Zero Trust Secure Access with Pulse Policy Secure and Pulse Connect Secure
Integration Guide
Pulse Secure, LLC
2700 Zanker Road,
Suite 200 San Jose
CA 95134

www.pulsesecure.net

© 2020 by Pulse Secure, LLC. All rights reserved.

Pulse Secure and the Pulse Secure logo are trademarks of Pulse Secure, LLC in the United States. All other trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.

Pulse Secure, LLC assumes no responsibility for any inaccuracies in this document. Pulse Secure, LLC reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

END USER LICENSE AGREEMENT

The Pulse Secure product that is the subject of this technical documentation consists of (or is intended for use with) Pulse Secure software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at http://www.pulsesecure.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Revision History

The following table lists changes made to this document:

<table>
<thead>
<tr>
<th>Document Revision</th>
<th>Release</th>
<th>Date</th>
<th>Feature</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>9.1R8</td>
<td>17/8/20</td>
<td>PCS PPS Integration Guide</td>
<td></td>
</tr>
</tbody>
</table>
Purpose of This Guide

1

Prerequisites

1

Use Cases

1

Visibility and Enforcement with Remote Profiler

3

- Allow Administrator Access to REST APIs
- Configuring Remote Profiler on PCS
- Configuring Role-Mapping Rules for Profiled Devices on PCS

End-to-end Zero Trust Secure Access

8

- Overview
- IF-MAP Federation Use Cases
 - Access Control in the Federated Enterprise
 - Session Migration across PCS and PPS using IF-MAP
- IF-MAP Configuration
 - Configuring IF-MAP Server
 - Configuring IF-MAP Client
 - Configuring IF-MAP Policies
- Active Federated Session Details
 - Imported Session Details
 - Exported Session Details
 - Federated Session Details
- Troubleshooting

Appendix

23

- Clustering in a Federated Deployment
- Replica IF-MAP Server
- Coordinated Threat Control in a Federated Environment
- Performance and Scalability

IoT Access

30

- IoT Policy Provisioning
 - Overview
 - Benefits
 - Deployments
 - Configuring IoT Policy Provisioning
 - Configuring IoT Access Policy
 - Configuring Additional Device Category/Profile Groups
 - Configuring Profiler Groups
 - Troubleshooting
PROVISIONING PCS SESSIONS TO PAN/CHECK POINT/FORTIGATE FIREWALL

48

OVERVIEW
48

DEPLOYMENT OF PPS/PCS USING PAN/CHECK POINT/ FORTIGATE NEXT GENERATION FIREWALL
48

IF-MAP CONFIGURATION
49

- **Step 1: Configuring IF-MAP Server**
- **Step 2: Configuring IF-MAP Client**
- **Step 3: Viewing the Federated Session Details**

ONE-TO-ONE NETWORK ADDRESS TRANSLATION (NAT)
54

- **Overview**
- **One-to-One NAT Deployment**
- **Configuring one-to-one NAT**

REQUESTING TECHNICAL SUPPORT
56

SELF-HELP ONLINE TOOLS AND RESOURCES
56

OPENING A CASE WITH PSGSC
56
Purpose of this Guide
This guide describes how Pulse Policy Secure (PPS) and Pulse Connect Secure (PCS) can provide end-to-end secure access with visibility, access control and compliance for remote users and devices. There are multiple use cases from having a complete visibility through Pulse Secure Profiler, to fully applying compliance checks using Host Checker (HC) and having granular access control. Depending on the requirements different approaches can be taken to control the VPN access.

Prerequisites
This guide assumes you are familiar with the use of the following products and their related terminology.

- Pulse Policy Secure (PPS)
- Pulse Connect Secure (PCS)

Use Cases
The following use cases are supported with PPS and PCS integration:

- Visibility and Enforcement with Remote Profiler - PCS needs to be configured with Remote Profiler, which will send endpoint contextual information to PPS/Profiler. PCS Sessions will be leveraged for endpoint visibility. Based on Profiler device attributes, PCS sessions can be assigned roles. Providing visibility for remote endpoints with contextual information helps to achieve overall endpoint visualization and enforcement based on endpoint attributes applied for pre and post admission control. This feature provides a single pane of glass to visualize all endpoints inside and outside the network, Remote users connecting though desktop clients can be assigned roles based on profiler attributes. Remote mobile clients can also be assigned roles based on device profiles and attributes through MDM integration (MobileIron, AirWatch, and Pulse Workspace (PWS)).

- Seamless access from remote to local with SSO functionality - Remote session can be migrated to PPS as an on-premises session, acting as a single entity to access resources with Single-sign-on capability. Whenever, end-users visit office premises, they don't have to authenticate to PPS again.

- PPS can provision access security policies by leveraging the profiler IoT discovery. This feature can be extended to other device categories.

- PCS user-identity provisioning to Palo Alto Networks and Check Point Next Generation Firewalls. Using Identity-based integration, PCS user-identity information (user-name & user-role) can be pushed to Palo Alto Networks and Check Point Next Generation firewalls so that these firewalls can employ granular level of policies at the perimeter to access protected resources.

- PCS user-identity provisioning to Juniper SRX Firewalls. Integration with Junos SRX firewalls using identity based integration so that remote users can securely access the resources behind Junos SRX firewalls.
Visibility and Enforcement with Remote Profiler

A Remote Profiler is useful in the following cases:

- Profile devices that are outside the enterprise network and connected through PCS.
- Access control of remote users based on device profile.

Figure 1 Visibility and enforcement with Remote Profiler

When user connects to a remote PCS and starts a session:

1. Information such as hostname and IP address, device IP address and MAC address, session identifier, user-agent are retrieved by the session and sent to the Profiler.
2. The Profiler uses the information to profile the devices.
3. Based on the device attributes, PCS assigns the user roles.

The following sections describe the steps to configure a Remote Profiler:

1. **Set up the Profiler**: To set up the profiler, see *Pulse Policy Secure Profiler Administration Guide*.
2. **Allow administrator access to REST APIs**: See *Allow Administrator Access to REST APIs*.
3. **Set up backup profiler** (optional) - To set up sebackup profiler, see *Pulse Policy Secure Profiler Administration Guide*.

Allow Administrator Access to REST APIs

1. Log in to the Profiler.
2. Select *Authentication > Auth. Servers*.
3. Click on the Administrator link.
4. Select the Users tab.
5. Select the corresponding administrator user link, then select **Allow access to REST APIs** and Save Changes.

Note: REST API access to the Profiler can be enabled only for local administrators.

Figure 2 Allowing Access to the Profiler

Configuring Remote Profiler on PCS

Ensure you configure Remote Profiler on PCS, use the following procedure:

1. Select **Authentication > Auth. Servers**.
2. Select **Remote Profiler** from the server type drop-down list and click **New Server**.
3. Enter a name for the Authentication server.
4. Enter the FQDN name or IP address for the Remote Primary Profiler and the Backup Profiler.

 Note: Do not include http:// or https:// before the IP address.

Figure 3 New Remote Profiler

5. Click **Get API Key**. In the Get API Key window, provide the credentials of valid administrator on PPS/Profiler server and click **Next**. The API key generates and displays in the API Key field.
Figure 4 Get API Key

Note:

- If you already have the API key, you can enter it in the API Key field instead of clicking the Get API Key button.
- To enable trusted Root CA certificate validation, select the Validate Server Certificate.
- If trusted Root CA is not enabled, automatic role re-evaluation does not trigger on PCS when device profile changes.

6. **Save** changes.

Once created, communication is established between PCS and the Remote Profiler. You can view device profile data in the Device Discovery Report table of the Profiler.

Figure 5 Device Discovery Report table showing remote sessions

Configuring Role-Mapping Rules for Profiled Devices on PCS

After creating the Profiler, you can use device attributes from the Profiler in the role mapping rules for 802.1X realms for policy enforcement.
To configure role-mapping rules:

1. Select **Users > User Realms**.
2. Select the realm name.
3. Select the Remote Profiler as Device Attributes Server.

Figure 6 Device Attributes

4. Click the **Role Mapping** tab.
5. Click **New Rule**.
6. Set **Rule based on** to "Device Attribute" and click **Update**.
7. Enter a name for the rule (if creating a new one).
8. Create the new role mapping rules. Select the attributes based on the new device attributes that are now available in the attributes drop-down field. When setting the attribute value, make sure the value you enter is an exact match for the value displayed in the Device Discovery Report table. Wildcards (*) and ?) can be used in the attribute value.
9. Assign the roles and click **Save Changes**.
Overview

The federation allows users to connect to a PPS or PCS appliance and then access resources that are protected by the firewall connected to different PPS without re-authentication. For example, users in large campus sites and in branch offices connect to the corporate network from campus, branch, or private home offices and access the resources distributed across locations. The federation eliminates redundant log ins and host checks and provides seamless access to protected resources. The federation uses IF-MAP protocol to share information about user sessions between PCS and PPS over the distributed network.

For more information about IF-MAP, see http://www.trustedcomputinggroup.org/wp-content/uploads/TNC_IFMAP_v1_1_r5.pdf

IF-MAP Federation Use Cases

This section describes the various IF-MAP use cases. Using IF-MAP federation the users can seamlessly access with a single log in to corporate resources protected by the firewall. It provisions seamless access between the user sessions of PCS and PPS.

This section describes the following uses cases:

- “Access Control in the Federated Enterprise” on page 8
- “Session Migration across PCS and PPS using IF-MAP” on page 9

Access Control in the Federated Enterprise

In a federated enterprise, a user can log in to a PPS or PCS device for authentication or remote access and access the resource protected by the firewall connected to another PPS. The session information is shared across PPS or PCS device using IF-MAP protocol through IF-MAP server.

The federation requires dynamic auth table provisioning on the SRX firewall and allows access to the protected resource based on the resource access policies that are configured on PPS.

The access solution serves the following objectives:

- Ensures that the employees can access the corporate network and can access resources and data in both local and remote locations without having to specify their authentication credentials at each security policy enforcement point.
Enhances security by enforcing role or policy based access control.

Figure 8 Access Control in the federated enterprise using IF-MAP

The session federation work flow is described below:

1. The user connects to network and authenticates with PPS/PCS (FC1).
2. Authentication information such as IP address, MAC address, username, and roles are published to the IF-MAP server.
3. The user tries to access protected resource from the branch office.
4. The firewall blocks the access.
5. The firewall requests PPS (FC2) for session details such as user roles. PPS device subscribes to session information and other endpoint data based on the originating IP address.
6. The federation server sends the search result based on the search request from PPS (FC2).
7. PPS (FC2) send roles and policy information to the firewall.
8. The firewall allows or denies traffic based on the resource access policies received from FC2.

Session Migration across PCS and PPS using IF-MAP

IF-MAP federation allows seamless access to the users connected through remote access and on premise network without re-authenticating. For example, a user can connect from home through PCS and then arrive at work and connect through PPS without logging in again. The session migration also enables users to access different resources within the network that are protected by Pulse Secure devices without repeatedly providing credentials.
When a session is migrated, realm role-mapping rules determine user access capabilities. You can import user attributes when a session is migrated, or you can configure a dedicated directory server to look up attributes for migrated user sessions. To ensure that session migration retains user sessions, configure a limited access remediation role that does not require a Host Checker policy. This role is necessary because the Host Checker timeout can be exceeded if an endpoint is in hibernation or asleep. With the new remediation role, the user’s session is maintained. The session migration works only with same authentication group.

If additional Host Checker policies are configured on a role or realm to which a migrated session applies, the policies are performed before allowing the user to access the role or realm. Administrators of different Pulse servers should ensure that Host Checker policies are appropriately configured for endpoint compatibility.

Figure 9 Session Migration across PCS and PPS

The session migration workflow is as follows:

1. User connects to PCS and the information is published to the federation server, which includes session identifier.

2. The session identifier information is also communicated to Pulse client.
3. When user connect to PPS in the same authentication group after arriving at office network using Pulse client.

4. The Pulse client sends session identifier to PPS.

5. PPS appliance uses the session identifier to look up the session information in the IF-MAP server and request to migrate the session from PCS to PPS.

6. PPS create a local session for the endpoint.

To permit session migration for users with the Pulse client, perform the following tasks:

1. Configure location awareness rules within a client connection set to specify locations included in the scope of session migration for users. For example, configure location awareness rules for a corporate PPS server connection and a PCS server connection.

2. Configure an IF-MAP federated network, with the applicable Pulse servers as IF-MAP Federation clients of the same IF-MAP Federation server.

3. Ensure that user entries are configured on the authentication server for each gateway.

4. Ensure that user roles are configured for all users on each gateway.

5. Define a remediation role with no Host Checker policies to allow user sessions to be maintained when an endpoint is sleeping or hibernating.

6. Configure role-mapping rules that permit users to access resources on each gateway.

7. Enable and configure session migration from the User Realms page of the admin console.

8. Distribute the Pulse client to users.

Configuring Session Migration for Pulse Client

Ensure that all of the PPS and PCS servers for which you want to enable session migration are IF-MAP Federation clients of the same IF-MAP Federation server. Additionally, make sure that each gateway is configured according to the procedures outlined in this section.

To configure session migration:

1. In the admin console, select Users > User Realms.

2. Select an existing realm, or create a new realm.

4. In the Authentication Group box, enter a string that is common to all of the gateways that provision session migration for users. The authentication group is used as an identifier.

5. Select for either the Use Attributes from IF-MAP option button or the Lookup Attributes using Directory Server option.
Note: Select Lookup Attributes using Directory Server only if you are using an LDAP server. Attributes are served faster with an LDAP server.

Figure 10 Configuring Session Migration for Pulse Client

Authentication Server Support
The behavior of session migration depends to some extent on the authentication server on the inbound side.
The following list provides a summary of authentication server support:

- Local authentication server—Migration succeeds if the username is valid on the local authentication server.
- LDAP server—Migration succeeds if the LDAP authentication server can resolve the username to a distinguished name (DN).
- NIS server—Migration succeeds if the NIS authentication server can find the username on the NIS server.
- ACE server—Migration always succeeds.
- RADIUS server—Migration always succeeds. If you select Lookup Attributes using Directory Server, no attributes are present in the user context data.
- Active Directory—Migration always succeeds. The Lookup Attributes using Directory Server option may not work, depending on your configuration.
- Certificate—Migration succeeds if the certificate is valid.
- SAML—Migration always succeeds because Identity provider is external server.
- Anonymous—No support for migrating sessions because sessions are not authenticated.
- Siteminder—No support for migrating sessions because Siteminder SSO is used instead.

IF-MAP Configuration

The IF-MAP configuration involves configuring the PPS device as an IF-MAP client or an IF-MAP server. You can configure the PCS device as an IF-MAP client for an IF-MAP server. A device configured as an IF-MAP server is automatically a client of itself. An IF-MAP server can function as a fully functional PPS device and any endpoint sessions with an IP address created on an IF-MAP server are automatically published to that IF-MAP server.

This section covers the following information:

- “Configuring IF-MAP Server” on page 13
- “Configuring IF-MAP Client” on page 15
- “Configuring IF MAP Policies” on page 17

Configuring IF-MAP Server

An IF-MAP server is a repository for IF-MAP clients, which is used for publishing information regarding an activity on the network. To deploy PPS as an IF-MAP server, you must configure PPS as an IF-MAP server and then add PPS/PCS as IF-MAP clients. A PPS device can be deployed as a dedicated IF-MAP server for better scale and performance. If you opt for this configuration it consumes most of the virtual memory available on appliance, which results in performance degradation of other PPS services.

Note: Currently, only Active/Passive cluster mode for IF-MAP server is supported.

To configure IF-MAP server on the PPS:
1. Select **System > IF-MAP Federation > Overview**.

 ![IF-MAP Federation Overview](image)

 Figure 11 IF-MAP Federation Overview

2. Select **IF-MAP Server** option (Optional) Select **Enhance IF-MAP server storage** for using the appliance as a dedicated federation server for high scalability.

3. Click **Save Changes**.

Adding IF-MAP Clients

The IF-MAP client must be added for subscribing the session information on an IF-MAP server. You configure an entry for each IF-MAP client on the IF-MAP server.

To add IF-MAP client:

1. Select **System > IF-MAP Federation > This Server > Clients**.

2. Click **New IF-MAP Client**.
Figure 12 IF-MAP Client

3. Under IF-MAP Client,
 a. Enter name and optionally a description for client.
 b. Enter one or more IP addresses of the client.
 • If the client is connected to multiple data links on the same network or different network, then list all of its physical network interfaces.
 • If the client is a PPS cluster, then list the internal and external network interfaces of all nodes. You must enter all of the IP addresses for all of the interfaces because equipment failures may cause traffic between the IF-MAP client and the IF-MAP server to be re-routed through a different network interface. Listing all of the IP addresses maximizes the probability that IF-MAP Federation still works in the event of a failure.

4. Under Authentication, select the Client Authentication Method: Basic or Certificate.
 a. If you select Basic, enter a Username and Password. The same information should be added to the IF-MAP server.
 b. If you select Certificate, choose which Certificate Authority (CA) to use to verify the certificate for this client. Optionally, specify certificate attributes or restrictions to require values for certain client certificate attributes.

5. Click Save Changes.

Configuring IF-MAP Client

The IF-MAP client publishes the basic session information, which includes IP address, usernames, and roles. The IF-MAP server stores the information as metadata. Other IF-MAP clients in the network can poll the server for metadata information when the endpoint tries to access the protected resource. A PCS or PPS device can be deployed as an IF-MAP client. The PPS device connected to firewall is always added as an IF-MAP client. You must import the trusted root CA certificate of the federation sever device certificate issuing cert store in to IF-MAP client for secure connection. You can trust the certificate issued by CA of server’s device certificate by importing the root certificate of the issuing authority.
To configure the IF-MAP client:

1. Select **System > IF-MAP Federation > Overview**.

2. Select **IF-MAP Client**.

 Figure 13 IF-MAP Federation

3. Enter **IF-MAP server IP address** or complete IF-MAP server URL. For IF-MAP server in cluster mode use the virtual IP address (VIP).

4. Select the Client Authentication Method: **Basic** or **Certificate**.
 a. Select **Basic authentication**, and enter the **username** and **password**. This is the same as the information that you entered on the IF-MAP server.
 b. Select Certificate, select the Device Certificate to use.
 1. Ensure that the certificate of the CA that signed the IF-MAP server certificate is added from the **System > Configuration > Certificates > Trusted Server CA page**.
 2. Ensure that the hostname in the IF-MAP URL on the client machine matches the hostname of the server certificate on the IF-MAP server and that the CA that signed the server certificate is configured as trusted server CA on the IF-MAP client.

5. Click **Save Changes**.

 The status light on the server's IF-MAP Federation > This Server > Clients page is green when the client and server are successfully connected.
Configuring IF MAP Policies
The IF-MAP policies allows you to perform the data synchronization operations between the IF-MAP server and IF-MAP clients. This section covers the following information:

- “Session Export Policies” on page 17
- “Session Import Policies” on page 19

Session Export Policies
The session export policy specifies how to transform Pulse Secure client session data into IF-MAP standard data. It allows IF-MAP clients to translate outgoing session information into IF-MAP data and incoming IF-MAP data into session information. These translations enable sessions to be shared between PCS and PPS even if the devices sharing sessions have different role configurations.

To configure a session export policy:

1. Select **System > IF-MAP Federation > Session-Export Policies.**
2. Click **New** to create a new policy.

 ![Figure 14 IF-MAP Session Export Policies](image)

 Figure 14 IF-MAP Session Export Policies

3. Enter a policy name and, optionally, a description.
4. Select role and add if the policy needs to be applied to selected roles only, otherwise by default is to apply policy for all roles.

5. Under Policy Actions, select Set IF-MAP Capabilities and select the applicable option:
 - **Copy Matching Roles** - Copies all of the user roles that match the roles specified in the Roles section of this policy into the IF-MAP capabilities data.
 - **Copy all Roles** - Copies all of the roles from the user session to the IF-MAP capabilities data.
 - **Set capabilities specified below** - Enter capabilities, one per line.

To configure advanced options:

1. Select the **View Advanced Actions** link to display additional options.

2. Select **Set IF-MAP Identity** and configure identity settings:
 - **Identity Type** - Select an element used to specify identity. Options include aik-name, distinguished-name, dns-name, email-address, kerberos-principal, trusted-platform-model, username, sip-uri, tel-uri, and other. For example, for a regular employee named Bob Smith you can select username as the Identity Type and enter the Identity as username bsmith.
 - **Identity** - Identity is normally specified as <NAME>, which assigns the user's log in name. Any combination of literal text and context variables may be specified. If you select other for Identity Type, enter a unique Identity Type in the text box.
 - **Administrative Domain** - This optional information is applied to identity and MAC address data. One example for using this field is in a large network environment with several domains in which a username could be duplicated. By supplying the domain, you ensure that the correct user is identified.
 - **Other** - This field is provided for advanced use cases when none of the predefined options are applicable.

3. Select **Set IF-MAP Roles** and select the applicable option:
 - **Copy Matching Roles** - Copies all of the user roles that match the roles specified in the Roles section of this policy into the IF-MAP capabilities data.
 - **Copy all Roles** - Copies all of the roles from the user session to the IF-MAP capabilities data.
 - **Set capabilities specified below** - Enter capabilities, one per line.

4. Select **Set IF-MAP Device Attributes**. Device attributes represent a passed Host Checker policy on PPPSPS or PCS. Select the applicable option:
 - **Copy Host Checker policy names** - The name of each Host Checker policy that passed for the session is copied to a device attribute.
 - **Set Device Attributes** - Enter device attributes, one per line.

5. Select **Stop processing policies when this policy matches** to specify that when this policy is matched, no more Session-Export policies should be applied.

6. Select **Save Changes** or continue to configure advanced actions.
Session Import Policies

The session import policies specify how the device derives a username and a set of roles based on IF-MAP data that it receives from the IF-MAP server. The import policies are similar to role mapping rules on a realm. You must be precise when you configure Import policies, otherwise roles cannot be assigned properly.

To configure session-import policies:

1. Select System > IF-MAP > Session-Import Policies.
2. Click New to create a new policy.

Figure 15 IF-MAP Session Import Policies

3. Type a policy name and, optionally, a description.
 You can use the wildcard characters * and % to match IF-MAP capabilities.
5. Enter IF-MAP capabilities exactly as they appear in the corresponding session-export policy. For example, if you assigned the value “engineering” to an IF-MAP capability in the session-export policy, enter “engineering” here.
6. Under “Assign these roles,” select Use these roles and select the roles for which the policy applies.
7. Alternatively, select Copy IF-MAP Capabilities. If you select this check box, IF-MAP session capabilities on the IF-MAP server are converted to PPS roles with the same name. You can use this option if PPS roles and IF-MAP capabilities have the same name. This option is typically not required for PPS deployments.
8. Select **Stop processing policies** when this policy matches to specify that when this policy is matched, no more Session-Export policies should be applied.

9. Select **Save Changes**, or continue to configure Advanced Conditions.

 You can configure advanced options that would further require that Identity, Role, or Device Attributes in the IF-MAP data for a session must match before applying the role matching. The advanced options are not required for most PPS IF-MAP deployments.

To configure advanced options:

1. Select the **View Advanced Conditions** link to additional options.

2. Select one or more of the following check boxes to specify which IF-MAP criteria to use for assigning roles:

 You can use the wildcard characters * and % to match IF-MAP capabilities.

 - If you select **Match IF-MAP Identity**, complete the following settings:
 - **Identity Type**: Select an element used to specify identity. Options include aik-name, distinguished-name, dns-name, email-address, kerberos-principal, trusted-platform-model, username, sip-uri, tel-uri, and other. For example, for a regular employee named Bob Smith you can select username as the Identity Type and enter the Identity as username bsmith.
 - **Identity**: Identity is normally specified as <NAME>, which assigns the user's log in name. Any combination of literal text and context variables may be specified. If you select other for Identity Type, enter a unique Identity Type in the text box.
 - **Administrative Domain**: This optional information is applied to identity and MAC address data. One example for using this field is in a large network environment with several domains in which a username could be duplicated. By supplying the domain, you ensure that the correct user is identified.
 - **Other**: This field is provided for advanced use cases when none of the predefined options are applicable.
 - **Match IF-MAP Roles**: Enter individual roles in the provided text box.
 - **Match IF-MAP Device Attributes**: Enter individual device attributes in the provided text box.

3. Click **Save Changes**.

Active Federated Session Details

The federated session details of all the active users can be viewed on both the IF-MAP client and the IF-MAP server.

This section covers the following information:

- “Imported Session Details” on page 21
- “Exported Session Details” on page 21
- “Federated Session Details” on page 22
Imported Session Details
The session details from PPS, which are provisioned to SRX firewall can be viewed on an IF-MAP client.

To view, remove, or remove all the current sessions on an IF-MAP client:

1. Select System > IF-MAP Federation > This Client.
2. Select Imported Sessions.

Figure 16 Imported Sessions

3. Select Remove or Remove All to remove the imported federated session(s) from the device and the associated authentication table entries.

Exported Session Details
On an IF-MAP client, you can view all sessions from other PPS appliances that are currently published to firewall.

To view the exported sessions:

1. Select System > IF-MAP Federation > This Client.
2. Select Exported Sessions.

Figure 17 Exported Sessions
Federated Session Details
The federated sessions published to the server can be viewed on an IF-MAP server. The IF-MAP server purges sessions about 3.5 minutes after the client disconnects. The exceptions are if the server is currently involved in a purge or immediately after the server starts. It takes several minutes to scan the database before a purge can begin.

To view details about users and their sessions, and perform detailed searches:

1. Select **System > IF-MAP Federation > This Server > Federation-Wide Sessions**.

![IF-MAP Fed Wise Sessions](image)

2. Enter users and administrative domain and click Update to search for specific session information.

3. Sort users on the page by selecting User or Signed in IP Address.

 Note: The maximum number of session entries displayed in the Federation-Wide Sessions table or returned by the query to the table is 5,000 entries.

 Note: You can also view IF-MAP session-export details by selecting the IF-MAP check box at Troubleshooting > User Sessions > Policy Tracing in the admin console.

Troubleshooting
The following diagnostic tools on PPS can assist you in troubleshooting the federated network:

- **IF-MAP Client User Messages**: On the IF-MAP client, logs information that is published to and removed from the IF-MAP server. Enable IF-MAP Client User Messages by selecting Log/Monitoring > User Access > Settings on the PPS IF-MAP client.

- **IF-MAP Server Trace**: On the IF-MAP server, logs the XML for all IF-MAP requests and responses. Enable the IF-MAP Server Trace by selecting Log/Monitoring > Events > Settings on the IF-MAP server. IF-MAP Server Trace should only be enabled for troubleshooting purposes, because running this diagnostic incurs a large performance impact.

- **Debuglog**: Select Troubleshooting > Monitoring > Debug Log, use event code dsfederate for debugging logs.
The admin logs help to debug the configuration issues. Ensure that the server root CA certificate is imported to avoid configuration issues.

If the IF-MAP server loses the connectivity due to hard failures and reconnects back within 3 minutes, then the access to protected resources is not affected. If the connection is lost for more than 3 minutes the access to protected resource is suspended till the users tries to access the resource.

Appendix

Clustering in a Federated Deployment

You can deploy clustered PPS appliance as IF-MAP servers or IF-MAP clients. You can configure IF-MAP servers in an Active Passive cluster. IF-MAP clients must be configured with the cluster's virtual IP (VIP) and must communicate with only the active node.

The session changes in federation cluster networks are propagated rapidly. The clients can access resources without experiencing delays, and there is no single point of failure. If any single device fails, the passive node recovers in seconds. You can configure IF-MAP client in Active/Active or Active/Passive cluster.

You can also use clustered PPS appliances as server replicas. Figure 19 illustrates a complex network of clustered and standalone PPS appliance.

Figure 19 IF-MAP Server Clustering
Replica IF-MAP Server

The IF-MAP server has the capability to replicate all of its IF-MAP data to other IF-MAP servers. For example, if you have a network in Boston and a network in London, you can run IF-MAP servers in both places and configure the IF-MAP servers in both locations to replicate data to one another. An endpoint that accesses PPS or PCS can access protected resources behind any of the PPS devices connected to local or replica IF-MAP server.

Each replica IF-MAP server communicates in a bidirectional way with all the connected IF-MAP server replicas. The data on each IF-MAP server is available on every server and enhances the system performance. A 3-way replica in mesh topology in which all the servers are connected to each other is supported.

Figure 20 depicts one possible deployment replica scenario.

Figure 20 IF-MAP Server Replica
Bandwidth issues determine the effectiveness of the entire IF-MAP Federation’s operation. A key to timeliness is that IF-MAP servers should generally be placed geographically close to IF-MAP clients to ensure the most efficient operation. Replicas in an IF-MAP federated network allow user session data to be shared over greater distance. For example, the user in Boston can connect with servers in London through the replicated IF-MAP server in London.

To configure IF-MAP server replicas to communicate:

1. Select **System > IF-MAP Federation > This Server**.
2. Click the **Replicas** tab and then select **New IF-MAP replica to configure Replica settings**.

![Figure 21 IF-MAP Server Replica](image)

3. Type a Name for the replica IF-MAP server.
4. (Optional) Enter a Description for the replica or replica network.
5. For **Hostname**, enter the hostname that exactly matches the replica's device certificate. This is used when this IF-MAP server initiates a connection to the replica. Use the fully qualified domain name (FQDN) of the replica's internal or external interface should be used; for a cluster, use the FQDN of the internal or external VIP.
6. After **IP addresses**, provide one or more IP addresses from which the replica can initiate connections to this server. If the replica is standalone, for survivability list both the internal and external network interfaces. If the replica is a cluster, for survivability list the internal and external network interfaces of both cluster nodes.
7. Select the Authentication method: **Basic** or **Certificate**.
8. For **Basic**, enter a username and password.
9. For **Certificate**, select the CA that issued the IF-MAP replica's certificate. Enter restrictions, one per line. If any restrictions match, (for example CN=ic.example.com), the certificate is accepted.
10. Click **Save Changes** to create the connection for the replica.
Coordinated Threat Control in a Federated Environment

You can use Juniper Networks IDP Series Intrusion Detection and Prevention Appliance with Federation to detect attacks from within the network. Any endpoint that is on any connected PPS device or PCS can be monitored for suspicious activity. IF-MAP clients can work together to provide coordinated threat control across all attached enforcement points.

Endpoints that access PCS can be monitored by standalone IDP. Endpoints that access PPS device can be monitored by either standalone IDP, Integrated Security Gateway Intrusion Detection and Prevention ISG-IDP, or SRX Series Services Gateway IDP.

The IDP device reports attacks to the PPS or PCS to which it is connected. The PPS or PCS configured as an IF-MAP client reports the user’s activity to the IF-MAP server using IF-MAP. The IF-MAP server notifies the authenticating PPS or PCS about the attack, and the authenticating device applies its IDP sensor policies. If new roles or restrictions are imposed on the endpoint based on policies configured on the device, the PPS or PCS publishes the new session information for the endpoint to the IF-MAP server.

When any other PPS or PCS polls the IF-MAP server, the newly published session information for the user determines the protected resources that the user can access. Figure 22 shows a deployment with IDP.

Figure 22 IF-MAP with IDP

The following steps summarize the interaction with IDP in an IF-MAP federated network.
1. The endpoint successfully accesses PPS or PCS 1 and publishes session data to the IF-MAP server through Session-Export policies.

2. The endpoint attempts to access protected resources behind the SRX firewall, which is connected to PPS 3. PPS 3 uses IF-MAP to query the IF-MAP server for session information about the endpoint. After receiving session information, PPS 3 uses Session-Import policies to determine roles and then provisions an auth table entry on the SRX firewall. PPS 3 subscribes to updates about the endpoint’s session data.

3. After the endpoint is successfully connected to resources behind the SRX firewall, IDP detects an attack originating from the endpoint.

4. IDP notifies PPS 2 of the attack. (If IDP is standalone IDP, PPS 2 could also be an PCS. If IDP is an SRX firewall with the ISG-IDP security module, PPS 2 cannot be a PCS, because the PCS does not communicate with the SRX firewall.)

5. PPS 2 updates the endpoint session data on the IF-MAP server with information about the attack.

6. The IF-MAP server notifies PPS or PCS 1 (the original authenticating device) about the attack. The authenticating PPS or PCS is responsible for consuming the attack.

7. The authenticating PPS or PCS applies its sensor policies to the endpoint and updates the endpoint’s session according to actions specified in the sensor policies. For example, the endpoint must be assigned a more restrictive role. The PPS or PCS publishes the new session information to the IF-MAP server, and the new information replaces the old data.

8. The IF-MAP server notifies any PPS that subscribe to updates about the endpoint. This includes PPS 3, which is connected to the SRX firewall.

9. PPS 3 applies Session-Import policies to the new session data for the endpoint and pushes the resulting roles to the SRX firewall.

10. If the new set of roles denies access to the protected resources, access is denied.

Performance and Scalability

The IF-MAP server is supported on both hardware and virtual platforms.

The scalability of the IF-MAP server depends on:

- Type of platform- Hardware or VM image
- If the IF-MAP server is used as a dedicated IF-MAP server and the virtual memory available. You must configure PPS as dedicated only when you want it to be fully used as an IF-MAP server and not for other processes such as authentication.
- Number of roles and attributes
- For example, PSA 7000 has no impact of dedicated IF-MAP server setting option due to kernel memory limit of process. With single role for session, scale limit is up to 300K fed-wide sessions.
- PSA5000/SM360/PSA3000, the scale limit is 150K fed-wide session on dedicated IF-MAP appliance.
- For virtual platform (VM image), scalability is limited and based on the size of virtual memory.

The performance on IF-MAP server is described below:
- The IF-MAP server supports 24 export/import requests together per second.
- The time interval required to access the resource protected by the firewall after the user log in is 20 seconds.
- Latency and bandwidth between IF-MAP replicas affect the amount of time taken to replicate large amounts of data during heavy IF-MAP server utilization.
- The IF-MAP federation replica is supported over transatlantic link, however we might face issues due to WAN connection and latency between the devices.
- For clustering or replication, there is no impact on the scalability.
IoT Access

• IoT Policy Provisioning ... 30
• Troubleshooting .. 45

IoT Policy Provisioning
This chapter provides an overview of IoT device enforcement using SRX/PAN firewall. It includes the following information

• “Overview” on page 30
• “Deployments” on page 31
• “Configuring IoT Policy Provisioning” on page 32

Overview
As we increasingly connect devices to the Internet, new opportunities to exploit potential security vulnerabilities grow. Any unknown devices including IoT devices could serve as entry points for cyberattack by allowing malicious individuals to re-program a device or cause it to malfunction. The IoT devices are being added to corporate networks with or without the knowledge of IT administrator and they may communicate using the corporate IP network. These devices may have limited security controls leaving them open to be used as an attack vector. To improve security posture of IoT devices in corporate network, visibility and Role Based Access Control play a key role. Hence, it’s extremely important to detect and classify what’s there on the network.

PPS along with Profiler enables you to secure and manage access to IoT devices. It allows you to configure IoT Access Policy based on discovered or profiled device category. It also allows you to dynamically configure resource access policies for newly discovered devices and map user’s role-based access to specific category and manufacturer or profile group of IoT devices.

Benefits
The IoT Policy Provisioning Page enables you to quickly configure IoT policy provisioning and provides the following benefits:

• Discover and profile IoT devices using Profiler. Profiler enables you to continuously monitor the network and discover new devices such as security cameras, sensors, Industrial IoT devices (IIoT), medical sensors, and so on.
• PPS provides IoT access control using the IoT Access Policies, which are created automatically based on profiled or newly discovered device information from Profiler.
• Reduce IoT/IIoT machine downtime by allowing authorised users to get a role-based access to specific IoT/IIoT device for troubleshooting/maintenance.
• Automatic access control for the newly discovered IoT devices.
Deployments

The below network diagram depicts how PPS, Profiler, and SRX/PAN Firewall can be deployed to protect access to IoT devices. For example, the manufacturing domain consists of different IoT devices to monitor and control the manufacturing process. The industrial IoT devices are separated and controlled behind the firewall. PPS enables you to define IoT Access Policy using the Profiler attributes (category and manufacturer or profile group) and provides secure and seamless access to IoT devices for authorized users.

When a contractor would like to access IoT or IIoT device for troubleshooting or maintenance purpose, they can access IoT device from anywhere (remote or local). PCS can share session information with PPS and PPS can enforce firewall policies based on role-based access for specific contractor to access specific IoT/IIoT machine.

Figure 23 IoT Device Deployment

The workflow is described below:

1. A local Profiler configured on PPS discovers devices including IoT devices connected to corporate network.
2. PPS leverages the list of IoT devices discovered using Profiler and based on device category and manufacturer or profile group and it enforces or controls the access to IoT devices protected by the firewall.
3. User authenticates to PPS and endpoint compliance is evaluated. The user session is created on PPS and appropriate role is assigned based on the compliance check and user ID.
4. User Identity details (AuthTable) are provisioned to firewall.
5. User tries to access IoT devices protected by firewall. Authorised users (based on roles) are allowed to access IoT devices. Access to IoT devices by unauthorised users is blocked.
6. A new IoT device is added to the corporate network and same is discovered by Profiler.
7. IoT Access Policy for the newly discovered IoT device is automatically pushed to SRX/PAN firewall.

Note:
• Only Local Profiler is currently supported.
• The Administrator can group the discovered devices based on any Profiler attributes. For more information see, “Configuring Profiler Groups” on page 44.

Configuring IoT Policy Provisioning
This section covers the procedure for configuring IoT Policy Provisioning on PPS.

• “Basic Configurations” on page 32
• “Configuring IoT Access Policy” on page 36
• “Configuring Additional Device Category/Profile Groups” on page 43

Pre-Requisite
IoT Policy Provisioning requires Profiler feature. You must install the Profiler license on PPS to enable it.

Summary of Configuration
A high-level overview of the configuration steps needed to set up IoT Policy Provisioning is shown below.

Step 1: Configure Profiler
Step 2: Configure SRX/PAN Enforcer
Step 3: “Configuring IoT Access Policy” on page 36
Step 3.2: “Configuring IoT Access Policy using Juniper SRX Firewall” on page 37
Step 4: Configuring Additional Device Category/Profile Groups

Basic Configurations
• The basic configuration page enables you to configure Profiler to discover IoT devices in the network,
• Enforcer to push the user identity information to PPS, and IoT Access Policy for IoT devices.

To launch the configuration page:
2. Click Basic Configuration.
3. Configure the Profiler used to discover the IoT devices in the network. Click Profiler and configure the local Profiler. See Profiler Deployment Guide for complete configuration.

- The icons in the configuration page indicate the status of configuration.
 - Green Tick mark refers that this section is configured correctly.
 - If the configuration section is in grey color, it indicates that the section is not configured.
 - Information icon refers that this section has to be configured.
4. Configure the SRX/PAN Enforcer. Click Enforcer Connection and add SRX/PAN as a New Enforcer.
Once the configuration is complete and successful, the Administrator can see the configuration status as shown in Figure 28.
Figure 28 Basic Configuration

Configuring IoT Access Policy

- “Viewing Devices in Enforcer Policy Report” on page 36
- “Configuring IoT Access Policy using Juniper SRX Firewall” on page 37
- “Configuring IoT Access Policy using Palo Alto Networks Firewall” on page 40

Viewing Devices in Enforcer Policy Report

This page provides details of discovered and connected IoT device's and firewall policies applied for IoT devices. You can view details such as total number of IoT devices, number of IoT devices enforced, number of IoT devices not enforced, and IoT device manufacturers.

To view the enforcer policy report:

Configuring IoT Access Policy using Juniper SRX Firewall

The IoT access policy specifies which users are allowed or denied access to a set of protected resources. You can specify which users you want to allow or deny by choosing the roles for each IoT Access Policy. The IoT Access Policy page enables you to configure the policy based on device details using Profiler device attributes, such as device category and manufacturer or profile group.

When the network Administrator selects category and manufacturer or profile group information under device details the IP addresses of the corresponding discovered devices get automatically updated under Resources. Hence the Administrator can seamlessly create IoT Access Policy of profiled devices based on device category, device manufacturer attributes, or Profiler group. If the Administrator wants to have granular control over the IoT devices, further control can be achieved by providing specific port and protocol. The specified port and protocol configuration is applied to all the discovered devices of the selected category and manufacturers.

To configure IoT access policy:

1. Select **Endpoint Policy > IoT Access > IoT Policy Provisioning > Enforcer Policy Configuration**.
2. Click **New Policy**.
3. Enter the Policy name.
4. Enter a description.
5. Under Infranet Enforcer, select the Platform as **Junos SRX**.
6. Under **Device Details**, specify whether the policy should be applied based on device category and manufacturer or Profile group.
 c. Category and manufacturer
1. Specify the category from the drop-down list. The values in the drop-down list is populated based on the Device category configuration (IoT Access > IoT Policy Provisioning - Device Configuration).

2. Select the Device manufacturer from the Available Device Manufacturers.

3. Specify the protocol (TCP/UDP/ICMP) and Port/Range to be applied to the discovered devices.

 d. Profile Group

 1. Configure the Profiler Group (IoT Access > IoT Policy Provisioning - Device Configuration). To configure Profiler Groups, “Configuring Profiler Groups” on page 44.

 2. Select the Profile Group from the Available Profile Groups.

 3. Specify the protocol (TCP/UDP/ICMP) and Port/Range to be applied to the discovered devices.

 Note: Port ranges must be configured in dash-separated, comma-delimited, ascending, and non-overlapping order. Multiple port ranges must be separated by a comma. For example, the following examples show the delimiters that are used to enter port ranges:

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(80, 443, 1-1024, 1-100, 500-600)</td>
<td>(80, 443)</td>
<td>(1-1024, 1-100, 500-600)</td>
</tr>
</tbody>
</table>

 The Port/Range entered will be applied to all the discovered devices. If you want to enter different port values, you can edit the port value under Resources table.

 e. Select **Auto-Update Newly Discovered** Devices to automatically add IoT Access Policy for the newly discovered devices from the selected category and manufacturer or **Profile Group**.

 For example, If a policy is created for IoT device category with manufacturer or Profile Group with **Auto-Update** Newly Discovered Devices enabled then for any new IoT device discovered with the selected manufacturer, a IoT Access Policy is automatically added to firewall. If port and protocol are specified in the “Device Details” panel, the policy for the newly discovered devices is applied for specified port and protocol.

7. Under Resources, the IoT devices will be auto populated using the Device details configuration described earlier. If the administrator wants to apply policies on different ports for different discovered devices, the port configuration can be edited. If the Admin selects multiple protocol (for example, TCP and UDP) then the device entries appear twice with protocol information in the Resources table. The Admin can choose whether to push the policies for the selected resource based on the IP address, Protocol, and Port information to enforcer by enabling/disabling the checkbox in the resources table.

8. Select the desired Roles for which the policy applies. For example, IoT Administrator.

9. Under Actions, select whether to allow access or deny access.

10. Click **Save Changes**.
Once the policy is successfully added, it can be viewed as shown in Figure 31.
Configuring IoT Access Policy using Palo Alto Networks Firewall

The IoT access policy specifies which users are allowed or denied access to a set of protected resources. You can specify which users you want to allow or deny by choosing the roles for each IoT Access Policy. The IoT Access Policy page enables you to configure the policy based on device details using Profiler device attributes, such as device category and device manufacturer or Profile Group.

When the network Administrator selects category and manufacturer or Profile Group information under device details the IP addresses of the corresponding discovered devices get automatically updated under Resources. Hence the Administrator can seamlessly create IoT Access Policy of profiled devices based on device category, device manufacturer attributes, or Profiler group. If the Administrator wants to have granular control over the IoT devices, further control can be achieved by providing specific port and protocol. The specified port and protocol configuration is applied to all the discovered devices of the selected category and manufacturers.

To configure IoT access policy:

1. Select **Endpoint Policy > IoT Access > IoT Policy Provisioning > Enforcer Policy Configuration**.
2. Click **New Policy**.
3. Enter the Policy name.
4. Enter a description.
5. Under Infranet Enforcer, select the Platform as **Palo Alto Networks Firewall**.
6. Under Security Zones, specify the firewall security zones (source zone/destination zone) for the policy. Multiple zones can be specified with comma separated values. If zones are not specified, then it applies to all zones.
7. Under **Service**, select any to allow all TCP and UDP ports (default) or select the service to specify the TCP or UDP port or port range. The policy port and protocol configuration remains same for all the resources.

8. Under **Device Details**, specify whether the policy should be applied based on device category and manufacturer or Profile group.
 a. **Category and manufacturer**
 1. Specify the category from the drop-down list. The values in the drop-down list is populated based on the Device category configuration (IoT Access > IoT Policy Provisioning - Device Configuration).
 2. Select the Device manufacturer from the Available Device Manufacturers.
 3. Specify the protocol (TCP/UDP) and Port/Range to be applied to the discovered devices.
 b. **Profile Group**
 1. Configure the Profiler Group (IoT Access > IoT Policy Provisioning - Device Configuration). To configure Profiler Groups, see “Configuring Profiler Groups” on page 44.
 2. Select the Profile Group from the Available Profile Groups.
 3. Specify the protocol (TCP/UDP) and Port/Range to be applied to the discovered devices.

 Note: Port ranges must be configured in dash-separated, comma-delimited, ascending, and non-overlapping order. Multiple port ranges must be separated by a comma. For example, the following examples show the delimiters that are used to enter port ranges: (80, 443, 1-1024, 1-100, 500-600).

 The Port/Range entered will be applied to all the discovered devices.

 c. Select **Auto-Update Newly Discovered Devices** to automatically add IoT Access Policy for the newly discovered devices from the selected category and manufacturer or Profile Group.

 For example, if a policy is created for IoT device category with manufacturer or Profile Group with **Auto-Update Newly Discovered Devices** enabled then for any new IoT device discovered with the selected manufacturer, a IoT Access Policy is automatically added to firewall. If port and protocol are specified in the "Device Details" panel, the policy for the newly discovered devices is applied for specified port and protocol.

9. **Under Resources**, the IoT devices will be auto populated using the Device details configuration described earlier. If the administrator wants to apply policies on different ports and protocols for different discovered devices, the port configuration can be edited. If the Admin selects multiple protocol (for example, TCP and UDP) then the device entries appear twice with protocol information in the Resources table. The Admin can choose whether to push the policies for the selected resource based on the IP address, Protocol, and Port information to enforcer by enabling/disabling the checkbox in the resources table.

10. Select the desired Roles for which the policy applies. For example, IoT Administrator.

11. **Under Actions**, select whether to allow access or deny access.

12. Click **Save Changes**.
Once the policy is successfully added, it can be viewed as shown in Figure 33.
Figure 33 Palo Alto Networks Firewall Enforcer Policy Configuration

Note: Resource Access Policy and IoT Policy Provisioning with Palo Alto Network’s Firewall works only with default Virtual System “vsys1” and default device name “localhost.localdomain” configuration.

Configuring Additional Device Category/Profile Groups

• The Internet Of Things (IoT) device category is selected by default and hence it is visible by default on IoT policy enforcer report and Policy Configuration page. However, if the Administrator wants to use IoT Policy Provisioning feature for other Profiler supported categories such as Video Conferencing Devices, Printers/Scanners, Medical device, Storage device and so on additional categories can be configured on this page.

• Under Profile Groups, Admin can select the groups that should be used with IoT Policy Provisioning feature. Only the selected Profile Groups are shown while creating IoT access policy using Profile Groups. If none of the Profile Groups are selected in Device Configuration tab then no groups are shown in IoT access policy. To create IoT access policy using Profile Groups, the same needs to be selected in the Device Configuration tab.
Configuring Profiler Groups

Administrator can create different Profile Groups by using different Profiler attributes (for example, group all IoT devices with manufacturer Schneider Electric and Operating System Linux) and combine discovered devices in a group. If an Admin wants to provision IoT Access policy using attributes other than Category and Manufacturer, a Profile Group can be created to group discovered devices and then IoT Policy Provisioning feature can be used for the resources belonging to Profile Group.

To configure Profiler Groups:

1. Select the Profiler server under Authentication > Auth. Servers.
2. Select Profile Groups tab, select the New Profile Group.
3. Enter the Group Name and Rule. The rules can be written with device attributes and suggested operators can be chosen from the list.
4. As an optional step, emails also can be configured which results in notifications for any group related changes.
5. Click **Save Changes.**

Troubleshooting

The event and debug logs can be used for troubleshooting:

- The Event logs are generated whenever the policies are pushed to firewall.
- The Admin Logs are generated upon policy provisioning and auto updation of newly discovered devices.

You can also use **Maintenance > Troubleshooting > Monitoring > Debug Log** for debugging issues.

If the device is not discovered properly in the IoT Policy Provisioning > Enforcer Policy Report page check the Device Discovery Report page for the device category.

The PPS created policies on PAN firewall should not be modified by the PAN admin. The PPS created policies on Palo Alto Networks firewall are tagged as **Pulse Secure Managed.**

Note: Selecting the option "**Policy Applies to All Roles**" for Resource Access Policy with PAN as Infranet Enforcer may not work as expected. Hence, it is recommended to use the option "**Policy Applies to Selected Roles**" instead.

Figure 36 PaloAlto Networks

Event Logs

To view the communication between PPS and Infranet Enforcer enable **Enforcer Command Trace** under **Events > Settings.**
Figure 37 Event Logs

A sample event logs is shown in Figure 38.
Figure 38 Sample event Log

<table>
<thead>
<tr>
<th>ID</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) command: 5 <response status="success" code="19">result=1msg="Connect job enqued with job id 216"line=""result="response"<response></td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) type command cmd="connell"</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) command: 5 <response status="success" code="20">msg="command succeeded"<response></td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) type policy acl="acls"<response></td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) command: Create source address access: Users</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) command: Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
<tr>
<td>GVTI1601</td>
<td>2018-10-30 15:10:44 - 16:17.8.0.1 Systems] - Enforcer (10.204.85.254) Create source address access: IfT Service Log</td>
</tr>
</tbody>
</table>
Provisioning PCS sessions to PAN/Check Point/FortiGate Firewall

• Overview ... 48
• Deployment of PPS/PCS using PAN/Check Point/ FortiGate Next Generation Firewall . . . 48
• IF-MAP Configuration ... 49

Overview
Pulse Policy Secure (PPS) integrates with Palo Alto Network's (PAN)/Check Point/ FortiGate Next Generation Firewall to provision user's identity information (user name, roles and IP address) to PAN/Check Point/ FortiGate firewall.

This section focuses on provisioning Pulse Connect Secure(PCS) /PPS user's identity information to PAN/Check Point/ FortiGate firewall using IF-MAP server. Using this solution access control can be provided for PCS/PPS users for accessing resources protected by Firewall.

Deployment of PPS/PCS using PAN/Check Point/ FortiGate Next Generation Firewall
In a federated enterprise, a user can log in to a PPS or PCS device (remote access) for authentication and access the resource protected by the PAN/Check Point/ FortiGate Firewall. The session information is shared across PPS or PCS device using IF-MAP protocol through IF-MAP server.

The PAN/Check Point/ FortiGate Firewall controls the PPS and PCS user's access to protected resources based on the policy settings. The IF-MAP server receives the session information of multiple PPS and PCS and provisions user identity information to Firewall. The federation requires provisioning of user's information on the PAN/Check Point/ FortiGate Firewall and allows access to the protected resource based on the resource access policies that are configured on PPS.
The authentication process is described below:

1. The remote user establishes VPN tunnel using Pulse Client and the role is granted to the user based on policy configured on PCS.
 a. PCS session is exported to IF-MAP server.
 b. IF-MAP server provisions user identity details to PAN/Check Point/ FortiGate Firewall.
2. The remote user tries to access PAN firewall protected resource. PAN/Check Point/ FortiGate Firewall allows access to protected resource if the user is authorized.
3. User's role changes while logged in (for example, when Host Check compliance change causes role(s) to change). In this case, user's new role(s) are sent to PAN/Check Point/ FortiGate Firewall.
4. User logs out of PCS. In this case, all information associated with the user from that endpoint is removed from the Firewall. User is denied access to protected resources by Firewall.

Note: The same workflow applies to local users connecting through PPS.

IF-MAP Configuration

A high-level overview of the configuration steps needed to set up and run the integration:

- The Administrator configures IF-MAP clients (PPS, PCS) on IF-MAP server admin UI from System > IF-MAP Federation.
- Install the Device certificates and Trusted Server CA from System > Configuration > certificates on both IF-MAP Server and IF-MAP client.
- From IF-MAP Server admin UI, admin configures PAN Firewall device by entering the following:
 - Name for the PAN/Check Point/ FortiGate Firewall.
 - IP address of the PAN/Check Point/ FortiGate Firewall.
Zero Trust Secure Access with Pulse Policy Secure and Pulse Connect Secure

- API Key for PAN/Shared Secret for Check Point/FortiGate
- Administrator configures the Infranet Enforcer Auth Table Mapping Policies.

When the PPS or PCS session is exported to IF-MAP server, IF-MAP server provisions user identity details to configured PAN/Check Point/FortiGate Firewall based on the configured Auth Table Mapping Policies.

This section covers the following topics:

- “Step1: Configuring IF-MAP Server” on page 50
- “Step 2: Configuring IF-MAP Client” on page 52
- “Step 3: Viewing the Federated Session Details” on page 52

Step1: Configuring IF-MAP Server

To configure IF-MAP server on the PPS:

1. Select **System > IF-MAP Federation > Overview**.
2. Select **IF-MAP Server**.
3. Click **Save Changes**.

![Figure 40 Configuring IF-MAP Server Overview](image)

4. Select **IF-MAP > This Server > Clients > New Client** and add PPS/PCS as IF-MAP client.
5. Install the Device certificates and Trusted Server CA from **System > Configuration > certificates** on both IF-MAP Server.

6. If the client is added successfully the status turns to green color.

Figure 41 Configuring IF-MAP Server New Client

![Configuring IF-MAP Server New Client](image1)

Figure 42 Configuring IF-MAP Server Delete

![Configuring IF-MAP Server Delete](image2)
Step 2: Configuring IF-MAP Client

To configure the IF-MAP client:

1. Select **System > IF-MAP Federation > Overview**.
2. Select **IF-MAP Client**.
3. Enter the IF-MAP server IP address or the complete server URL.

After completing the IF-MAP server and IF-client configurations, configure the IF-MAP Policies. For more information, see *Configuring Session Export Policies*.

Note: This use case supports configuring only Session-Export policies.

Step 3: Viewing the Federated Session Details

To view the federated session details, select **System > IF-MAP > This Server > Federation-wide Sessions**.
Figure 44 Viewing the Federated Session Details
One-to-One Network Address Translation (NAT)

- Overview ... 54
- One-to-One NAT Deployment .. 54
- Configuring one-to-one NAT .. 54

Overview
One-to-One NAT is the process that maps one internal private IP address to one external public IP address. This helps to protect the private IP addresses from any malicious attack or discovery as the private IP addresses are kept hidden. PPS allows admin to provision auth table entries for endpoints behind one-to-one NAT deployment.

One-to-One NAT Deployment
In this deployment, each end user is having their local address and they are assigned a unique NAT IP address. PPS labels the end user as behind NAT for this type of deployment. The resources are provisioned to firewall only if the Provision Auth table for endpoints behind one-to-one NAT deployment option is enabled on PPS.

Figure 45 One-to-One NAT Deployment

The authentication process is described below:

1. User behind one-to-one NAT logs in and the corresponding user role is assigned.
2. A matching auth table mapping policy is detected. If configuration for Provision Auth table for one-to-one NAT Deployment option is enabled in this policy, then authentication table for external public IP address for the user is pushed on the firewall.
3. User logs out and all the external public IP address information associated with the user from that endpoint is removed from the firewall.

Configuring one-to-one NAT
To configure one-to-one NAT on PPS:
1. Select **Endpoint Policy > Infranet Enforcer > Auth Table Mapping**.

2. Select **Provision Only User-IP Mapping to Palo Alto Networks Enforcer** to provision user name only to PAN enforcer to use the directory services.

3. Under One-One NAT deployment, enable the checkbox for **Provision Auth Table for one-to-one NAT deployment**.

 Figure 46 Configuring one-to-one NAT

 ![Diagram of configuration settings](image)

4. The Admin is redirected to a confirmation page with a warning message.

 Note: This configuration option is recommended to use for one-to-one NAT Deployment. It is not recommended to use for many-to-one NAT Deployment. If used, it could allow multiple endpoints behind many-to-one NAT to access resources without authentication.
5. Click **Enable**.

6. Click **Save Changes**.

Requesting Technical Support

Technical product support is available through the Pulse Secure Global Support Center (PSGSC). If you have a support contract, file a ticket with PSGSC.

- Product warranties—For product warranty information, visit https://support.pulsesecure.net/product-service-policies/

Self-Help Online Tools and Resources

For quick and easy problem resolution, Pulse Secure provides an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://support.pulsesecure.net
- Search for known bugs: https://support.pulsesecure.net
- Find product documentation: https://www.pulsesecure.net/techpubs
- Download the latest versions of software and review release notes: https://support.pulsesecure.net
- Open a case online in the CSC Case Management tool: https://support.pulsesecure.net
- To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://support.pulsesecure.net

For important product notices, technical articles, and to ask advice:

- Search the Pulse Secure Knowledge Center for technical bulletins and security advisories: https://kb.pulsesecure.net
- Ask questions and find solutions at the Pulse Community online forum: https://community.pulsesecure.net

Opening a Case with PSGSC

You can open a case with PSGSC on the Web or by telephone.

- Use the Case Management tool in the PSGSC at https://support.pulsesecure.net.
- Call 1-844 751 7629 (Toll Free, US).
- For international or direct-dial options in countries without toll-free numbers, see https://support.pulsesecure.net/support/support-contacts/