SAML Authentication with Pulse Connect Secure and Pulse Secure Virtual Traffic Manager

Deployment Guide
SAML Authentication with Pulse Connect Secure and Pulse Secure Virtual Traffic Manager

The information in this document is current as of the date on the title page.

END USER LICENSE AGREEMENT

The Pulse Secure product that is the subject of this technical documentation consists of (or is intended for use with) Pulse Secure software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at http://www.pulsesecure.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Contents

INTRODUCTION ... 1
PURPOSE OF THIS GUIDE ... 1
PREREQUISITES .. 1
OVERVIEW .. 1
SUMMARY OF CONFIGURATION ... 2

CONFIGURING THE TRAFFIC MANAGER WITH PCS AS AN IDENTITY PROVIDER (IDP) 3
CONFIGURING PULSE CONNECT SECURE AS A SAML IDP ... 9
CONFIGURING A TRAFFIC MANAGER VIRTUAL SERVER AS A SAML SP ENDPOINT ... 13

USE CASES AND EXAMPLES .. 19
 BROWSER ACCESS – SIMPLE USER AUTHENTICATION ... 19
 ADDING COMPLIANCE CHECKING AND TOTP TO THE AUTHENTICATION 19
 CLOUD SECURE – “REUSE EXISTING NC (PULSE) SESSION” 20
 CLOUD SECURE – “REUSE EXISTING NC (PULSE) SESSION” AND “REUSE EXISTING IF-MAP SESSION” .. 21

REFERENCES .. 23
Introduction

Purpose of this Guide
An enterprise can deploy a secure SAML-based Identity Provider (IdP) to handle authentication for web services, applications, and resources delivered by one or more Service Providers (SPs).

This guide describes how to configure Pulse Secure Virtual Traffic Manager (the Traffic Manager) for SP-initiated SAML authentication with Pulse Connect Secure (PCS) acting as the IdP.

Prerequisites
This guide assumes you are familiar with the SAML protocol, SAML-based authentication methods, and terms such as SP and IdP.

The Traffic Manager supports configuration as a SAML SP from version 17.4 or later.

PCS supports configuration as a SAML IdP from version 8.2R1 or later.

Overview
The Traffic Manager can function as a SAML SP to control access to your secure back-end web services. Access to these services is permitted only when the client presents a valid Traffic Manager authentication cookie.

In a typical scenario, a user’s browser connects to the Traffic Manager to access a service. For the requested service, the Traffic Manager is configured to obtain prior validation, and thus redirects the browser to PCS to be authenticated. PCS checks the identity of the user against its own records, and obtains verification that the user has appropriate privileges for the desired service. If successful, PCS returns the browser to the Traffic Manager with a SAML assertion that the user is legitimate and has the declared identity (typically the email address).

An SP requires a SAML response from the IdP only during the initial authentication exchange.
Summary of Configuration

The Traffic Manager requires certain IDP-derived details from PCS as part of its SAML configuration, and must also provide PCS with specific configuration items in return. To operate successfully, your SAML configuration must match on both the Traffic Manager and PCS.

To apply authentication control to your services, perform the following steps:

1. Configure the Traffic Manager with PCS as the defined IdP.
2. Configure PCS to operate as a SAML IdP, with details of the Traffic Manager as an active SP.
3. Configure your designated Traffic Manager virtual servers as SAML SP endpoints.

The remainder of this guide describes each of these steps in detail.
To configure Pulse Connect Secure as a Trusted Identity Provider in the Traffic Manager, perform the following steps:

1. Login to the Traffic Manager Admin UI and navigate to Catalogs > SAML > Trusted Identity Providers Catalog.

2. Type the details for your PCS instance into the Create new Trusted Identity Provider dialog.
3. Type an identifying name for this IdP.

4. Set `entity_id` to the unique SAML identifier for the PCS. To obtain the SAML identifier, login to the PCS Admin UI and navigate to Authentication > Signing In > Sign-in SAML > Metadata Provider.

The Entity ID uses the URL format:

5. Set **url** to the URL to which the client is redirected for authentication. Use the format:

 https://<Alternate Host FQDN for SAML>/dana-na/auth/saml-sso.cgi

 To obtain the `<Alternate Host FQDN for SAML>`, login to the PCS Admin UI and navigate to **System > Configuration > SAML > Settings**. Use the value shown in “Alternate Cluster FQDN for SAML”.

FIGURE 5 Obtaining the Alternate Host FQDN

![SAML Settings](image)

6. Set **add_zlib_header** to "No".

7. Set **strict_verify** to "Yes".

8. For **certificate**, use the SAML Signing certificate used by PCS.

 To obtain the certificate, login to the PCS Admin UI and navigate to **Authentication > Signing In > Sign-in SAML > Identity Provider**.
In this example, the certificate is named "SA CL SAN".

Then, navigate to **System > Configuration > Certificates > Device Certificate** and click on the certificate name to see the details.

To obtain the certificate text, use the "Download" link.
Open the downloaded certificate data in a text editor.

Finally, copy the certificate text and paste it into the **Certificate** field in the Traffic Manager Trusted Identity Provider definition.

9. To save the Trusted Identity Provider definition, click **Create New Trusted Identity Provider**.
Configuring Pulse Connect Secure as a SAML IdP

To configure PCS as a SAML IdP to the Traffic Manager, perform the following steps:

1. Login to the PCS Admin UI and navigate to Authentication > Signing In > Sign-in SAML > Identity Provider.

2. Scroll to the bottom of the page to add a new Service Provider.

4. Set Entity Id and Assertion Consumer Service URL to the equivalent values used by your Traffic Manager SAML SP configuration (see “Configuring a Traffic Manager Virtual Server as a SAML SP Endpoint” on page 13).

 For Entity ID, ensure you match the value stored in auth!saml!sp_entity_id, and Assertion Consumer Service URL, use the value stored in auth!saml!sp_acs_url.

5. Select only POST protocol binding.
6. The Traffic Manager does not sign the authentication request so there is no requirement to add a Signature Verification Certificate or Encryption Certificate. Ensure “Accept unsigned AuthnRequest” is enabled.

FIGURE 11 Enabling “Accept unsigned AuthnRequest”

7. The settings **Reuse Existing NC (Pulse) Session** and **Reuse Existing IF-MAP Session** are covered in the use cases section in this document.

8. Select the **Signin Policy** from the drop-down list to be used by users as they authenticate. In this example, “*/adc/” is selected.

9. Select the User Identity to be used. In this example, the **Subject Name Format** is "DN" and **Subject Name** is "uid=<username>".

10. Finally, select for which **Roles** the IdP must issue SAML Assertions.
11. Save the new SAML SP configuration.
Configuring a Traffic Manager Virtual Server as a SAML SP Endpoint

To configure a Traffic Manager service with SAML SP authentication, perform the following steps:

1. Designate a virtual server as your SAML SP endpoint. Navigate to Services > Virtual Servers and click the name of the required virtual server.

 Pulse Secure strongly recommends against using SAML authentication without TLS encryption. Your virtual server should therefore have SSL Decryption enabled.

2. Locate the Authentication section and click to edit.
3. Set **auth!type** to "SAML Service Provider".

4. For troubleshooting or testing purposes, optionally set **auth!verbose** to "Yes". Note that this setting generates a lot of log content, so is recommended to be disabled for a live service.

5. For a typical service, leave the settings under "Authentication Session Management" as their default values.
6. In the "SAML Service Provider" section, set `auth!saml!sp_entity_id` to an HTTPS URL that the IdP uses to identify the Traffic Manager as the SAML SP (that redirected a user agent for authentication). Then set `auth!saml!sp_acs_url` to the HTTPS URL of the SAML Assertion Consumer Service (ACS). In other words, the URL at which the Traffic Manager should handle SAML assertions.

These values must match the equivalent fields specified in your PCS Service Provider configuration (see "Configuring Pulse Connect Secure as a SAML IdP" on page 7).

In the following example, SAML Authentication is added to a Traffic Manager virtual server named "www.example.com". This virtual server is configured to listen on an IP address that resolves to a URL of the same name.
The following example values can then be used:

- **Entity ID:**

 https://www.example.com/saml/metadata

- **Assertion Consumer Service URL:**

 https://www.example.com/saml/consume

When the Traffic Manager receives an HTTP request through the "www.example.com" virtual server, it first checks if the URL corresponds to the ACS URL. If yes, the Traffic Manager handles this URL as the SAML ACS endpoint; otherwise it forwards the request to the pool nodes.

7. Select the **auth!saml!idp** that was created in the first step in this guide.

8. As SAML is sensitive to time, Pulse Secure recommends that both the Traffic Manager and PCS are set to use Network Time Protocol (NTP). When using NTP, the tolerance of 5 seconds should be sufficient for the service.

9. Set **auth!saml!nameid_format** to "unspecified".
10. To save the configuration, click **Update**.
Use Cases and Examples

Browser Access – Simple User Authentication
A user attempts to access the Traffic Manager-served "www.example.com". As this service is configured as a SAML SP endpoint, the user's browser is redirected to the PCS sign-in page for authentication.

FIGURE 18 The PCS authentication sign-in page

![PCS Authentication Sign-in Page](image)

After passing authentication, PCS returns the user's browser to the Traffic Manager, complete with a SAML assertion that the user is legitimate, to access the back-end pool resource originally requested.

FIGURE 19 Authentication successful

![Authentication Successful](image)

Adding Compliance Checking and TOTP to the Authentication
A user attempts to access the Traffic Manager-served "www.example.com". As this service is configured as a SAML SP endpoint, the user's browser is redirected to the PCS sign-in page for a compliance check, and both Active Directory and TOTP authentication.
Cloud Secure – “Reuse Existing NC (Pulse) Session”

By configuring the SAML SP in PCS to reuse an existing session, any user with an existing VPN or AppVPN session uses Single Sign-On (SSO) to the protected resource served by the Traffic Manager virtual server.

The user has a Pulse Secure VPN connection to PCS and accesses the virtual server.

User logs from PCS, acting as a SAML IdP.

The user's browser is redirected to PCS with the SAML AuthnRequest.
Cloud Secure – “Reuse Existing NC (Pulse) Session” and “Reuse Existing IF-MAP Session”

This use case includes the Federation functionality provided by IF-MAP.

PCS and Pulse Policy Secure (PPS) are acting as IF-MAP clients and publish user sessions to the Federation (IF-MAP) server.

In this use case, the user is on the internal network and has an existing session with PPS. The user still gets SSO to the protected resource served by the Traffic Manager virtual server.

The user browser is redirected to Pulse Connect Secure with the SAML AuthnRequest

PCS (the IdP) does not find any local session for the user. PCS queries the Federation (IF-MAP) server, finds a session, and imports it.

PCS finds an existing session from this user and reuses it.

PCS generates a SAML Assertion giving the user SSO to the virtual server.

Cloud Secure – “Reuse Existing NC (Pulse) Session” and “Reuse Existing IF-MAP Session”

This use case includes the Federation functionality provided by IF-MAP.

PCS and Pulse Policy Secure (PPS) are acting as IF-MAP clients and publish user sessions to the Federation (IF-MAP) server.

In this use case, the user is on the internal network and has an existing session with PPS. The user still gets SSO to the protected resource served by the Traffic Manager virtual server.

The user browser is redirected to Pulse Connect Secure with the SAML AuthnRequest

PCS (the IdP) does not find any local session for the user. PCS queries the Federation (IF-MAP) server, finds a session, and imports it.
PCS generates a SAML Assertion giving the user SSO to the virtual server.

2017-10-16 13:17:43 - ive - [127.0.0.1] System()[] - Sending SAML response for Username: [jogy], User Agent: [Mozilla/5.0 (Windows NT 10.0; WOW64; rv:56.0) Gecko/20100101 Firefox/56.0], Subject Name: [uid=jogy], Source IP: [10.0.2.50], Type: [SP-Initiated], SP EntityID: [http://www.example.com/saml/metadata], Session ID: [], Relay State: [/T2li1LQ6+3pIRGSCtiU0y3c7tqiB3U7+zyKi9eM2tdu23Q4ccJSMm6ctl4DpjdwuSSWYqo4tBwJdpw/eqnDRXeEB6nSYp0z5ymDVpb/b20ukCT45GpNiTDZc5i/tSGl61XFVhImmpWMriLxcoxwfrtjWWH33QPU4qpXFXd6ptW/M=], AuthnRequest ID: [16fca8ef-38ea-bcd1-6bb6-fb9fa601f613]

Note: If no session is found locally or via the federation layer, the user is presented with the standard browser authentication experience.
References

- https://www.pulsesecure.net/download/techpubs/current/1022/Pulse-vADC-Solutions/Pulse-Virtual-Traffic-Manager/17.4/ps-vtm-17.4-releasenotes.pdf
- https://www.pulsesecure.net/download/techpubs/current/1027/Pulse-vADC-Solutions/Pulse-Virtual-Traffic-Manager/17.4/ps-vtm-17.4-userguide.pdf