
53-1005042-01
22 May 2017

Brocade Virtual Traffic Manager: 
Java Development Guide

Supporting 17.2



    
Copyright © 2017 Brocade Communications Systems, Inc. All Rights Reserved.
ADX, Brocade, Brocade Assurance, the B-wing symbol, DCX, Fabric OS, HyperEdge, ICX, MLX, MyBrocade, OpenScript, The 
Effortless Network, VCS, VDX, Vplane, and Vyatta are registered trademarks, and Fabric Vision and vADX are trademarks of 
Brocade Communications Systems, Inc., in the United States and/or in other countries. Other brands, products, or service names 
mentioned may be trademarks of others.

Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning 
any equipment, equipment feature, or service offered or to be offered by Brocade. Brocade reserves the right to make changes to 
this document at any time, without notice, and assumes no responsibility for its use. This informational document describes 
features that may not be currently available. Contact a Brocade sales office for information on feature and product availability. 
Export of technical data contained in this document may require an export license from the United States government.

.The authors and Brocade Communications Systems, Inc. assume no liability or responsibility to any person or entity with respect 
to the accuracy of this document or any loss, cost, liability, or damages arising from the information contained herein or the 
computer programs that accompany it.

The product described by this document may contain “open source” software covered by the GNU General Public License or other 
open source license agreements. To find out which open source software is included in Brocade products, view the licensing terms 
applicable to the open source software, and obtain a copy of the programming source code, please visit 

http://www.brocade.com/en/support/support-tools/oscd.html.

Brocade Communications Systems, Incorporated
Corporate and Latin American Headquarters

Brocade Communications Systems, Inc.

130 Holger Way

San Jose, CA 95134 

Tel: 1-408-333-8000 

Fax: 1-408-333-8101 

E-mail: info@brocade.com 

Asia-Pacific Headquarters

Brocade Communications Systems China HK, Ltd.

No. 1 Guanghua Road

Chao Yang District

Units 2718 and 2818

Beijing 100020, China

Tel: +8610 6588 8888

Fax: +8610 6588 9999

E-mail: china-info@brocade.com

European Headquarters

Brocade Communications Switzerland Sàrl

Centre Swissair

Tour B - 4ème étage

29, Route de l'Aéroport

Case Postale 105

CH-1215 Genève 15

Switzerland 

Tel: +41 22 799 5640

Fax: +41 22 799 5641

E-mail: emea-info@brocade.com 

Asia-Pacific Headquarters

Brocade Communications Systems Co., Ltd. (Shenzhen WFOE)

Citic Plaza

No. 233 Tian He Road North

Unit 1308 – 13th Floor

Guangzhou, China

Tel: +8620 3891 2000

Fax: +8620 3891 2111

E-mail: china-info@brocade.com



          
Contents
Preface.........................................................................................................................................................1

Document Conventions ................................................................................................................................1
Notes and Warnings...............................................................................................................................1
Text Formatting Conventions ...............................................................................................................2
Command Syntax Conventions............................................................................................................2

Brocade Resources .........................................................................................................................................3

Document Feedback ......................................................................................................................................3

Contacting Brocade Technical Support.......................................................................................................3
Brocade Customers.................................................................................................................................3
Brocade OEM Customers ......................................................................................................................4

Chapter 1 - Java Development ..................................................................................................................5

About This Guide ..........................................................................................................................................5

Introduction ....................................................................................................................................................5

Available Features..........................................................................................................................................6

Java API Documentation ..............................................................................................................................6

Java Technical References .............................................................................................................................7

Chapter 2 - Configuring Java ....................................................................................................................9

Java Requirements .........................................................................................................................................9

How Java Extensions Work ..........................................................................................................................9

Chapter 3 - Writing a Java Extension ..................................................................................................... 11

Java Classes and Servlet APIs ....................................................................................................................11

Traffic Manager Extensions to the Servlet API ........................................................................................12
Modifying Responses and Writing Data From a Java Extension...................................................13

Creating TrafficScript Functions Using Java Extensions........................................................................13

Compiling a Java Extension .......................................................................................................................15
Brocade Virtual Traffic Manager: Java Development Guide     i



            

Contents
Running a Java Extension....................................................................................................................15

Debugging Extensions ................................................................................................................................17
Printing Debug Information ...............................................................................................................17
Java Exception Stack Traces ................................................................................................................17
Remote Debugging ..............................................................................................................................18

Chapter 4 - TrafficScript Functions in the Java Extension API............................................................21

Equivalent TrafficScript Functions in the Java Extension API ..............................................................21

Attributes List...............................................................................................................................................25
ii Brocade Virtual Traffic Manager: Java Development Guide



          
Preface
Read this preface for an overview of the information provided in this guide. This preface includes the 
following sections:

 “Document Conventions,” next

 “Brocade Resources” on page 3

 “Document Feedback” on page 3

 “Contacting Brocade Technical Support” on page 3

Document Conventions

The document conventions describe text formatting conventions, command syntax conventions, and 
important notice formats used in Brocade technical documentation.

Notes and Warnings

Note, important, and caution statements might be used in this document. They are listed in the order of 
increasing severity of potential hazards.

Note: A Note provides a tip, guidance, or advice, emphasizes important information, or provides a reference to related 
information.

Important: An Important statement indicates a stronger note, for example, to alert you when traffic might be interrupted 
or the device might reboot.

Caution: A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to 
hardware, firmware, software, or data.
Brocade Virtual Traffic Manager: Java Development Guide     1



            

Preface Document Conventions
Text Formatting Conventions

Text formatting conventions such as boldface, italic, or Courier font may be used in the flow of the text to 
highlight specific words or phrases.

Command Syntax Conventions

Bold and italic text identify command syntax components. Delimiters and operators define groupings of 
parameters and their logical relationships.

Format Description

bold text Identifies command names

Identifies keywords and operands

Identifies the names of user-manipulated GUI elements

Identifies text to enter at the GUI

italic text Identifies emphasis

Identifies variables

Identifies document titles

Courier font Identifies CLI output

Identifies command syntax examples

Convention Description

bold text Identifies command names, keywords, and command options.

italic text Identifies a variable.

value In Fibre Channel products, a fixed value provided as input to a command option is printed in 
plain text. 

For example, --show WWN.

[ ] Syntax components displayed within square brackets are optional.

Default responses to system prompts are enclosed in square brackets.

{ x | y | z } A choice of required parameters is enclosed in curly brackets separated by vertical bars. You 
must select one of the options.

In Fibre Channel products, square brackets may be used instead for this purpose.

x | y A vertical bar separates mutually exclusive elements.

< > Nonprinting characters, for example, passwords, are enclosed in angle brackets.

... Repeat the previous element, for example, member[member...].

\ Indicates a “soft” line break in command examples. If a backslash separates two lines of a 
command input, enter the entire command at the prompt without the backslash.
2 Brocade Virtual Traffic Manager: Java Development Guide



        

Brocade Resources Preface
Brocade Resources

Visit the Brocade website to locate related documentation for your product and additional Brocade 
resources.

White papers, data sheets, and the most recent versions of Brocade software and hardware manuals are 
available at www.brocade.com. Product documentation for all supported releases is available to registered 
users at MyBrocade. Click the Support tab and select Document Library to access documentation on 
MyBrocade or www.brocade.com. You can locate documentation by product or by operating system.

Release notes are bundled with software downloads on MyBrocade. Links to software downloads are 
available on the MyBrocade landing page and in the Document Library.

Document Feedback

Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and 
completeness of this document. However, if you find an error or an omission, or you think that a topic needs 
further development, we want to hear from you. You can provide feedback in two ways:

 Through the online feedback form in the HTML documents posted on www.brocade.com.

 By sending your feedback to documentation@brocade.com.

Provide the publication title, part number, and as much detail as possible, including the topic heading and 
page number if applicable, as well as your suggestions for improvement.

Contacting Brocade Technical Support

As a Brocade customer, you can contact Brocade Technical Support 24x7 online, by telephone, or by e-mail. 
Brocade OEM customers contact their OEM/Solutions provider.

Brocade Customers

For product support information and the latest information on contacting the Technical Assistance Center, 
go to www.brocade.com and select Support.

If you have purchased Brocade product support directly from Brocade, use one of the following methods 
to contact the Brocade Technical Assistance Center 24x7.
Brocade Virtual Traffic Manager: Java Development Guide       3

http://www.brocade.com
http://my.brocade.com
http://my.brocade.com
http://www.brocade.com
http://my.brocade.com
http://www.brocade.com
mailto:documentation@brocade.com
http://www.brocade.com


            

Preface Contacting Brocade Technical Support
Brocade OEM Customers

If you have purchased Brocade product support from a Brocade OEM/Solution Provider, contact your 
OEM/Solution Provider for all of your product support needs.

 OEM/Solution Providers are trained and certified by Brocade to support Brocade® products.

 Brocade provides backline support for issues that cannot be resolved by the OEM/Solution Provider.

 Brocade Supplemental Support augments your existing OEM support contract, providing direct access 
to Brocade expertise. For more information, contact Brocade or your OEM.

 For questions regarding service levels and response times, contact your OEM/Solution Provider.

Online Telephone E-mail

Preferred method of contact for 
nonurgent issues:

• Case management through the 
MyBrocade portal.

• Quick Access links to Knowledge 
Base, Community, Document 
Library, Software Downloads 
and Licensing tools.

Required for Sev 1-Critical and Sev 
2-High issues:

• Continental US: 1-800-752-8061

• Europe, Middle East, Africa, and 
Asia Pacific: 
+800-AT FIBREE (+800 28 34 27 
33)

• Toll-free numbers are available in 
many countries.

• For areas unable to access a toll 
free number: +1-408-333-6061

support@brocade.com

Please include:

• Problem summary

• Serial number

• Installation details

• Environment description
4 Brocade Virtual Traffic Manager: Java Development Guide

http://my.brocade.com
http://www.brocade.com/services-support/international_telephone_numbers/index.page
mailto:support@brocade.com


          
CHAPTER 1 Java Development
This chapter provides overview information about Java development. This chapter contains the following 
sections:

 “About This Guide,” next

 “Introduction” on page 5

 “Available Features” on page 6

 “Java API Documentation” on page 6

 “Java Technical References” on page 7

About This Guide

The Brocade Virtual Traffic Manager: Java Development Guide describes the Java features available in the 
Brocade Virtual Traffic Manager (Traffic Manager).

The Traffic Manager allows you to embed Java Extensions in TrafficScript code, extending the Traffic 
Manager’s capabilities with an extensive library of available Java code.

This guide introduces you to Java development, explains how to configure Java, how to write a Java 
extension, and explains how TrafficScript functions in the Java API.

Introduction

Java is a platform-independent, object-oriented programming language that has a large community of 
developers, libraries, and applications. The Traffic Manager supports the use of Java Extensions in 
TrafficScript, offering greater flexibility in traffic manipulation.

Extensions are modules that expand the functionality of virtual servers, working in a similar way to 
TrafficScript rules. Java Extensions are based on the Java Servlet API, which is a widely used API that can 
generate server responses.

Note: For more information about Java Servlet technology, see http://java.sun.com/products/servlet/2.2/javadoc/.
Brocade Virtual Traffic Manager: Java Development Guide     5

http://java.sun.com/products/servlet/2.2/javadoc/


            

Java Development Available Features
Using Java Extensions in TrafficScript makes it easy to offer functions like the following:

 Content processing: Improved XML/HTML processing using specialized Java libraries.

 Access to additional libraries: ISV libraries supplied as value-add solution.

 Authentication: Achieved by using protocols such as RADIUS, TACACS, or LDAP.

Available Features

The following standard features can be easily added using Java Extensions:

 Light Weight Directory Access Protocol support: LDAP is an Internet protocol that provides access to 
the information on a server, usually to look up personal contact information and additional data such 
as encryption certificates, pointers to printers, etc.

 Active Directory support: Active Directory support provides authentication, authorization, and allows 
Administrators to apply policies to networks.

 RADIUS support: RADIUS (Remote Authentication Dial in User Service) is a specialized Internet 
protocol used to control access to the network. It provides easy authentication, authorization, and 
accounting.

 SQL Database interface support: SQL is the standard programming language for querying and 
managing databases. It is supported by a number of software companies including Oracle and 
Microsoft.

 SOAP support: SOAP is a protocol for exchanging XML-based messages over computer networks, 
normally using HTTP or HTTPS. SOAP forms the foundation layer of the Web services protocol stack, 
providing a basic messaging framework upon which abstract layers can be built. 

 TACACS support: Terminal Access Controller Access-Control System is an authentication protocol, 
mostly used in UNIX-like systems, that allows encrypted communication with a remote server. 

 Threading: Java code that can run in the background, not just as a request-response code.

 UDP communication: User Datagram Protocol (UDP) is an Internet protocol that allows programs 
located on networked computers to communicate with other computers. UDP generates messages that 
are sometimes referred to as datagrams.

 Advanced XML and HTML processing: XML provides the gateway for advanced formatting and data-
exchanging between different types of devices.

 Persistence of resources between requests: Resource persistence is linked with session persistence and 
is offered as a standard feature. See the Brocade Virtual Traffic Manager: User’s Guide for more 
information about maintaining persistence between requests.

 Sessions using cookies: Cookies are an easy way to identify the user, provide customization, and allow 
for session persistence, when needed. 

Java API Documentation

Brocade provides Javadoc-style documentation for the Traffic Manager's extensions to the Servlet API. To 
view this documentation, see the Catalogs > Java page of the Admin UI. From the Java page, click the Java 
API Documentation link.
6 Brocade Virtual Traffic Manager: Java Development Guide



        

Java Technical References Java Development
Java Technical References

For technical information about Java and the extensions technology, see the links listed below.

 Java Servlet documentation: http://java.sun.com/products/servlet/

 Extensions tutorials and essentials: http://www.servlets.com/

 Eclipse software site: http://www.eclipse.org/downloads/
Brocade Virtual Traffic Manager: Java Development Guide       7

http://java.sun.com/products/servlet/
http://www.servlets.com/
http://www.eclipse.org/downloads/


            

Java Development Java Technical References
8 Brocade Virtual Traffic Manager: Java Development Guide



          
CHAPTER 2 Configuring Java
This chapter contains information about configuring Java. This chapter contains the following sections:

 “Java Requirements,” next

 “How Java Extensions Work” on page 9

Java Requirements

Note: To use Java Extensions, you must install the Java run-time environment (JRE) version 6 (also known as 1.6) or later 
on the server hosting the Traffic Manager software. Traffic Manager appliance variants come with Java preinstalled.

To download the latest version of the Java Runtime Environment, see http://www.java.com/getjava/.

The Traffic Manager is available in a variety of software and appliance configurations. Java support might 
not be available on all product variants - contact your support provider for details.

How Java Extensions Work

To use a Java Extension, it must be initiated from a TrafficScript rule using the java.run() function. The 
java.run() function initiates a process called the Java Extension Runner. The Java Extension Runner 
maintains instances of all the Extensions uploaded in memory, and passes that information from 
TrafficScript to the instances when the java.run() function is initiated.

Setting Up the Traffic Manager

To use Java code in TrafficScript, first configure how Java operates.
Brocade Virtual Traffic Manager: Java Development Guide     9

http://www.java.com/getjava/


            

Configuring Java How Java Extensions Work
To specify a Java runtime executable file, go to the System > Global Settings > Java Extension Runner section 
of the interface. Then click the Java radio button and set the java!command field to the name of the 
executable file (and the path if it is not on the systems default search path), along with any command line 
options that Java should use. By default, the java!command is set to java -server. 

Figure 2-1. Main settings for an extension

Under Global Settings, you will find these Java-related fields:

 java!lib (optional): This setting identifies the system location where the third-party Java jar files are 
located, such as /usr/share/java.

All Java classes in this folder will be searched when the Java Extension runner starts, and whenever 
this setting is modified.

 java!classpath (optional): This setting can be used to specify a list of jar files that should be searched 
when the Java Extension runner starts.

This setting can be used to identify individual jar files that are not located in java!lib.

To check the setup, click Diagnose, and verify that the Java Extensions section does not report any errors. If 
error free, the Java Extensions are now ready for use.
10 Brocade Virtual Traffic Manager: Java Development Guide



          
CHAPTER 3 Writing a Java Extension
This chapter describes the function of Java classes and Servlet APIs, describes how a Java Extension is used 
with a Servlet API, how to create Traffic Script functions using Java Extensions, and how to write (compile) 
and debug Java Extensions. This chapter contains the following sections:

 “Java Classes and Servlet APIs,” next

 “Traffic Manager Extensions to the Servlet API” on page 12

 “Creating TrafficScript Functions Using Java Extensions” on page 13

 “Compiling a Java Extension” on page 15

 “Debugging Extensions” on page 17

Java Classes and Servlet APIs

Java Extensions generate server responses, modify requests to backend servers, or alter responses from 
other servers. 

To use the Servlet API, you must create a Java class that extends either the GenericServlet or one of its 
subclasses, such as the HttpServlet class. 

Here’s an example of a simple HTTP Servlet:

import java.io.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet 
{
   public void doGet( HttpServletRequest req, HttpServletResponse res )
      throws ServletException, IOException
   {
      res.setContentType( "text/plain" );
      PrintWriter out = res.getWriter();
      out.println( "Hello World!" );
   }
}

This is a standard Servlet that prints the phrase “Hello World!” whenever the Servlet is used.
Brocade Virtual Traffic Manager: Java Development Guide     11



            

Writing a Java Extension Traffic Manager Extensions to the Servlet API
The method doGet() is overridden from HttpServlet and is used whenever an HTTP GET request/response 
(depending if the Java Servlet is called in a TrafficScript response/request rule) is received. An identical 
function called doPost does the same for HTTP POST messages. 

Note: By default, the doGet/doPost methods display the error message “HTTP method POST/GET is not supported by 
this URL”. To avoid this error, override the doGet/doPost methods.

Traffic Manager Extensions to the Servlet API

The HTTP Servlet specification states that the doGet() and doPost() methods are passed in two arguments, 
an HttpServletRequest object (commonly named req) and an HttpServletResponse object (commonly 
named res). 

The Traffic Manager’s implementation passes in two subclassed objects of type ZXTMHttpServletRequest 
and ZXTMHttpServletResponse.

These implementations have several additional fields and methods used to access the additional 
capabilities in the Java Extensions API. To use these fields and methods, cast the req and res objects to the 
Traffic Manager subtype, as shown below:

import   java.io.*;
import   javax.servlet.ServletException;
import   javax.servlet.http.*;
import   com.zeus.ZXTMServlet.*;

public class MyServlet extends HttpServlet 
{
   public void doGet( HttpServletRequest req, HttpServletResponse res )
      throws ServletException, IOException
   {
      ZXTMHttpServletRequest zreq = (ZXTMHttpServletRequest) req;
      ZXTMHttpServletResponse zres = (ZXTMHttpServletResponse) res;
      // Base Servlet API does not need to provide the ability to 
      // query the content type of a response
      if( zres.getContentType() == null ||
          !zres.getContentType().equalsIgnoreCase("text/html") )
      {
         return; // We’re not interested in non-html data
      }
      
      // Count how many times a html page has been sent
      // with SNMP counter 1
      zreq.incrementCounter( 1 );

      BufferedReader in = zres.getReader();
      PrintWriter out = zres.getWriter();

      String current = null;
      while( ( current = in.readLine() ) != null ) {
         if( current.indexOf( "<title>" ) != -1 ) {
            current = "<title>My New Title</title>";
         }
         out.println( current );
      }
   }
}

12 Brocade Virtual Traffic Manager: Java Development Guide



        

Creating TrafficScript Functions Using Java Extensions Writing a Java Extension
Note the following points about this example:

 This example increments a counter every time a request for an HTML page is made. 

The counter value can be viewed through the Traffic Manager’s SNMP interface. The Servlet also alters 
the content of the HTML page, changing its title to “My New Title”.

 The example highlights one of the main differences between standard Servlets and Java Extensions. 
Specifically, Java Extensions have the ability to manipulate data received from other sources (in this 
case a Web server); whereas a normal Servlet is designed to only produce data. 

Since the Java Extension alters data in a response, run the Java Extension from a TrafficScript response.

The online help contains Javadoc-style documentation for the Traffic Manager’s extensions to the Servlet 
API. To access online help, use one of the following methods: 

 Access the Traffic Manager Admin Interface, and press the Help button.

 Click the Manuals button on the on the Tool bar.

 Select the Java API Documentation link.

Modifying Responses and Writing Data From a Java Extension

It is possible to run several Java Extensions or TrafficScript rules to process a response before the response 
is written back to the client.

However, once a Java Extension begins modifying the response data (for example, using the 
PrintWriter.println() function), data is streamed back to the client. At this point, the HTTP headers are 
flushed to the client and you cannot make any more modifications to the HTTP headers.

Only one Java Extension may modify a response. You cannot modify response data using several Java 
Extensions in succession. Do not run any Java Extensions once the response data is written to the client.

Creating TrafficScript Functions Using Java Extensions

Java Extensions can be used to do more than just process traffic. You can use Java Extensions to implement 
new functions in TrafficScript, thus extending the TrafficScript language.

The following Java Extension implements the Soundex algorithm, which converts a name or other string 
into a phonetic representation. 

Note: For more information about Soundex, see http://en.wikipedia.org/wiki/Soundex.

You can use the algorithm to test if two words sound the same, as shown in the following example:

import java.io.IOException;
import javax.servlet.*;
import com.zeus.ZXTMServlet.ZXTMServletRequest;

public class Soundex extends GenericServlet {
   private static final long serialVersionUID = 1L;

   public void service( ServletRequest req, ServletResponse res )
      throws IOException
   {
Brocade Virtual Traffic Manager: Java Development Guide       13

http://en.wikipedia.org/wiki/Soundex


            

Writing a Java Extension Creating TrafficScript Functions Using Java Extensions
      String[] args = (String[])req.getAttribute( "args" );
      String result = doSoundex( args[0] );
      ((ZXTMServletRequest)req).setConnectionData( "soundex", result );
   }
   
   static String soundex = "01230120022455012623010202";
   String doSoundex( String s ) {
      s = s.toUpperCase();
      StringBuilder r = new StringBuilder();

   
      char last = '0';
      if( s.length() > 0 ) last = s.charAt( 0 );
      r.append( last );
      for( int i = 1; i < s.length(); i++ ) {
         int j = s.charAt( i )-'A';
         char next = ( j >= 0 && j < soundex.length() ) ? 
            soundex.charAt( j ) : '0';
         if( next != last && next != '0' ) { 
            r.append( next ); last = next; 
         }
         if( r.length() >= 4 ) break;
      }
      while( r.length() < 4 ) r.append( '0' );
      return r.toString();
   }
}      

This Java Extension is based on the simple GenericServlet API. The Java Extension should be called 
(initiated) from TrafficScript, as shown below:

java.run( "Soundex", $word );

Note: Java Extensions cannot return values in the traditional sense.

The Java Extension inspects the first argument and then applies the Soundex algorithm. 

The Servlet API does not provide a way for a servlet to return a value to its caller; you need to use the 
ZXTMServletRequest.setConnectionData() method to set a local connection variable that the TrafficScript 
rule can then use.

The following TrafficScript request rule, assigned to run every time on a simple client-first virtual server, 
illustrates the use of this Java Extension:

sub soundex( $word ) {
   java.run( "Soundex", $word );
   return connection.data.get( "soundex" );
}

$word = string.trim( request.getLine() );

request.sendResponse( "That sounds like " . soundex( $word ) . "\n" );
14 Brocade Virtual Traffic Manager: Java Development Guide



        

Compiling a Java Extension Writing a Java Extension
The following illustrates the rule in use: 

Compiling a Java Extension

To compile Java Extensions for use with the Traffic Manager, you need the following items:

 Java Development Kit (JDK), which contains the Java compiler. This can be downloaded from http://
java.sun.com.

 Java Servlet API, which can be found in the user interface by going to Catalogs > Java Extensions 
Catalog and clicking the Java Servlet API link.

 Java Extensions API, which can be found in the user interface under Catalogs > Java Extensions 
Catalog and clicking the Traffic Manager Java Extensions API link.

To compile a Java Extension, complete the following steps:

1. Copy the servlet.jar and zxtm-servlet.jar files to the directory where you are compiling the Java 
Extension.

2. Run the following command:

$ javac -cp servlet.jar:zxtm-servlet.jar MyServlet.java

This creates a class file called MyServlet.class. 

Note: You can bundle a Java Extension with any other needed classes in a single .jar file. The Traffic Manager 
automatically searches .jar files for the Java Extensions to use.

Running a Java Extension

To run a Java Extension, you must first compile and upload the Java Extension.

To upload the Java Extension, go to the Catalogs > Java Extensions Catalog page of the user interface, and 
specify the class or .jar file in the Upload section. 
Brocade Virtual Traffic Manager: Java Development Guide       15

http://java.sun.com
http://java.sun.com


            

Writing a Java Extension Compiling a Java Extension
Alternatively, you can copy the file(s) to the $ZEUSHOME/zxtm/conf/jars directory. 

Whenever a Java Extension is uploaded, a new TrafficScript rule is created. The new TrafficScript rule 
contains the code java.run (using the “extension class name” convention).

The Extension user interface page should then show your Java Extension in the Java Extensions Catalog 
section, as shown below.

Figure 3-1. Java Extensions Catalog Page 

Unrecognized Extensions

If an Extension is listed in the Java Libraries & Data Catalog section, it means that the Extension has not 
been recognized. The Extension will be listed as invalid, along with an error message detailing why it failed 
to load. 

Ensure that the class extends the GenericServlet (or a subclass of GenericServlet, such as HttpServlet) and 
that any JAR libraries required to run the Extension have been uploaded, or are present in the java!lib 
directory specified on the Global Settings page.

Replacing Extensions

Extensions are cached in memory when they are being used. If you replace an Extension with an updated 
version by copying the Extension directly into the Traffic Manager configuration instead of using the 
management interface, you may need to tell the Traffic Manager to reload the new Extension. 
16 Brocade Virtual Traffic Manager: Java Development Guide



        

Debugging Extensions Writing a Java Extension
To do this, go to the Extension catalog, select your Extension, check confirm, and click Reload selected. 

Note: Reloading the Extension causes the Extension Runner to remove your Servlet from memory, so any information 
the Servlet was storing will be lost.

Extensions are not applied directly to virtual servers; Extension must be called (initiated) from within rules. 
You can create a default Rulebuilder rule when uploading the Extension, which allows you to use the 
Extension in a virtual server. 

Alternatively, you can run your Extension from TrafficScript using the function: 

java.run( "MyPackage.MyServlet" );

Extension Parameters

You can pass parameters to an Extension by using the following command: 

java.run( "MyPackage.MyServlet", "Hey there!" );

The Extension can access these parameters using the following code:

String[] args = (String[]) req.getAttribute( "args" );

You can also specify parameters through the Extensions catalog by using the Catalogs > Extensions menu 
and selecting the Extension you want to edit. These parameters are set every time an Extension is used, and, 
therefore, are useful for defining global settings. The parameters can also be accessed from inside your 
Extension using the following command:

ServletConfig config=getServletConfig();

String param = config.getInitParameter( "param_name" ); 

Debugging Extensions

Printing Debug Information

A simple way to view information about a running Extension is to print statements detailing the Extensions 
status. 

To print debugging information, you can use the log function (a member function of GenericServlet) as 
shown below:

log( "Hello log!" );

This will output the string "Hello log!" to the main event log, where it will appear as shown below: 

INFO: MyPackage.MyServlet: Hello log!

Java Exception Stack Traces

Java exception stack traces are useful for identifying where your code is failing. The main doGet/doPost 
functions can only “throw” (send) IOExceptions or ServletExceptions (and any type of RuntimeException). 
Be sure to address code failures before proceeding. Print an error report that you can use for debugging the 
code or print a stack trace to the event log. 
Brocade Virtual Traffic Manager: Java Development Guide       17



            

Writing a Java Extension Debugging Extensions
This example shows how to “catch” an exception and write its stack to the event log:

public void doGet( HttpServletRequest req, HttpServletResponse res ) 
   throws ServletException, IOException 
{ 
   try {

      throw new IOException( "Hello" );

   } catch( Exception e ) {
      res.sendError( 500, e.toString() );

      // Save stack trace as a string and print to the log 
      StringWriter sw = new StringWriter(); 
      e.printStackTrace( new PrintWriter( sw ) ); 
      log( sw.toString() ); 
   }
}

Remote Debugging 

Java has a remote debugging facility that allows you to use a Java debugger on an Extension running on the 
Traffic Manager. 

Setting up the Traffic Manager to Accept Debugging

Note: In this section, Eclipse is used but any Java debugger that supports remote debugging can be used.

To set up the Traffic Manager to accept debugging connections, complete the following steps:

1. Go to the Catalogs > Java Extensions Catalog page of the user interface.

2. Add the following line to the end of java!command, setting the following content:

-Xdebug -Xnoagent 
   -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

Note: This code must be entered on a single line.

The address value sets the port on which the Java runner “listens” for debugging connections. You can set 
this port to whatever port you choose.

After applying these settings, the Java Extension Runner restarts and prints the following line:

WARN: Java: Listening for transport dt_socket at address: 8000

This message shows that the Traffic Manager is now ready to receive debugging connections. Next, “point” 
your Java debugger at the Traffic Manager server on the correct port. To do this using Eclipse, complete the 
following steps:

1. Add your Extension code to a Java project and ensure that the project compiles correctly. (If you are 
developing your Extension in Eclipse, you may have already completed this step.) 

2. Go to the debugger and select Open Debug Dialog...
18 Brocade Virtual Traffic Manager: Java Development Guide



        

Debugging Extensions Writing a Java Extension
3. Right-click Remote Java Application and click New.

4. Under Connection Properties, enter the Traffic Manager’s hostname and the port you set as the remote 
debugging port (for example, 8000). 

5. Click Debug.

Eclipse connects to the Java Extension Runner process, and the debugger can now be used as if the code was 
being used locally. 

Remote debugging also has the ability to “hot swap” altered code into the running system. Therefore, 
altering and saving code in Eclipse also updates the Java Extension in use. 

Note: However, this change only lasts until the debugging session ends. You have to upload the changes manually if 
you want them to be permanent.
Brocade Virtual Traffic Manager: Java Development Guide       19



            

Writing a Java Extension Debugging Extensions
20 Brocade Virtual Traffic Manager: Java Development Guide



          
CHAPTER 4 TrafficScript Functions in the Java 

Extension API
This chapter details how to use the TrafficScript functionality in a Java Extension. This chapter includes the 
following sections:

 “Equivalent TrafficScript Functions in the Java Extension API” on page 21

 “Attributes List” on page 25

Note: To find more information about Java, see “Java API Documentation” on page 6.

Equivalent TrafficScript Functions in the Java Extension API

This table lists TrafficScipt functions and the equivalent Java Extension API.

TrafficScript Function Java Extension API

connection.close()/discard() ZXTMServletResponse.dropConnection() 

connection.getMemoryUsage() No equivalent.

connection.getNode() ServletRequest.getAttribute( “node” ) 

connection.get/setPersistence() ServletRequest.get/setAttribute( “persistence” ) 

connection.getPool() ServletRequest.getAttribute( “pool” )

connection.get/
setServiceLevelClass() 

ServletRequest.get/setAttribute( “servicelevel” )

connection.getVirtualServer() ServletRequest.getAttribute( “virtualserver” )

connection.setPersistenceKey() ServletRequest.setAttribute( “persistencekey” )

connection.setPersistenceNode() ServletRequest.setAttribute( “persistencenode” )

connection.sleep() Thread.sleep()

connection.data.get/set() ZXTMServletRequest.get/setConnectionData() 

counter.increment() ZXTMServletRequest.incrementCounter()

data.get/set() ZXTMServletRequest.get/setData() 
Brocade Virtual Traffic Manager: Java Development Guide     21



            

TrafficScript Functions in the Java Extension API Equivalent TrafficScript Functions in the Java Extension API
data.getMemoryUsage() No equivalent. 

data.reset() No equivalent. 

event.emit( event, message ) ZXTMServletRequest.emitEvent( event, message )

http.add/remove/setHeader() ZXTMHttpServletRequest.add/remove/setHeader() 

http.addResponseHeader() HttpServletResponse.addHeader() 

http.changeSite() HttpServletResponse.sendRedirect() 

http.doesFormParamExist()/
getFormParam()/
getQueryString() 

HttpServletRequest.getQueryString() 

http.getBody() ServletRequest.getInputStream()/getReader() 

http.getCookie() HttpServletRequest.getCookies() 

http.getHeader()/headerExists() HttpServletRequest.getHeader() 

http.getHeaderNames() HttpServletRequest.getHeaderNames() 

http.getHostHeader() HttpServletRequest.getHeader() 

http.getMethod() HttpServletRequest.getMethod() 

http.getMultipartAttachment() Servlet can read the body data itself 

http.getPath() HttpServletRequest.getRequestURL() 

http.getRawURL() No equivalent. 

http.getResponseBody() ZXTMHttpServletResponse.getInputStream()/
getReader() 

http.getResponseCode() ZXTMHttpServletResponse.getStatus() 

http.setResponseCode() HttpServletResponse.setStatus() 

http.getResponseCookie() ZXTMHttpServletResponse.getCookies() 

http.getResponseHeader()/
responseHeaderExists() 

ZXTMHttpServletResponse.getHeader() 

http.getResponseHeaderNames() ZXTMHttpServletResponse.getHeaderNames() 

http.getVersion() ServletRequest.getProtocol() 

http.normalisePath() No equivalent. 

http.redirect() HttpServlet.sendRedirect() 

http.removeCookie()/
setCookie() 

ZXTMHttpServletRequest.removeCookie() 

http.removeResponseCookie() ZXTMHttpServletResponse.removeCookie() 

http.removeResponseHeader() ZXTMHttpServletResponse.removeHeader() 

http.scrubRequest/
ResponseHeaders() 

No equivalent.

http.sendResponse() HttpServletResponse.sendError()

http.setBody() ZXTMHttpServletResponse.getWriter().print()

TrafficScript Function Java Extension API
22 Brocade Virtual Traffic Manager: Java Development Guide



        

Equivalent TrafficScript Functions in the Java Extension API TrafficScript Functions in the Java Extension API
http.setCookie() HttpServletResponse.addCookie() 

http.setIdempotent() ServletRequest.setAttribute( “idempotent” )

http.setMethod() ZXTMHttpServletRequest.setMethod() 

http.setPath() ZXTMHttpServletRequest.setRequestURI() 

http.set/setRawQueryString() ZXTMHttpServletRequest.setQueryString() 

http.setResponseBody() ServletResponse.getOutputStream()/getWriter() 

http.setResponseCode() HttpServletResponse.setStatus() 

http.setResponseCookie() HttpServletResponse.addCookie() 

http.stream.startResponse() HttpServletResponse.addHeader(), followed by 
HttpServletResponse.setStatus()

http.stream.readResponse()/
readBulkResponse()

ZXTMHttpServletResponse.getInputStream()/
getReader()

http.stream.writeResponse() ServletResponse.getOutputStream().write()/
ServletResponse.getWriter().print()

http.stream.finishResponse() Servlet completes

http.stream.continueFromBackend No equivalent

http.cache.disable()/enable() ServletRequest.getAttribute( “cache” ) 

http.cache.setKey() ServletRequest.getAttribute( “cachekey” )

http.compress.disable()/enable() ServletRequest.getAttribute( “compress” )

http.request.get()/head()/post() Use built in Java functions.

geo.getCity() ZXTMServletRequest.geoGetCity()

geo.getCountry() ZXTMServletRequest.geoGetCountry()

geo.getCountryCode() ZXTMServletRequest.geoGetCountryCode()

geo.getDistanceKM() ZXTMServletRequest.geoGetDistanceKM()

geo.getDistanceMiles() ZXTMServletRequest.geoGetDistanceMiles()

geo.getIPDistanceKM() ZXTMServletRequest.geoGetIPDistanceKM()

geo.getIPDistanceMiles() ZXTMServletRequest.geoGetIPDistanceMiles()

geo.getLatitude()/getLongitude() ZXTMServletRequest.geoGetLatLon()

geo.getRegion() ZXTMServletRequest.geoGetRegion()

geo.getRegionCode() ZXTMServletRequest.geoGetRegionCode()

lang.* Use built in Java functions.

math.* Use built in Java functions.

net.dns.resolveHost()/IP() java.net.InetAddress.getByName()/
getHostName() 

pool.activeNodes() ZXTMServletRequest.getActiveNodes()

pool.select()/use() ServletRequest.setAttribute( “pool” ) and
ServletRequest.setAttribute( “proxy” ) 

TrafficScript Function Java Extension API
Brocade Virtual Traffic Manager: Java Development Guide       23



            

TrafficScript Functions in the Java Extension API Equivalent TrafficScript Functions in the Java Extension API
rate.getBacklog() ZXTMServletRequest.getRateBacklog() 

rate.use() No equivalent.

request.avoidNode() ServletRequest.setAttribute( “avoidnodes” )

request.endsAt()/endsWith() No equivalent

request.get()/getLine() ZXTMServletRequest.getInputStream()/
getReader() 

request.get/setBandwidthClass() ServletRequest.get/setAttribute( “bandwidth” )

request.getDestIP()/Port() No equivalent.

request.getLength() No equivalent.

request.getLocalIP()/Port() ServletRequest.getAttribute( “dstip”/”dstport” )

request.get/setRemoteIP()/Port() ServletRequest.get/setAttribute( “srcip”/”srcport” )

request.getRetries() ServletRequest.getAttribute( “retries” )

request.get/setToS() ServletRequest.get/setAttribute( “tos” )

request.getFD() No equivalent. 

request.isResendable() ServletRequest.getAttribute( “resendable” )

request.retry() ZXTMServletRequest.retry() 

request.sendResponse() ServletResponse.getOutputStream()/getWriter() 

request.set() ZXTMServletRequest.getOutputStream()/
getWriter()

resource.exists()/get()/getMD5()/
getMTime() 

Use Java built in functions.

response.append() Not provided, Extension can read/write its own 
response 

response.close() ZXTMServletResponse.dropConnection()

response.flush() ServletResponse.getOutputStream().flush() 

response.get()/getLine() ZXTMServletResponse.getInputStream()/
getReader() 

response.get/setBandwidthClass() ServletRequest.get/
setAttribute( “serverbandwidth” )

response.getLength() No equivalent.

response.getLocalIP()/Port() ServletRequest.getAttribute( “serverdstip” / 
”serverdstport” )

response.getRemoteIP()/Port() ServletRequest.getAttribute( “serversrcip” / 
”serversrcport” )

response.get/setToS() ServletRequest.get/setAttribute( “servertos” )

response.getFD() No equivalent.

response.set() ServletResponse.getOutputStream()/getWriter() 

rule.getName() ServletRequest.get/setAttribute( “rule” )

TrafficScript Function Java Extension API
24 Brocade Virtual Traffic Manager: Java Development Guide



        

Attributes List TrafficScript Functions in the Java Extension API
Attributes List

Attributes are parameters that can be used with the ServletRequest.get/setAttribute() methods to view and 
alter the connection information. 

rule.getState() ZXTMServletResponse.isResponseRule() - 'true' if this is 
in a response rule 

slm.conforming() ZXTMServletRequest.getSLMConforming()

slm.isOK() ZXTMServletRequest.isSLMOK()

slm.threshold() ZXTMServletRequest.getSLMThreshold() 

ssl.clientCert*() ServletRequest.getAttribute( 
“javax.servlet.request.X509Certificate” )

ssl.clientCipher() ServletRequest.getAttribute( “javax.net.ssl.cipher_suite” 
)

ssl.isSSL() ServletRequest.getAttribute( “SSL_PROTOCOL” ) is set.

ssl.sslSessionID() ServletRequest.getAttribute( “SSL_SESSIONID” )

string.* Use built in Java functions.

sys.* Use built in Java functions.

xml.* Use built in Java functions.

Attribute Description

args Any arguments passed to the Servlet from TrafficScript

avoidnodes Space separated list of nodes to avoid with the load balancing 

bandwidth Get/set the bandwidth class to use 

cache Set to 0 for http.cache.disable(), 1 for http.cache.enable() 

cachekey Set the cache key.

compress Set to 0 for http.compress.disable(), 1 for 'default' and 2 for 
http.compress.enable() .

dstip Destination IP address (i.e. the address on the traffic manager).

dstport Destination port (i.e. the port on the traffic manager) .

idempotent Get/set whether this request is idempotent - 0/1 for no/yes 

node Node used by this connection - readable by a response rule only.

persistence Get/set the persistence class to use .

persistencekey Set the persistence data to use for universal session persistence 

persistencenode Set the node to persist on 

pool Get/set the pool to use 

TrafficScript Function Java Extension API
Brocade Virtual Traffic Manager: Java Development Guide       25



            

TrafficScript Functions in the Java Extension API Attributes List
proxy Set the machine to forward proxy on to. This should be set to IP:Port (i.e. the 
servlet does any DNS lookup) 

resendable Read-only: is the request is resendable to another node. Valid in response rules 
only. Returns 0/1 

retries Read the number of retries - request.getRetries() 

rule The name of the TrafficScript rule that called this extension.

serverbandwidth Get/set the bandwidth class to use for server-side data 

serverdstip The IP address the server (node) sent to.

serverdstport The port the server (node) sent to.

serversrcip The IP address of the server (node).

serversrcport The server's (node's) source port.

servertos IP Type-Of-Service flag to use for the server connection - takes same args as 
request.getToS() 

servicelevel Get/set the SLM class to use 

srcip Client's IP address 

srcport Client's source port 

tos IP Type-Of-Service flag to use for the client connection 

virtualserver Read the virtual server name 

Attribute Description
26 Brocade Virtual Traffic Manager: Java Development Guide


	Brocade Virtual Traffic Manager: Java Development Guide
	Contents
	Preface
	Document Conventions
	Notes and Warnings
	Text Formatting Conventions
	Command Syntax Conventions

	Brocade Resources
	Document Feedback
	Contacting Brocade Technical Support
	Brocade Customers
	Brocade OEM Customers


	Chapter 1 Java Development
	About This Guide
	Introduction
	Available Features
	Java API Documentation
	Java Technical References

	Chapter 2 Configuring Java
	Java Requirements
	How Java Extensions Work
	Setting Up the Traffic Manager


	Chapter 3 Writing a Java Extension
	Java Classes and Servlet APIs
	Traffic Manager Extensions to the Servlet API
	Modifying Responses and Writing Data From a Java Extension

	Creating TrafficScript Functions Using Java Extensions
	Compiling a Java Extension
	Running a Java Extension

	Debugging Extensions
	Printing Debug Information
	Java Exception Stack Traces
	Remote Debugging


	Chapter 4 TrafficScript Functions in the Java Extension API
	Equivalent TrafficScript Functions in the Java Extension API
	Attributes List



