Use only a login ID from theMobileIron server if one is expected

If a wrapped app expects a key-value pair for the device user’s login ID, it should not prompt the user to enter the
login ID manually. Using only a login ID from theMobileIron server ensures that a user can use the app only if the
enterprise has authenticated the user. If the app does not receive an expected valid user ID, display an error
message to the device user.

Providedocumentationabout your app to theMobileIron server administrator

	Contents
	New features and enhancements
	AppConnect for Android overview
	MobileIron components supporting AppConnect apps
	About wrapping for AppStation
	Apps that you can wrap
	Required app development
	Understanding AppConnect for Android wrapping limitations
	Using AppTunnel with HTTP/S tunneling
	Handling app-specific configuration

	Android devices supporting AppConnect apps
	Features of AppConnect for Android apps
	Accessible Apps to preserve the user experience

	Securing and managing an Android AppConnect app
	Authorization
	AppConnect passcode policy
	AppTunnel with HTTP/S tunneling
	Supported APIs
	HTTP/S redirects
	HelloAppTunnel sample app

	AppTunnel with TCP tunneling
	When to use AppTunnel with HTTP/S tunneling versus TCP tunneling
	SSL between the device and Sentry

	Certificate authentication with AppTunnel with TCP tunneling
	App requirements

	Data loss prevention settings
	Supported file sizes for streaming media

	App whitelist
	Handling app-specific configuration from the MobileIron server
	Ignoring the auto-lock time
	MobileIron server configuration
	App requirements

	Wrapping technology
	Handling AppConnect app-specific configuration
	Overview of configuration handling
	App-specific configuration data flow
	Tasks for configuration handling
	Check at runtime if your app is wrapped
	Create a callback method to receive configuration updates
	Implementing the callback method

	Request the configuration when your app starts
	Add callback information to AndroidManifest.xml
	Specify app configuration and policies in .properties files
	File location of the .properties files
	Example of the appconnectconfig.properties file
	Format of the appconnectconfig.properties file
	Example of the appconnectpolicy.properties file
	Format of the appconnectpolicy.properties file

	Changing from the legacy configuration handling to the new mechanism

	Sample Java app for handling app-specific configuration
	Best practices for handling app-specific configuration
	Provide documentation about your app to the MobileIron server administrator
	Use only a login ID from the MobileIron server if one is expected

	Testing app-specific configuration handling
	Requesting a MobileIron Core test instance
	Downloading Mobile@Work to the device
	Logging in to the Admin Portal
	Creating a label for testing your app
	Enabling AppConnect on MobileIron Core
	Configuring the AppConnect global policy
	Uploading the Secure Apps Manager to MobileIron Core
	Uploading your AppConnect app to MobileIron Core
	Configuring app-specific settings in MobileIron Core
	Registering the test device to MobileIron Core
	Pushing Core configuration changes to the device

	Sample apps, tester app, and Cordova plugin
	Summary of sample apps, tester app, and Cordova plugin
	Location of sample apps, tester app, and Cordova plugin
	Android API Usage Demo sample app overview
	Demonstrated APIs
	Audio Recorder Demo
	Capture Image Demo
	Documents Demo
	Image Decoder Demo
	Media Meta Data Retriever Demo
	Media Player Demo
	Pick Image Demo
	Share Content Demo
	Video Recorder Demo

	HelloReact Demo sample app overview
	Demonstrated functionality
	AppConfig Demo
	Network API Demo
	Capture Image Demo
	Pick Image Demo
	Video View Demo
	Firebase Cloud Messaging Demo

	HelloFlutter sample app overview
	Demonstrated APIs
	AppConfig Demo

	Before wrapping an Android app
	Checking wrapping limitations
	Determining the wrapping mode

	The AppConnect wrapping portal
	Using the AppConnect Wrapping Portal
	Logging in to help.mobileiron.com
	Uploading and wrapping an app
	Downloading the wrapped app

	The AppConnect for Android wrapping tool
	Enterprise private key considerations with AppConnect for Android
	AppConnect for Android Wrapping Tool supported platforms
	Preparing to use the wrapping tool
	Using the AppConnect for Android Wrapping Tool in UI mode
	Launching the wrapping tool
	Providing developer settings to the wrapping tool
	Selecting wrapping options in the wrapping tool
	Wrapping and signing an app with the wrapping tool
	Signing an app with the wrapping tool

	Using the AppConnect for Android Wrapping Tool in CLI mode
	Providing developer settings
	Setting the keystore
	Wrapping and signing the app

	Additional wrapping tasks using CLI
	Signing an app
	Using the Generation 1 wrapper
	Wrapping with a different allowed wrapper version
	Viewing wrapper arguments for a wrapper version
	Using the -help command

	Wrapping tool CLI
	Troubleshooting the wrapping tool
	Distributing wrapped apps with an enterprise key (Core)
	Uploading the apps to the App Catalog
	Configuring the enterprise public key
	Applying labels to the new apps
	Removing labels from the old apps
	The device user experience when upgrading
	Behavior when the device does not have the enterprise public certificate

	After wrapping an Android app
	Adding the wrapped app’s key to the Google API Console
	Wrapped app’s Google API key format
	Adding the new API key to Google API console

	Inform the server administrator of your app’s requirements

	Capabilities and limitations of apps you can wrap
	AppConnect wrapping considerations
	SQLCipher considerations
	SQLCipher library version
	Using both SQLCipher and SQLLite is not supported
	Encryption of the SQLCipher database

	DownloadManager API considerations
	Google Cloud Messaging considerations
	Unsupported GCM features
	Situations when GCM messages are discarded

	Firebase Cloud Messaging and Crashlytics support
	MediaPlayer and MediaMetaDataRetriever Internet permission requirement
	Image selection from outside the AppConnect container
	External storage permissions
	Support for scoped storage
	Receiving information from outside the AppConnect container
	USB OTG support
	Preference API usage
	64-bit support
	Linking native Java methods

	Wrapping support of commonly used app capabilities
	Generation 1 and Generation 2 support for commonly used app capabilities
	Generation 1 wrapper support for commonly used app capabilities
	Generation 2 Wrapper support for commonly used app capabilities

	Known wrapper limitations
	Generation 1 and Generation 2 wrapper limitations
	Generation 1 wrapper limitations
	Generation 2 wrapper limitations

	Legacy mechanism for handling AppConnect app-specific configuration
	Overview of legacy configuration handling
	Communicating with the MobileIron client app using intents for legacy configu...
	App-specific configuration legacy data flow
	Contents of the Intent objects in legacy configuration handling
	Tasks for legacy configuration handling
	Check at runtime if your app is wrapped
	Add a service to AndroidManifest.xml
	Create a class that extends IntentService
	Implement onHandleConfig()
	Reasons for returning an error

	Request the configuration when your app starts
	Specify app configuration and policies in .properties files
	File location of the .properties files
	Example of the appconnectconfig.properties file
	Format of the appconnectconfig.properties file
	Example of the appconnectpolicy.properties file
	Format of the appconnectpolicy.properties file

	Sample Java app for legacy app-specific configuration handling
	App for testing legacy configuration handling
	Using AppConnectTester
	Protecting the unwrapped version of your app

	Best practices for handling app-specific configuration
	Provide documentation about your app to the MobileIron server administrator
	Use only a login ID from the MobileIron server if one is expected

